--- title: "Week 3 - Differential Gene Expression Report - now Knitted!" author: "Liz Boggs" date: "`r format(Sys.Date(), '%B %d, %Y')`" output: html_document: theme: readable toc: true toc_float: true number_sections: true code_folding: show --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` ## Week 3 - Knitting my Differential Gene Expression Report ### This report looks at differential expression in RNA-seq data using `kallisto`, which will create a matrix that can be displayed in a table or plot. Or in this case, both! ### 1. Downloading the reference genome for our target species, *C. gigas* ```{bash} cd ~/diffge curl --insecure -O https://gannet.fish.washington.edu/seashell/bu-github/nb-2023/Cgigas/data/rna.fna ``` ### 2. Index our `rna.fna` file whilst renaming it ```{bash} /home/shared/kallisto/kallisto \ index -i \ ~/diffge/cgigas_roslin_rna.index \ ~/diffge/rna.fna ``` ### 3. Download our RNA-seq reads to our data folder ```{bash} cd ~/diffge wget --recursive --no-parent --no-directories \ --no-check-certificate \ --accept '*.fastq.gz' \ https://gannet.fish.washington.edu/seashell/bu-github/nb-2023/Cgigas/data/nopp/ ``` ### 4. Creating a sub-directory and running `kallisto` ```{bash} mkdir ~/diffge/kallisto_01 find ~/diffge/*fastq.gz \ | xargs basename -s _L001_R1_001.fastq.gz | xargs -I{} /home/shared/kallisto/kallisto \ quant -i ~/diffge/cgigas_roslin_rna.index \ -o ~/diffge/kallisto_01/{} \ -t 40 \ --single -l 100 -s 10 ~/diffge/{}_L001_R1_001.fastq.gz ``` ### 5. Gene expression matrix Now we'll take our `kallisto` files and form a gene expression matrix: ```{bash} perl /home/shared/trinityrnaseq-v2.12.0/util/abundance_estimates_to_matrix.pl \ --est_method kallisto \ --gene_trans_map none \ --out_prefix ~/diffge/kallisto_01 \ --name_sample_by_basedir \ ~/diffge/kallisto_01/D54_S145/abundance.tsv \ ~/diffge/kallisto_01/D56_S136/abundance.tsv \ ~/diffge/kallisto_01/D58_S144/abundance.tsv \ ~/diffge/kallisto_01/M45_S140/abundance.tsv \ ~/diffge/kallisto_01/M48_S137/abundance.tsv \ ~/diffge/kallisto_01/M89_S138/abundance.tsv \ ~/diffge/kallisto_01/D55_S146/abundance.tsv \ ~/diffge/kallisto_01/D57_S143/abundance.tsv \ ~/diffge/kallisto_01/D59_S142/abundance.tsv \ ~/diffge/kallisto_01/M46_S141/abundance.tsv \ ~/diffge/kallisto_01/M49_S139/abundance.tsv \ ~/diffge/kallisto_01/M90_S147/abundance.tsv \ ~/diffge/kallisto_01/N48_S194/abundance.tsv \ ~/diffge/kallisto_01/N50_S187/abundance.tsv \ ~/diffge/kallisto_01/N52_S184/abundance.tsv \ ~/diffge/kallisto_01/N54_S193/abundance.tsv \ ~/diffge/kallisto_01/N56_S192/abundance.tsv \ ~/diffge/kallisto_01/N58_S195/abundance.tsv \ ~/diffge/kallisto_01/N49_S185/abundance.tsv \ ~/diffge/kallisto_01/N51_S186/abundance.tsv \ ~/diffge/kallisto_01/N53_S188/abundance.tsv \ ~/diffge/kallisto_01/N55_S190/abundance.tsv \ ~/diffge/kallisto_01/N57_S191/abundance.tsv \ ~/diffge/kallisto_01/N59_S189/abundance.tsv ``` ## Differential expression time! ### 6. Installing necessary packages ```{r} if (!require("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("DESeq2") ``` ```{r} install.packages("pheatmap") install.packages("RColorBrewer") install.packages("data.table") ``` ### 7. Loading packages \ #### *NOTE: some of these are already commonly installed, but if you don't have certain packages, add them to the `install.packages` chunk before proceeding! ```{r} library(DESeq2) library(tidyverse) library(pheatmap) library(RColorBrewer) library(data.table) ``` ### 8. Creating the matrix ```{r} countmatrix <- read.delim("~/diffge/kallisto_01.isoform.counts.matrix", header = TRUE, sep = '\t') rownames(countmatrix) <- countmatrix$X countmatrix <- countmatrix[,-1] head(countmatrix) ``` ### 9. Rounding up integers to whole numbers ```{r} countmatrix <- round(countmatrix, 0) str(countmatrix) ``` ### 10. Finding our differentially expressed genes based on dessication ```{r} deseq2.colData <- data.frame(condition=factor(c(rep("control", 12), rep("desicated", 12))), type=factor(rep("single-read", 24))) rownames(deseq2.colData) <- colnames(data) deseq2.dds <- DESeqDataSetFromMatrix(countData = countmatrix, colData = deseq2.colData, design = ~ condition) ``` ```{r} deseq2.dds <- DESeq(deseq2.dds) deseq2.res <- results(deseq2.dds) deseq2.res <- deseq2.res[order(rownames(deseq2.res)), ] head(deseq2.res) # preview! # Count number of hits with adjusted p-value less then 0.05 dim(deseq2.res[!is.na(deseq2.res$padj) & deseq2.res$padj <= 0.05, ]) ``` ### 11. Making a volcano plot! The below plot will visualize our differentially-expressed genes. ```{r} tmp <- deseq2.res # The main plot plot(tmp$baseMean, tmp$log2FoldChange, pch=20, cex=0.45, ylim=c(-3, 3), log="x", col="darkgray", main="DEG Dessication (pval <= 0.05)", xlab="mean of normalized counts", ylab="Log2 Fold Change") # Getting the significant points and plotting them again so they're a different color tmp.sig <- deseq2.res[!is.na(deseq2.res$padj) & deseq2.res$padj <= 0.05, ] points(tmp.sig$baseMean, tmp.sig$log2FoldChange, pch=20, cex=0.45, col="red") # 2 FC lines abline(h=c(-1,1), col="blue") ``` ### 12. Writing our differentially-expressed genes to a table in a directory (we want to keep these!) ```{r} write.table(tmp.sig, "~/diffge/DEGlist.tab", row.names = T) ```