# Tensor Decomposition Analysis Report **Generated**: 2025-10-12 16:15:20 **Analysis ID**: 20251012_161520 --- ## Quick Summary This directory contains the complete results from a tensor decomposition analysis of gene expression data. This README explains all output files, provides interpretation guidelines, and recommends optimal parameters for your data. --- ## Analysis Summary ### Configuration - **Method**: CP Decomposition - **Rank**: 15 - **Tensor Shape**: (10223, 30, 4, 3) - Dimension 0 (Genes): 10223 - Dimension 1 (Individuals): 30 - Dimension 2 (Time Points): 4 - Dimension 3 (Species): 3 ### Performance Metrics - **Reconstruction Error**: 0.135900 - **Explained Variance**: 0.9752 (97.52%) - **Runtime**: 1m 44s - **Status**: ✅ Analysis Complete --- ## Output Files Explained This analysis generated the following files: ### Factor Matrices (CSV) These files contain the decomposed factor matrices for each mode: 1. **`*_factor_genes.csv`** - **Size**: Genes × Components - **Content**: Gene loadings for each component - **Use**: Identify which genes contribute to each pattern - **Columns**: `component_0`, `component_1`, ..., `component_N` - **Rows**: Gene IDs (e.g., OG_00001, OG_00002, ...) **Interpretation**: - High positive values = gene strongly associated with component - Values near zero = gene not involved in this component - Can be used for marker gene identification - Export for GO enrichment analysis 2. **`*_factor_individuals.csv`** - **Size**: Individuals × Components - **Content**: Individual-specific expression patterns - **Use**: Identify individual variation and clustering - **Columns**: `component_0`, `component_1`, ..., `component_N` - **Rows**: Individual IDs (e.g., ACR-139, POR-216, ...) **Interpretation**: - Shows how each individual responds - Can reveal outliers or distinct groups - Use for QC or biological interpretation 3. **`*_factor_timepoints.csv`** - **Size**: Time Points × Components - **Content**: Temporal dynamics for each component - **Use**: Understand how patterns change over time - **Columns**: `component_0`, `component_1`, ..., `component_N` - **Rows**: Time point labels (e.g., 1, 2, 3, 4) **Interpretation**: - Positive values = pattern increases at that time - Negative values = pattern decreases at that time - Flat line = time-independent pattern - Rising/falling trends = developmental programs 4. **`*_factor_species.csv`** - **Size**: Species × Components - **Content**: Species-specific patterns - **Use**: Compare responses across species - **Columns**: `component_0`, `component_1`, ..., `component_N` - **Rows**: Species codes (e.g., ACR, POR, POC) **Interpretation**: - Similar values across species = conserved pattern - Different values = species-specific response - Use to identify adaptation or divergence ### Metadata (JSON) **`*_metadata.json`** - Contains dimension labels and analysis parameters - Use to map indices back to original labels - Includes gene names, individual IDs, time points, species names **Fields**: ```json { "genes": ["OG_00001", "OG_00002", ...], "individuals": ["ACR-139", "ACR-145", ...], "timepoints": [1, 2, 3, 4], "species": ["ACR", "POR", "POC"], "shape": [genes, individuals, timepoints, species] } ``` ### This README **`ANALYSIS_README.md`** (this file) - Complete documentation of the analysis - Interpretation guidelines - Parameter recommendations - Troubleshooting tips --- ## How to Interpret Your Results ### Understanding Components Your CP decomposition identified **15 components** that capture major patterns in the data. Each component represents a distinct gene expression pattern characterized by: 1. **Which genes** are involved (gene factor) 2. **How individuals** respond (individual factor) 3. **When** it occurs (time factor) 4. **Where** it's active (species factor) ### Key Findings - **Temporal Patterns**: Components 14, 13, 2 show the strongest time-dependent changes. - **Conserved Patterns**: Components 0, 2, 3 are similar across species. - **Species-Specific**: Components 1, 4, 6 show divergent patterns. ### Reading Factor Values **Magnitude**: - Values > 0.5 or < -0.5: Strong association - Values between -0.5 and 0.5: Moderate association - Values near 0: No association **Sign**: - Positive values: Co-activation or positive correlation - Negative values: Anti-correlation or repression - (Note: Sign is relative within each component) ### Typical Analysis Workflow 1. **Identify Components of Interest** - Look at time and species factors first - Find patterns matching your hypothesis 2. **Extract Marker Genes** - From gene factor, get genes with high loadings - Export gene lists for functional enrichment 3. **Validate Patterns** - Cross-reference with known biology - Plot individual genes to confirm 4. **Compare Conditions** - Use species factor to identify divergence - Use time factor for developmental stages ### Component Examples **Example 1: Stress Response Component** - Time factor: Increases at later time points - Species factor: Strong in all species (conserved) - Top genes: Heat shock proteins, chaperones **Example 2: Development Component** - Time factor: Progressive increase - Species factor: Variable (species-specific development) - Top genes: Developmental regulators, morphogens **Example 3: Baseline Expression** - Time factor: Flat (time-independent) - Species factor: Similar across species - Top genes: Housekeeping genes ---