adjust Adjust data for the effect of other variable(s) categorize Recode (or "cut") data into groups of values. center Centering (Grand-Mean Centering) change_code Recode old values of variables into new values coerce_to_numeric Convert to Numeric (if possible) convert_na_to Replace missing values in a variable or a data frame. convert_to_na Convert non-missing values in a variable into missing values. data_addprefix Rename columns and variable names data_extract Extract one or more columns or elements from an object data_group Create a grouped data frame data_match Return filtered or sliced data frame, or row indices data_merge Merge (join) two data frames, or a list of data frames data_partition Partition data data_read Read (import) data files from various sources data_relocate Relocate (reorder) columns of a data frame data_restoretype Restore the type of columns according to a reference data frame data_rotate Rotate a data frame data_tabulate Create frequency tables of variables data_to_long Reshape (pivot) data from wide to long data_to_wide Reshape (pivot) data from long to wide demean Compute group-meaned and de-meaned variables describe_distribution Describe a distribution distribution_mode Compute mode for a statistical distribution efc Sample dataset from the EFC Survey find_columns Find or get columns in a data frame based on search patterns format_text Convenient text formatting functionalities nhanes_sample Sample dataset from the National Health and Nutrition Examination Survey normalize Normalize numeric variable to 0-1 range ranktransform (Signed) rank transformation remove_empty Return or remove variables or observations that are completely missing replace_nan_inf Convert infinite or 'NaN' values into 'NA' rescale Rescale Variables to a New Range rescale_weights Rescale design weights for multilevel analysis reshape_ci Reshape CI between wide/long formats reverse Reverse-Score Variables row_to_colnames Tools for working with column names rownames_as_column Tools for working with row names skewness Compute Skewness and (Excess) Kurtosis slide Shift numeric value range smoothness Quantify the smoothness of a vector standardize Standardization (Z-scoring) standardize.default Re-fit a model with standardized data to_factor Convert data to factors to_numeric Convert data to numeric visualisation_recipe Prepare objects for visualisation weighted_mean Weighted Mean, Median, SD, and MAD winsorize Winsorize data