# Barnacle Tensor Decomposition Convergence Analysis ## Executive Summary **None of the 94 parameter combinations tested achieved convergence** for the Barnacle SparseCP tensor decomposition on the multiomics dataset. This indicates a fundamental challenge with the current dataset and/or algorithm configuration that prevents convergence within reasonable computational limits. ## Testing Methodology ### Parameters Tested 1. **Maximum Iterations**: 1000, 2000, 5000, 10000 2. **Convergence Tolerances**: 1e-5, 1e-4, 1e-3 3. **Lambda Regularization Values**: - Gene regularization: 0.01, 0.05, 0.1, 0.2, 0.5, 1.0 - Sample regularization: 0.1, 0.2, 0.5 - Time regularization: 0.05, 0.1, 0.2 ### Test Coverage - **Total Combinations**: 94 unique parameter sets - **Successful Runs**: 94/94 (100% success rate) - **Converged Runs**: 0/94 (0% convergence rate) - **Final Loss Range**: 840,915 - 1,006,770 - **Tensor Dimensions**: 10,223 genes × 30 samples × 4 timepoints ## Detailed Results ### Convergence Failure Patterns 1. **All parameter combinations failed to converge** 2. **Increasing iterations did not help** (tested up to 10,000 iterations) 3. **Relaxing tolerance did not achieve convergence** (tested down to 1e-3) 4. **No clear pattern of improvement** with different regularization values ### Loss Values by Parameter Category | Parameter Category | Loss Range | Best Performance | |-------------------|------------|------------------| | Baseline (max_iter=1000, tol=1e-5) | 840,915 - 886,452 | 840,915 (λ_gene=0.01) | | Increased iterations (2000) | 840,915 - 911,497 | 840,915 (λ_gene=0.01) | | Relaxed tolerance (1e-4) | 864,254 - 911,497 | 864,254 (λ_gene=0.01) | | High iterations (5000) | 840,915 - 911,497 | 840,915 (λ_gene=0.01) | | Very relaxed tolerance (1e-3) | 882,064 - 1,006,770 | 882,064 (λ_gene=0.01) | ## Analysis of Results ### Key Findings 1. **Lowest loss consistently achieved** with λ_gene=0.01 across all parameter combinations 2. **No convergence achieved** even with extreme parameters (10,000 iterations, 1e-3 tolerance) 3. **Algorithm stalls** at similar loss values regardless of parameter settings 4. **No evidence** that further parameter tuning will achieve convergence ### Potential Issues 1. **Dataset characteristics** may be incompatible with SparseCP assumptions 2. **Rank 5** may be inappropriate for this 3D tensor (10,223 × 30 × 4) 3. **Data preprocessing** may need revision 4. **Algorithm limitations** with this specific data structure ## Next Steps & Recommendations ### Immediate Actions 1. **Document current state** - Accept that convergence cannot be achieved with current approach 2. **Preserve results** - All 94 test outputs are available for future analysis 3. **Consider alternative approaches** - Evaluate different tensor decomposition methods ### Alternative Approaches to Consider #### 1. Different Tensor Decomposition Methods ```python # Consider trying: # - Tucker decomposition (lower rank core tensor) # - PARAFAC without sparsity constraints # - Non-negative matrix factorization on unfolded tensor # - Canonical correlation analysis approaches ``` #### 2. Data Preprocessing Modifications - **Normalization strategies**: Try different normalization methods - **Feature selection**: Reduce gene set size (e.g., top 1000-5000 genes) - **Rank exploration**: Test ranks 2, 3, 4, 6, 8 instead of rank 5 - **Data transformation**: Consider log-transformation or standardization #### 3. Algorithm Parameter Reconsideration - **Different optimization algorithms** within Barnacle - **Multiple random initializations** (increase n_initializations) - **Orthogonal constraints** instead of non-negativity - **Different sparsity patterns** #### 4. Validation with Simpler Datasets - **Test on synthetic data** with known structure - **Compare with smaller real datasets** that should converge - **Validate algorithm installation** and version compatibility ### Computational Considerations - **Current approach**: 94 tests × ~5-30 minutes each = ~8-40 hours total - **Future testing**: Consider parallel processing for parameter sweeps - **Hardware**: May benefit from GPU acceleration if available ## Conclusion The systematic convergence testing revealed that **Barnacle SparseCP cannot achieve convergence** on this multiomics dataset with any of the tested parameter combinations. This suggests either: 1. **Fundamental incompatibility** between the algorithm and dataset characteristics 2. **Need for substantial preprocessing changes** or alternative approaches 3. **Algorithm limitations** for this specific data structure **Recommendation**: Shift focus to alternative tensor decomposition methods or data preprocessing strategies rather than continued parameter optimization. ## Files and Outputs - **Test outputs**: `M-multi-species/output/14.1-barnacle-convergence-tests/test_001/` through `test_094/` - **Intermediate results**: Available in `intermediate_results_*.csv` and `intermediate_results_*.json` - **Parameter combinations**: Defined in `convergence_test.py` - **Individual run logs**: Available in each test directory --- *Analysis completed: $(date)* *Total tests: 94* *Converged: 0* *Success rate: 100%* *Convergence rate: 0%*