After having run HISAT2 to index and identify exons and splice sites in the NCBI Crassostrea virginica (Eastern oyster) genome (GCF_002022765.2) on 20210720, the next step was to identify and quantify transcripts from the RNAseq data using StringTie.
StringTie was run on Mox and was configured to generate output files for donwstream analysis using the R BiocConductor package ballgown. Used -B option to output tables intended for use in ballgown and the -e option; recommended when using -B option, which limits analysis to only reads alignments matching reference. These options should generate a file/directory structure that looks something like this:
extdata
sample01
e2t.ctab
e_data.ctab
i2t.ctab
i_data.ctab
t_data.ctab
sample02
e2t.ctab
e_data.ctab
i2t.ctab
i_data.ctab
t_data.ctab
...
sample20
e2t.ctab
e_data.ctab
i2t.ctab
i_data.ctab
t_data.ctab
For more information on what those files are and how they are formatted, see the ballgown documentation.
This analysis was run on Mox.
SBATCH script (GitHub):
#!/bin/bash
## Job Name
#SBATCH --job-name=20210726_cvir_stringtie_GCF_002022765.2_isoforms
## Allocation Definition
#SBATCH --account=srlab
#SBATCH --partition=srlab
## Resources
## Nodes
#SBATCH --nodes=1
## Walltime (days-hours:minutes:seconds format)
#SBATCH --time=5-00:00:00
## Memory per node
#SBATCH --mem=500G
##turn on e-mail notification
#SBATCH --mail-type=ALL
#SBATCH --mail-user=samwhite@uw.edu
## Specify the working directory for this job
#SBATCH --chdir=/gscratch/scrubbed/samwhite/outputs/20210726_cvir_stringtie_GCF_002022765.2_isoforms
## Script using Stringtie with NCBI C.virginica genome assembly
## and HiSat2 index generated on 20210714.
## Expects FastQ input filenames to match <sample name>_R1.fastq.gz
###################################################################################
# These variables need to be set by user
## Assign Variables
# Set number of CPUs to use
threads=28
# Index name for Hisat2 use
# Needs to match index naem used in previous Hisat2 indexing step
genome_index_name="cvir_GCF_002022765.2"
# Location of Hisat2 index files
# Must keep variable name formatting, as it's used by HiSat2
HISAT2_INDEXES=$(pwd)
export HISAT2_INDEXES
# Paths to programs
hisat2_dir="/gscratch/srlab/programs/hisat2-2.1.0"
hisat2="${hisat2_dir}/hisat2"
samtools="/gscratch/srlab/programs/samtools-1.10/samtools"
stringtie="/gscratch/srlab/programs/stringtie-1.3.6.Linux_x86_64/stringtie"
# Input/output files
genome_index_dir="/gscratch/srlab/sam/data/C_virginica/genomes"
genome_gff="${genome_index_dir}/GCF_002022765.2_C_virginica-3.0_genomic.gff"
fastq_dir="/gscratch/srlab/sam/data/C_virginica/RNAseq/"
gtf_list="gtf_list.txt"
# Programs associative array
declare -A programs_array
programs_array=(
[hisat2]="${hisat2}" \
[samtools_index]="${samtools} index" \
[samtools_sort]="${samtools} sort" \
[samtools_view]="${samtools} view" \
[stringtie]="${stringtie}"
)
###################################################################################################
# Exit script if any command fails
set -e
# Load Python Mox module for Python module availability
module load intel-python3_2017
## Inititalize arrays
fastq_array_R1=()
fastq_array_R2=()
names_array=()
# Copy Hisat2 genome index files
rsync -av "${genome_index_dir}"/${genome_index_name}*.ht2 .
# Create array of fastq R1 files
# and generated MD5 checksums file.
for fastq in "${fastq_dir}"*R1*.gz
do
fastq_array_R1+=("${fastq}")
echo "Generating checksum for ${fastq}..."
md5sum "${fastq}" >> input_fastqs_checksums.md5
echo "Checksum for ${fastq} completed."
echo ""
done
# Create array of fastq R2 files
for fastq in "${fastq_dir}"*R2*.gz
do
fastq_array_R2+=("${fastq}")
echo "Generating checksum for ${fastq}..."
md5sum "${fastq}" >> input_fastqs_checksums.md5
echo "Checksum for ${fastq} completed."
echo ""
done
# Create array of sample names
## Uses parameter substitution to strip leading path from filename
## Uses awk to parse out sample name from filename
for R1_fastq in "${fastq_dir}"*R1*.gz
do
names_array+=("$(echo "${R1_fastq#${fastq_dir}}" | awk -F"_" '{print $1}')")
done
# Hisat2 alignments
for index in "${!fastq_array_R1[@]}"
do
sample_name="${names_array[index]}"
# Create and switch to dedicated sample directory
mkdir "${sample_name}" && cd "$_"
# Generate HiSat2 alignments
"${programs_array[hisat2]}" \
-x "${genome_index_name}" \
-1 "${fastq_array_R1[index]}" \
-2 "${fastq_array_R2[index]}" \
-S "${sample_name}".sam \
2> "${sample_name}"_hisat2.err
# Sort SAM files, convert to BAM, and index
${programs_array[samtools_view]} \
-@ "${threads}" \
-Su "${sample_name}".sam \
| ${programs_array[samtools_sort]} - \
-@ "${threads}" \
-o "${sample_name}".sorted.bam
${programs_array[samtools_index]} "${sample_name}".sorted.bam
# Run stringtie on alignments
# Uses "-B" option to output tables intended for use in Ballgown
# Uses "-e" option; recommended when using "-B" option.
# Limits analysis to only reads alignments matching reference.
"${programs_array[stringtie]}" "${sample_name}".sorted.bam \
-p "${threads}" \
-o "${sample_name}".gtf \
-G "${genome_gff}" \
-C "${sample_name}.cov_refs.gtf" \
-B \
-e
# Add GTFs to list file, only if non-empty
# Identifies GTF files that only have header
gtf_lines=$(wc -l < "${sample_name}".gtf )
if [ "${gtf_lines}" -gt 2 ]; then
echo "$(pwd)/${sample_name}.gtf" >> ../"${gtf_list}"
fi
# Delete unneded SAM files
rm ./*.sam
# Generate checksums
for file in *
do
md5sum "${file}" >> ${sample_name}_checksums.md5
done
cd ..
# Create singular transcript file, using GTF list file
"${programs_array[stringtie]}" --merge \
"${gtf_list}" \
-p "${threads}" \
-G "${genome_gff}" \
-o "${genome_index_name}".stringtie.gtf
done
# Delete unneccessary index files
rm "${genome_index_name}"*.ht2
#######################################################################################################
# Capture program options
if [[ "${#programs_array[@]}" -gt 0 ]]; then
echo "Logging program options..."
for program in "${!programs_array[@]}"
do
{
echo "Program options for ${program}: "
echo ""
# Handle samtools help menus
if [[ "${program}" == "samtools_index" ]] \
|| [[ "${program}" == "samtools_sort" ]] \
|| [[ "${program}" == "samtools_view" ]]
then
${programs_array[$program]}
# Handle DIAMOND BLAST menu
elif [[ "${program}" == "diamond" ]]; then
${programs_array[$program]} help
# Handle NCBI BLASTx menu
elif [[ "${program}" == "blastx" ]]; then
${programs_array[$program]} -help
fi
${programs_array[$program]} -h
echo ""
echo ""
echo "----------------------------------------------"
echo ""
echo ""
} &>> program_options.log || true
# If MultiQC is in programs_array, copy the config file to this directory.
if [[ "${program}" == "multiqc" ]]; then
cp --preserve ~/.multiqc_config.yaml multiqc_config.yaml
fi
done
fi
# Document programs in PATH (primarily for program version ID)
{
date
echo ""
echo "System PATH for $SLURM_JOB_ID"
echo ""
printf "%0.s-" {1..10}
echo "${PATH}" | tr : \\n
} >> system_path.log
RESULTS
Runtime was a little over 2.5 days:

Output folder:
20210726_cvir_stringtie_GCF_002022765.2_isoforms/
List of input FastQs and checksums (text):
Full GTF file (GTF; 143MB):
Since there are a large number of folders/files, the resulting directory structure for all of the StringTie output is shown at the end of this post. Here’s a description of all the file types found in each directory:
*.ctab: Seeballgowndocumentation for description of these.*.checksums.md5: MD5 checksums for all files in each directory.*.cov_refs.gtf: Coverage GTF generate byStringTieand used to generate final GTF for each sample.*.gtf: Final GTF file produced byStringTiefor each sample.*_hisat2.err: Standard error output fromHISAT2. Contains alignment info.*.sorted.bam: Sorted BAM alignments file produced byHISAT2.*.sorted.bam.bai: BAM index file.
I noticed something when glancing at the data. Alignment rates are consistently low/lower in males, compared to the females. Not sure of what this means, but figured I’d share it.
Here’s a table. The letter M or F in the sample name column indicates sex.
| Sample | Overall Alignment Rate |
|---|---|
| S23M | 16.51% |
| S48M | 19.93% |
| S13M | 20.66% |
| S6M | 22.04% |
| S9M | 24.54% |
| S12M | 26.33% |
| S7M | 28.05% |
| S59M | 38.13% |
| S31M | 38.90% |
| S54F | 39.25% |
| S29F | 39.57% |
| S52F | 41.24% |
| S53F | 41.60% |
| S64M | 42.08% |
| S41F | 43.26% |
| S35F | 43.95% |
| S36F | 44.49% |
| S22F | 45.04% |
| S39F | 45.80% |
| S44F | 45.89% |
| S19F | 46.90% |
| S76F | 47.24% |
| S50F | 47.80% |
| S3F | 48.89% |
| S16F | 50.29% |
| S77F | 50.31% |
Next up is to get this loaded into ballgown and see how things fall out!
├── [6.1K] 20210726_cvir_stringtie_GCF_002022765.2_isoforms.sh
├── [143M] cvir_GCF_002022765.2.stringtie.gtf
├── [2.5K] gtf_list.txt
├── [4.8K] input_fastqs_checksums.md5
├── [ 12K] program_options.log
├── [4.7G] S12M
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S12M_checksums.md5
│ ├── [1.3M] S12M.cov_refs.gtf
│ ├── [136M] S12M.gtf
│ ├── [ 638] S12M_hisat2.err
│ ├── [4.5G] S12M.sorted.bam
│ ├── [1.3M] S12M.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.8G] S13M
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S13M_checksums.md5
│ ├── [637K] S13M.cov_refs.gtf
│ ├── [136M] S13M.gtf
│ ├── [ 637] S13M_hisat2.err
│ ├── [3.6G] S13M.sorted.bam
│ ├── [861K] S13M.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.2G] S16F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S16F_checksums.md5
│ ├── [ 15M] S16F.cov_refs.gtf
│ ├── [136M] S16F.gtf
│ ├── [ 638] S16F_hisat2.err
│ ├── [3.0G] S16F.sorted.bam
│ ├── [1.1M] S16F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.2G] S19F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S19F_checksums.md5
│ ├── [ 12M] S19F.cov_refs.gtf
│ ├── [136M] S19F.gtf
│ ├── [ 638] S19F_hisat2.err
│ ├── [3.0G] S19F.sorted.bam
│ ├── [1.1M] S19F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.7G] S22F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S22F_checksums.md5
│ ├── [ 13M] S22F.cov_refs.gtf
│ ├── [136M] S22F.gtf
│ ├── [ 638] S22F_hisat2.err
│ ├── [3.5G] S22F.sorted.bam
│ ├── [1.2M] S22F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [5.3G] S23M
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S23M_checksums.md5
│ ├── [1.1M] S23M.cov_refs.gtf
│ ├── [136M] S23M.gtf
│ ├── [ 637] S23M_hisat2.err
│ ├── [5.1G] S23M.sorted.bam
│ ├── [1004K] S23M.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.2G] S29F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S29F_checksums.md5
│ ├── [ 12M] S29F.cov_refs.gtf
│ ├── [137M] S29F.gtf
│ ├── [ 637] S29F_hisat2.err
│ ├── [3.0G] S29F.sorted.bam
│ ├── [1.0M] S29F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.2G] S31M
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S31M_checksums.md5
│ ├── [571K] S31M.cov_refs.gtf
│ ├── [136M] S31M.gtf
│ ├── [ 638] S31M_hisat2.err
│ ├── [3.0G] S31M.sorted.bam
│ ├── [1.1M] S31M.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [2.7G] S35F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S35F_checksums.md5
│ ├── [ 11M] S35F.cov_refs.gtf
│ ├── [136M] S35F.gtf
│ ├── [ 637] S35F_hisat2.err
│ ├── [2.5G] S35F.sorted.bam
│ ├── [952K] S35F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [2.9G] S36F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S36F_checksums.md5
│ ├── [ 11M] S36F.cov_refs.gtf
│ ├── [136M] S36F.gtf
│ ├── [ 638] S36F_hisat2.err
│ ├── [2.7G] S36F.sorted.bam
│ ├── [1.0M] S36F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.3G] S39F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S39F_checksums.md5
│ ├── [ 12M] S39F.cov_refs.gtf
│ ├── [136M] S39F.gtf
│ ├── [ 638] S39F_hisat2.err
│ ├── [3.0G] S39F.sorted.bam
│ ├── [1.1M] S39F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [2.9G] S3F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 468] S3F_checksums.md5
│ ├── [ 13M] S3F.cov_refs.gtf
│ ├── [136M] S3F.gtf
│ ├── [ 637] S3F_hisat2.err
│ ├── [2.7G] S3F.sorted.bam
│ ├── [1022K] S3F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.1G] S41F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S41F_checksums.md5
│ ├── [ 13M] S41F.cov_refs.gtf
│ ├── [137M] S41F.gtf
│ ├── [ 638] S41F_hisat2.err
│ ├── [2.9G] S41F.sorted.bam
│ ├── [1.0M] S41F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.4G] S44F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S44F_checksums.md5
│ ├── [ 14M] S44F.cov_refs.gtf
│ ├── [137M] S44F.gtf
│ ├── [ 638] S44F_hisat2.err
│ ├── [3.2G] S44F.sorted.bam
│ ├── [1.1M] S44F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [8.3G] S48M
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S48M_checksums.md5
│ ├── [1.1M] S48M.cov_refs.gtf
│ ├── [136M] S48M.gtf
│ ├── [ 640] S48M_hisat2.err
│ ├── [8.1G] S48M.sorted.bam
│ ├── [1.9M] S48M.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [2.7G] S50F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S50F_checksums.md5
│ ├── [ 13M] S50F.cov_refs.gtf
│ ├── [136M] S50F.gtf
│ ├── [ 637] S50F_hisat2.err
│ ├── [2.5G] S50F.sorted.bam
│ ├── [980K] S50F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.3G] S52F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S52F_checksums.md5
│ ├── [ 16M] S52F.cov_refs.gtf
│ ├── [137M] S52F.gtf
│ ├── [ 638] S52F_hisat2.err
│ ├── [3.1G] S52F.sorted.bam
│ ├── [1.1M] S52F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.1G] S53F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S53F_checksums.md5
│ ├── [ 12M] S53F.cov_refs.gtf
│ ├── [136M] S53F.gtf
│ ├── [ 637] S53F_hisat2.err
│ ├── [2.9G] S53F.sorted.bam
│ ├── [996K] S53F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.2G] S54F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S54F_checksums.md5
│ ├── [ 12M] S54F.cov_refs.gtf
│ ├── [136M] S54F.gtf
│ ├── [ 637] S54F_hisat2.err
│ ├── [3.0G] S54F.sorted.bam
│ ├── [1023K] S54F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.1G] S59M
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S59M_checksums.md5
│ ├── [8.8M] S59M.cov_refs.gtf
│ ├── [136M] S59M.gtf
│ ├── [ 637] S59M_hisat2.err
│ ├── [2.9G] S59M.sorted.bam
│ ├── [934K] S59M.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.6G] S64M
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S64M_checksums.md5
│ ├── [7.2M] S64M.cov_refs.gtf
│ ├── [136M] S64M.gtf
│ ├── [ 638] S64M_hisat2.err
│ ├── [3.4G] S64M.sorted.bam
│ ├── [1.4M] S64M.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [5.5G] S6M
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 468] S6M_checksums.md5
│ ├── [1.0M] S6M.cov_refs.gtf
│ ├── [136M] S6M.gtf
│ ├── [ 638] S6M_hisat2.err
│ ├── [5.3G] S6M.sorted.bam
│ ├── [1.3M] S6M.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.4G] S76F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S76F_checksums.md5
│ ├── [ 12M] S76F.cov_refs.gtf
│ ├── [136M] S76F.gtf
│ ├── [ 638] S76F_hisat2.err
│ ├── [3.2G] S76F.sorted.bam
│ ├── [1.1M] S76F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [3.6G] S77F
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 473] S77F_checksums.md5
│ ├── [ 14M] S77F.cov_refs.gtf
│ ├── [136M] S77F.gtf
│ ├── [ 639] S77F_hisat2.err
│ ├── [3.4G] S77F.sorted.bam
│ ├── [1.2M] S77F.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [4.1G] S7M
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 468] S7M_checksums.md5
│ ├── [1.4M] S7M.cov_refs.gtf
│ ├── [136M] S7M.gtf
│ ├── [ 638] S7M_hisat2.err
│ ├── [3.9G] S7M.sorted.bam
│ ├── [1.2M] S7M.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [5.1G] S9M
│ ├── [8.7M] e2t.ctab
│ ├── [ 26M] e_data.ctab
│ ├── [7.8M] i2t.ctab
│ ├── [ 14M] i_data.ctab
│ ├── [ 468] S9M_checksums.md5
│ ├── [992K] S9M.cov_refs.gtf
│ ├── [136M] S9M.gtf
│ ├── [ 638] S9M_hisat2.err
│ ├── [4.9G] S9M.sorted.bam
│ ├── [1.3M] S9M.sorted.bam.bai
│ └── [7.3M] t_data.ctab
├── [ 11K] slurm-2112475.out
└── [ 996] system_path.log