
BIOSTATS Documentation

BIOSTATS is a collection of R functions written to aid in the statistical analysis of ecological
data sets using both univariate and multivariate procedures. All of these functions make use of
existing R functions and many are simply convenience wrappers for functions contained in other
popular libraries, such as VEGAN and LABDSV for multivariate statistics.

Author:

Kevin McGarigal, Associate Professor
Department of Natural Resources Conservation
University of Massachusetts, Amherst

Date Last Updated:

5 May, 2009

Functions:

all.subsets.gam. 3
all.subsets.glm. 6
box.plots.. 9
by.names. 11
ci.lines. 13
class.monte.. 14
clus.composite. 16
clus.stats. 18
cohen.kappa. 20
col.summary.. 22
contrast.matrix. 24
cov.test. 26
data.dist. 28
data.stand. 32
data.trans. 35
dist.plots. 38
distributions. 40
drop.var. 43
edf.plots. 45
ecdf.plots. 47
foa.plots. 49
hclus.cophenetic.. 52
hclus.scree. 54
hclus.table. 56

1

hist.plots. 58
intrasetcor.. 60
lda.structure. 62
mantel2.. 64
mantel.part. 66
mrpp2. 70
mv.outliers. 73
nhclus.scree. 77
nmds.monte. 79
nmds.scree. 81
norm.test.. 83
ordi.monte. 85
ordi.overlay. 87
ordi.part. 89
ordi.scree. 95
pca.communality. 97
pca.eigenval. 99
pca.eigenvec.. 101
pca.structure. 103
plot.anosim.. 105
plot.mantel. 107
plot.mrpp. 109
plot.ordi.part.. 111
qqnorm.plots. 113
ran.split.. 115
redun.plot. 117
replace.missing.. 119
scatter.plots. 120
sum.stats.. 122
tau.. 125
uv.outliers.. 127
uv.plots.. 129

2

Function: all.subsets.gam

Description:
Fits a generalized additive model (using the gam function in the mgcv library) to all possible
subsets of the predictor variables, computes a variety of goodness-of-fit statistics including
adjusted R2, deviance explained, AICc, deltaAICc, and AICc model weights for each model,
and calculates a measure of variable importance for the set of predictors.

Usage:
all.subsets.gam(y, x.smooth, x.parametric=NULL, family=binomial(link=logit), maxp=5,
select='all', delta=7, rank=10, ...)

Dependency:
library(mgcv)

Arguments:
y: required vector containing the dependent (response) variable.

x.smooth: required data frame containing one or more continuous, independent
(predictor) variables to be fit with smooth functions.

x.parametric: optional data frame containing one or more continuous or categorical,
independent (predictor) variables to be fit with parametric functions.

family: optional error family and link function for the generalized linear model (e.g.,
gaussian, binomial, poisson). [default = binomial(link=logit)]

maxp: optional maximum number of terms (excluding the intercept) to include in the
model subsets. Note, this can be less than the number of independent variables
considered. [default = 5]

select: optional limit on the number of models included in the summary table.
Choices are:
'all' = include all models in the table
'delta' = include only models in the table with a delta AICc less the specified
delta (see below)
'rank' = include only models in the table with a rank less than the specified
rank (see below)
Note, this argument not only effects the list of models included in the model
summary table, but it also effects the variable importance measure based on
model AICc weights (see value below), as only the models included in this
table will be considered. [default = 'all']

3

delta: optional delta AICc for limiting the models displayed in the model summary
table and used in the variable importance measure based on model AICc
weights, if select='delta'. [default = 7]

rank: optional rank for limiting the models displayed in the model summary table
and used in the variable importance measure based on model AICc weights, if
select = 'rank'. [default = 10]

... optional additional arguments to be passed to the gam() function in the mgcv
library.

Details:
all.subsets.glm is simply a convenience wrapper for the gam() function designed to facilitate
model comparison and evaluate the relative importance of predictors. Currently, this function
is limited to generalized additive models fit using the gam() function in the mgcv library.
Model comparison is based on AICc, delta AICc and AICc model weight. Variable
importance is calculated as the sum of AICc model weights for each variable (i.e., the sum of
model weights across all models containing each variable). An important variable is one that
is in all the models with the greatest support based on AICc.

In addition, all smooth predictors (specified with x.smooth=) must be numeric (or integer)
variables appropriate for smoothing. If the numeric variable contains too few discrete values
(<10), the default gam model will fail. This is because the basis for the smooth function is 10
by default and this requires that more than 10 discrete values exist. The gam() function
provides options for controlling the basis for each smooth term, but this is best done
individually for each term (see help(gam) for more details on the use of the gam function).
Currently, the all.subsets.gam() function does not allow you to modify the basis for each
smooth term. Thus, you must be content with the default basis for each term. In addition,
including factors in the x.smooth set of predictors will cause the function to fail, as the
function will attempt to smooth all the specified terms, and factors cannot be smoothed.
Factors must be included as parametric terms using the x.parametric argument.

NOTE, processing time increases dramatically with increasing number of variables and
sample size.

Value:
all.subsets.glm returns a list containing the following two components:

modelAIC: Data frame containing a single row for each model and the following columns:
Model: list of the independent variables (predictors)
adjR2: adjusted R computed by gam()2

D2: proportion of deviance explained by the model
AICc: corrected AIC
Delta: difference between model AICc and the minimum AICc

4

Wgt: model AICc weight
Rank: model rank order based on AICc

variable.importance: Data frame containing a row for each independent variable in the data
set and the following columns:
Term: independent variable
N: number of retained models (based on select =) containing the term
AICc: variable importance measure based on the sum of AICc model

weights across models containing the variable

Author:
K. McGarigal, April 12, 2008

References:
See help files for gam().

Examples:
x<-read.csv(‘turtle.csv’, header=TRUE)
all.subsets.gam(x[,2], x.smooth=x[,5:10], x.parametric=x[,11:13],family=binomial, maxp=3)

5

Function: all.subsets.glm

Description:
Fits a generalized linear model (using the glm function) to all possible subsets of the
predictor variables, computes a variety of goodness-of-fit statistics including deviance
explained, AICc, deltaAICc, and AICc model weights for each model, and calculates one or
more measures of variable importance for the set of predictors.

Usage:
all.subsets.glm(y, x, family=binomial(link=logit), gof='logLik', maxp=5, select='all', delta=7,
rank=10, coef.table=FALSE, ...)

Dependency:
library(hier.part)

Arguments:
y: required vector containing the dependent (response) variable.

x: required data frame containing two or more independent (predictor) variables.

family: optional error family and link function for the generalized linear model (e.g.,
gaussian, binomial, poisson). [default = binomial(link=logit)]

gof: optional goodness-of-fit statistic to use in the evaluation of variable importance
using the hier.part() function. Choices are:

'RMSPE' = Root-mean-square 'prediction' error
'logLik' = Log-Likelihood
'Rsqu' = R-squared.

Note, this argument should be selected based on the error family selected. [default
= 'logLik']

maxp: optional maximum number of terms (excluding the intercept) to include in the
model subsets. Note, this can be less than the number of independent variables
considered. [default = 5]

select: optional limit on the number of models included in the summary table. Choices
are:

'all' = include all models in the table
'delta' = include only models in the table with a delta AICc less the specified
delta (see below)
'rank' = include only models in the table with a rank less than the specified
rank (see below)

Note, this argument not only effects the list of models included in the model

6

summary table, but it also effects the variable importance measure based on
model AICc weights (see value below), as only the models included in this table
will be considered. [default = 'all']

delta: optional delta AICc for limiting the models displayed in the model summary table
and used in the variable importance measure based on model AICc weights, if
select='delta'. [default = 7]

rank: optional rank for limiting the models displayed in the model summary table and
used in the variable importance measure based on model AICc weights, if select =
'rank'. [default = 10]

coef.table: optional logical (TRUE or FALSE) indicating whether to include the complete
list of parameter coefficients and their associated statistics (standard error, Z, and
p-value) for all of the models included in the final summary, based on select =.
[default = FALSE]

... optional additional arguments to be passed to the glm() or hier.part() functions.

Details:
all.subsets.glm is simply a convenience wrapper for a variety of functions designed to
facilitate model comparison and evaluate the relative importance of predictors. Currently, this
function is limited to generalized linear models fit using the glm() function. Model
comparison is based on AICc, delta AICc and AICc model weight. Variable importance is
evaluated using two different approaches. The first approach assigns variable importance
based on the sum of AICc model weights for each variable (i.e., the sum of model weights
across all models containing each variable). An important variable is one that is in all the
models with the greatest support based on AICc. The second approach is based on the
method of hierarchical variance partitioning as implemented in the hier.part library (see
help(hier.part) for details of this function and other related functions. NOTE, processing time
increases dramatically with increasing number of variables. The variable importance based
on hierarchical variance decomposition is not done if the number of variables is greater than
12.

Value:
all.subsets.glm returns a list containing either two or three components, depending on
whether the coef.table argument is TRUE or FALSE:

modelAIC: Data frame containing a single row for each model and the following columns:
Model: list of the independent variables (predictors)
D2: proportion of deviance explained by the model
AICc: corrected AIC
Delta: difference between model AICc and the minimum AICc
Wgt: model AICc weight

7

Rank: model rank order based on AICc

coefficients: Data frame containing a row for each independent variable each time it was in
one of the retained models (based on select =) and the following columns:
Term: independent variable
Estimate: parameter estimate from the glm
Std. Error: standard error of the estimate
z value: z-statistic
Pr(>|z|): P-value for the test of the null hypothesis that the parameter

estimate is zero.

variable.importance: Data frame containing a row for each independent variable in the data
set and the following columns:
Term: independent variable
N: number of retained models (based on select =) containing the term
AICc: variable importance measure based on the sum of AICc model

weights across models containing the variable
HP: variable importance measure based on hierarchical variance

partitioning using the hier.part() function.

Author:
K. McGarigal, March 29, 2008

References:
See help files for hier.part().

Examples:
x<-read.csv(‘turtle.csv’, header=TRUE)
all.subsets.glm(x[,2],x[,5:10], family=binomial, maxp=3)

8

Function: box.plots

Description:
Produces box-and-whisker plots for individual variables (columns) of a data frame. If a
grouping variable is specified, box-and-whisker plots for each group are displayed side-by-
side on the same page for efficient comparison.

Usage:
box.plots(x, var=' ', by=' ', save.plot=FALSE)

Dependency:
None.

Arguments:
x: required name of data frame containing one or more numeric variables.

var: optional list of one or more numeric variables to summarize, e.g., 'var1' or
'var1:var5'. If omitted, x object must contain all numeric variables.

by: optional vector of grouping variables to use for column summary, e.g.,
c('var1','var2',...). Note, grouping variables only effect column summaries;
they are ignored for row summaries. [default = no groups]

save.plot: optional logical (TRUE or FALSE) to automatically save all plots as jpegs with
the following naming convention: ‘box.var.jpg’, where ‘var’ is variable name.
[default = FALSE]

... optional additional arguments to be passed to the hist and plot functions,
including the following defaults:
col='blue' color of box and whiskers
las=1 horizontal orientation of axis labels

Details:
box.plots is simply a convenience wrapper for the box() function that makes it efficient to
quickly produce box-and-whisker plots for many variables, and optionally by a grouping
variable. See help(box) for details of box plot construction.

Value:
No object is returned.

Author:
K. McGarigal, September 14, 2006

9

References:
None.

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
box.plots(x, 'AMGO:WWPE', c('BASIN','SUB'), TRUE)

10

Function: by.names

Description:
Combines two or more grouping variables into a single new grouping variable.

Usage:
by.names(infile, by=names(infile))

Dependency:
None.

Arguments:
infile: required name of data frame containing two or more grouping variables. Note,

grouping variables can be character or numeric.

by: optional vector of grouping variables to use for column summary, e.g.,
c('var1','var2',...). Note, grouping variables only effect column summaries; they
are ignored for row summaries. If omitted, all variables in x object are considered
as grouping variables. [default = no groups]

Details:
by.names is simply an efficient means of combining two or more grouping variables into a
single grouping variable for efficient us in subsequent analyses involving groups. By.names
is called by several functions in the mvstats library. The original grouping variables are
replaced with two new variables:

id: numeric variable containing a sequential number for unique groups.

groups: character variable containing unique group labels formed by concatenating the
names of the levels of each grouping variable. For example, an observation (row)
with the value ‘A’ on the first grouping variable and ‘2' on the second grouping
variable, would get the new value ‘A.2'. In addition, the name of the new
grouping variable is derived by concatenating the names of the original grouping
variables. For example, if the first grouping variable was named ‘habitat’ and the
second grouping variable was named ‘stage’, the new grouping variable would be
named ‘habitat.stage’.

Value:
Returns a data frame with the original grouping variables replace by two new variables: id
and the combined names of the grouping variables (see details).

Author:
B. Compton, August 30, 2006

11

References:
None.

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
by.names(x, c('BASIN','SUB'))

12

Function: ci.lines

Description:
Adds 95% confidence interval lines to a scatter plot based on a linear regression. Requires an
object fit by the lm() function. Typically, following the linear model fit using lm(), a
scatterplot of y~x is displayed and the fitted line is added (see example), and then ci.lines() is
used to add a confidence envelope around the fitted line.

Usage:
ci.lines(model)

Dependency:
None.

Arguments:
model: required object from lm().

Details:
None.

Value:
None. This function does not return an object; it simply calls the lines() function twice to add
the upper and lower 95% confidence interval lines to an existing plot. Note, you must
produce the scatterplot first before using ci.lines().

Author:
K. McGarigal, March 17, 2009

References:
None.

Examples:
xvec<-seq(1:100)
y<-rnorm(100,mean=2+.5*xvec,sd=10)
fit<-lm(y~xvec)
abline(reg=fit)
ci.lines(fit)

13

Function: class.monte

Description:
Monte carlo split-sample cross validation using linear (lda) or quadratic (qda) discriminant
analysis. The data set is randomly split into calibration and validation data sets and for each
permutation, the calibration data set is used to build the classification criterion and then the
validation samples are classified. The resulting correct classification rate (CCR) is computed
as well as the Cohen’s Kappa statistic, which is a chance-corrected measure of classification
accuracy. The mean and quantiles of the permutation distribution of each statistic is returned.

Usage:
class.monte(y, grouping=' ', prop=.5, type='qda', perm=1000, prior=' ', ...)

Dependency:
library(MASS)

Arguments:
y: required name of data frame or matrix containing two or more discriminating

variables.

grouping: optional vector (either numeric or character) containing the group membership of
each observation. If omitted, then the grouping variable must be in the first
column of y. [default = no grouping variable in a separate object]

prop: optional number specifying the proportion of observations (rows) in y to be used
in the ‘calibration’ data set; the remainder being held out in the ‘validation’ data
set. [default = .5]

type: optional choice of either linear discriminant analysis using the lda() function or
quadratic discriminant analysis using the qda() function in the MASS library.
[default = qda]

perm: optional number of permutations. [default = 1000]

prior: optional prior probabilities of class membership. If unspecified, the class
proportions for the calibration set are used and the Kappa statistic is computed
(see details). If specified, the probabilities should be specified in the order of the
factor levels and the Tau statistic is computed (see details). [default = proportional
to group sample sizes]

... optional additional arguments passed on to the lda() and qda() functions.

Details:

14

class.monte provides split-sample cross validation of a linear or quadratic discrimination
through repeated random subsetting of the data set into a calibration and validation set and
classifying the hold-out samples in the validation set using the classification criterion derived
from the calibration data set. The classification results are summarized by two statistics: the
overall correct classification rate, which is simply the sum of the diagonals of the
classification (confusion) matrix divided by the total number of samples classified, and (2)
either the Cohen’s Kappa statistic or the Tau statistic, which are chance-corrected measures
of classification accuracy. The Kappa statistic is the preferred measure when the priors are
assumed to be proportional to group sample sizes (see cohen.kappa() for more details). The
Tau statistic is an alternative when the priors are known or are not assumed to be equal to
sample sizes (see tau() for more details). If the group sample sizes are equal, the two statistics
are identical.

Value:
Returns a data frame consisting of a column for the computed correct classification rate
(CCR) for each group, plus a ‘total’ CCR column and a column for either Kappa or Tau,
depending on which statistic is computed. Rows correspond to different quantiles of the
permutation distribution, including the 0 (minimum), 5 , 50 (median), 95 , andth th th th

100 (maximum) percentiles, and the mean of the distribution. The mean total CCR, forth

example, represents the average overall correct classification rate for the validation data sets.

Author:
K. McGarigal, November 4, 2006

References:
None.

Examples:
turtle<-read.csv('byturtle.csv',header=TRUE)
grp<-turtle[,3]
y<-turtle[,6:30]
class.monte(y,grouping=grp,prop=.5,type='qda')

15

Function: clus.composite

Description:
Creates composite clusters by taking the mean of each variable for the sampling entities in
each cluster.

Usage:
clus.composite(x, grp)

Dependency:
None.

Arguments:
x: required name of data frame containing numeric variables.

grp: required vector (character or numeric) of the same length as x giving the cluster
membership; typically derived by cutting a dendrogram in a hierarchical clustering
using cutree() or as specified in the clustering vector resulting from a nonhierarchical
clustering (e.g., using pam, clara, or kmeans).

Details:
clus.composite is a very simple function for calculating the ‘mean’ vector (i.e., centroid) for
each cluster (or group samples) and is typically only appropriate for metric data. For count
data, a ‘median’ composite may be more meaningful, although the median can be quite
different from the centroid and thus be deemed undesirable. An alternative for count data is
to select the ‘medoids’; the sample that “best” represents each cluster, as is produced with the
robust k-means clustering in pam() and clara() in the Cluster library.

Value:
Returns a data frame with dimensions k x p, where k equals the number of clusters (groups)
and p is the number of variables (columns) in the original data set.

Author:
K. McGarigal, October 18, 2006

References:
None.

Examples:
bird.niche<-read.csv('bird.niche.csv',header=TRUE)
x<-bird.niche[bird.niche$NOBLOCKS>4,]
y<-x[,-c(1,50:56)]
y.std<-data.stand(y,method='standardize',margin='column',plot=FALSE)

16

y.eucl<-data.dist(y.std,method='euclidean')
y.pam<-pam(y.eucl,k=5)
grp<-y.pam$clustering
y.clus<-clus.composite(y,grp)

17

Function: clus.stats

Description:
Computes a few simple univariate summary statistics (number of observations, mean and
coefficient of variation) for each cluster and computes a univariate Kruskall-Wallis rank sum
test (nonparametric) of no differences among groups.

Usage:
clus.stats(x, grp)

Dependency:
None.

Arguments:
x: required name of data frame containing numeric variables.

grp: required vector (character or numeric) of the same length as x giving the cluster
membership; typically derived by cutting a dendrogram in a hierarchical clustering
using cutree() or as specified in the clustering vector resulting from a nonhierarchical
clustering (e.g., using pam, clara, or kmeans).

Details:
clus.stats computes the number of observations in each cluster, and for each variable in x,
clus.stats computes the mean and coefficient of variation and conducts a nonparametric test
of group differences using the Kruskall-Wallis rank sum test. Other summary statistics can
easily be added to the function.

Value:
Returns a list containing three components:

cluster.nobs: a vector containing the number of observations in each cluster.

cluster.mean: a table giving the variables as rows and the mean for each cluster as columns,
and the p-value for the Kruskall-Wallis rank sum test in the last column.

cluster.cv: a table as above, but giving the coefficient of variation. A value of NA is
given for any cluster containing only a single observation.

Author:
K. McGarigal, October 18, 2006

References:
None.

18

Examples:
bird.niche<-read.csv('bird.niche.csv',header=TRUE)
x<-bird.niche[bird.niche$NOBLOCKS>4,]
y<-x[,-c(1,50:56)] #selecting numeric variables of interest
y.std<-data.stand(y,method='standardize',margin='column',plot=FALSE)
y.eucl<-data.dist(y.std,method='euclidean')
y.pam<-pam(y.eucl,k=5)
grp<-y.pam$clustering
y.stats<-clus.stats(y,grp)

19

Function: cohen.kappa

Description:
Computes Cohen’s Kappa statistic (Cohen 1960) from a classification table, typically the
result of a classification of samples into groups using the predict() function on an object from
linear (lda) or quadratic discrimination (qda). Cohen’s Kappa is a chance-corrected measure
of classification accuracy and is suitable when the prior probabilities of group membership
are assumed to be proportional to group sample sizes.

Usage:
cohen.kappa(y)

Dependency:
None.

Arguments:
y: required name of a table (class = ‘table’) containing the frequency of observations in

each group (rows) classified into each group (columns). The table must be square and
contain a single row and column for each group.

Details:
Kappa is defined as:

owhere G is the number of groups, p is the observed percentage of samples correctly

i iclassified, p is the percentage of samples in the i group, and q is the percentage of samplesth

classified into the i group.th

Kappa is defined here in terms of proportions in keeping with the original development of the
statistic, although the terms could easily be defined using frequencies (like Tau). Like Tau, a
Kappa of zero indicates no improvement over chance, and a Kappa of 1 indicates perfect
assignment. An intermediate value of Kappa such as 0.82, for example, indicates that
classification based on the discriminating variables was 82% better than chance assignment.
A Kappa that is much lower than the overall correct classification rate suggests that the
correct classification rate, and hence group predictability, is inflated and that much of the
classification power is due simply to chance.

It is important to note that Kappa, like any measure of classification success, is unbiased only
when computed with ‘holdout’ samples. In other words, for unbiased results, the accuracy of

20

the classification criterion should be evaluated by comparing the classification results and
chance-corrected criteria computed from a ‘holdout’ or ‘validation’ sample. This is because
the classification functions are more accurate for the samples they are derived from than they
would be for the full population. Thus, if the samples used in calculating the classification
function are the ones being classified, the result will be an upward bias in the correct
classification rate.

Value:
Returns an object containing the value of Kappa.

Author:
K. McGarigal, November 4, 2006

References:
Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20: 37-46.

Examples:
turtle<-read.csv('byturtle.csv',header=TRUE)
grp<-turtle[,3]
y<-turtle[,6:30]
y.qda<-qda(y,grouping=grp)
y.qda.pred<-predict(y.qda)
y.table<-table(grp,y.qda.pred$class)
cohen.kappa(y.table)

21

Function: col.summary

Description:
Computes a variety of column summary statistics for numeric variables in a data frame,
including several statistics appropriate for summarizing a community data set consisting of
species abundances.

Usage:
col.summary(x, var=NULL, by=NULL, outfile=NULL, ...)

Dependency:
None.

Arguments:
x: required name of data frame containing one or more numeric variables.

var: optional list of one or more numeric variables to summarize; e.g., 'var1' or
'var1:var5'. If omitted, x object must contain all numeric variables. [default = all
variables]

by: optional vector of grouping variables to use for column summary, e.g.,
c('var1','var2',...). If more than one ‘by’ variable is specified, then a single
grouping variable will be created from the unique combinations of values
across variables and the summary statistics will be computed for each group.
[default = no groups]

outfile: optional name of an output file in comma-delimited format, e.g., 'testout' or
‘D:/R/work/testout’. The output file will automatically be given a .csv extension.
Note, path does not need to be included if the desired output location is the
current working directory. [default = no output file]

Details:
col.summary computes the following column summary statistics for the selected variables
(columns), and ignores missing values (na.rm=TRUE), except where noted:

nobs: number of observations (including missing values)
min: minimum value
max: maximum value
mean: average value
median: median value (i.e., 50 percentile)th

sum: sum of all values
sd: sample standard deviation
cv: coefficient of variation (i.e., 100*sd/mean)

22

xeros: number of elements with the value zero
pct.xeros: percent of observation with the value zero
nobs.missing: number of missing observations (NA)
pct.missing: percent of observations with missing values (NA)
se: standard error (i.e., sd/sqrt(non-missing obs))
se.ratio: standard error ratio (i.e., 100*se/mean)
richness: number of non-zero elements

If a ‘by’ argument is given, these summary statistics are computed for each level of the ‘by’
variable(s).

Value:
A data frame containing the column summary statistics or, if a ‘by’ argument is given, a list
wherein each component is a data frame containing the column summary statistics for a
single group.

Author:
K. McGarigal, February 9, 2008

References:
None.

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
col.summary(x, 'AMGO:BHGR', c('BASIN','SUB'), 'D:/stats/testout')

23

Function: contrast.matrix

Description:
Creates an indicator distance matrix (i.e., class = ‘dist’) defining the contrast between groups.
Specifically, given a vector of length N, either character (factor) or numeric and defining the
group membership of each observation, this function creates an N by N distance matrix (with
class = ‘dist’) where the elements are 0 if the pairwise samples are in the same group and 1 if
they are from different groups. This indicator matrix is intended to be used as the X-matrix in
a Mantel test, where the test is for significant differences among groups.

Usage:
contrast.matrix(grp)

Dependency:
None.

Arguments:
grp: required vector (character or numeric) that defines the group membership of each

observation; for example, as might be extracted from a data frame containing a
variable (column) that defines group membership, or as might be derived by cutting a
dendrogram in a hierarchical clustering using cutree(), or as specified in the clustering
vector resulting from a nonhierarchical clustering (e.g., using pam, clara, or kmeans).

Details:
Regardless of the number of groups specified in the grp vector, contrast.matrix() will always
return a distance matrix containing just 0's (pairwise samples within the same group) and 1's
(pairwise samples from different groups). This is the appropriate structure for the Mantel test
of no group differences.

Value:
Returns an N by N distance matrix (class = ‘dist’).

Author:
K. McGarigal, October 25, 2006

References:
None.

Examples:
#extract from data frame a variable (column) containing group membership
turtle<-read.csv('byturtle.csv',header=TRUE)
grp<-turtle[,3]

24

#extract group membership vector by cutting a dendrogram from hierarchical clustering
bird.niche<-read.csv('bird.niche.csv',header=TRUE)
x<-bird.niche[bird.niche$NOBLOCKS>4,]
y<-x[,-c(1,50:56)]
y.std<-data.stand(y,method='standardize',margin='column',plot=FALSE)
y.eucl<-data.dist(y.std,method='euclidean')
y.eucl.ward<-hclust(y.eucl,method='ward')
plot(y.eucl.ward,main='Wards-linkage Dendrogram',xlab='Species',labels=x[,1])
rect.hclust(y.eucl.ward,k=5) #cut by #clusters
grp<-cutree(y.eucl.ward,5)
contrast<-contrast.matrix(grp)

25

Function: cov.test

Description:
Simply a convenience wrapper for the bartlett.test() and fligner.test() functions to simplify
testing multiple variables in a data set. Performs a unvivariate test of homogeneity of
variance among groups using either Bartlett's test for k samples (i.e., two or more groups) or
Fligner’s test for a rank-based (nonparametric) k-sample test for homogeneity of variances.
These are both tests of the null hypothesis that the variances in each of the groups (samples)
are the same.

Usage:
cov.test(x, groups, var=' ', method='bartlett', ...)

Dependency:
None.

Arguments:
x: required numeric vector of data values, or data frame or matrix containing one or

more numeric variables, or a list of numeric data vectors representing the
respective samples, or fitted linear model objects (inheriting from class '"lm"').

grouping: required vector (either numeric or character) containing the group membership of
each observation in x.

var: optional list of variables in x to test. If omitted, all variables in x are tested.
[default = test all variables]

method: optional choice of either Bartlett’s parametric test or Fligner’s nonparametric test
for homogeneity of variances. [default = ‘bartlett’]

... optional additional arguments passed on to the bartlett.test() and fligner.test()
functions.

Details:
None.

Value:
Returns a data frame containing three columns. The first column lists the variable name, the
second column gives the test statistic (either ‘bartlett’ or ‘fligner’), and the third column
gives the p-value for the null hypothesis test. There is a separate row for each variable tested.

Author:
K. McGarigal, November 4, 2006

26

References:
See bartlett.test() and fligner.test().

Examples:
turtle<-read.csv('byturtle.csv',header=TRUE)
grp<-turtle[,3]
y<-turtle[,6:30]
cov.test(y,grp,method='fligner')

27

Function: data.dist

Description:
Calculates a dissimilarity/distance matrix from a numeric data frame or matrix based on any
number of different dissimilarity/distance measures. Data.dist is largely a convenience
wrapper for the vegdist() function in the vegan library (see details), but adds correlation
distance to the list of distance measures.

Usage:
data.dist(x, method, var=' ', cor.method='pearson', abs=FALSE, outfile=' ', binary=FALSE,
diag=FALSE, upper=FALSE, na.rm=TRUE, ...)

Dependency:
library(vegan)

Arguments:
x: required name of data frame or matrix containing one or more numeric variables.

method: required name of dissimilarity/distance measure: 'manhattan', 'euclidean',
'correlation', 'bray', 'kulczynski', 'jaccard', 'gower', 'morisita', 'horn', 'mountford',
'raup', or 'binomial' (see details below).

var: optional list of one or more numeric variables to use in the distance calculation,
e.g., 'var1' or 'var1:var5'. If omitted, x object must contain all numeric variables.

cor.method: optional choice of correlation measure: 'pearson', 'spearman', or 'kendall' (see
details below). [default = 'pearson']

abs: optional logical (TRUE or FALSE) when method=correlation indicating whether
distance should be based on the absolute value of the correlation coefficient (see
details below). [default = FALSE]

outfile: optional name of an output file containing the distance matrix in comma-
delimited format, e.g., 'testout' or ‘D:/R/work/testout’. The output file will
automatically be given a .csv extension. Note, path does not need to be included if
the desired output location is the current working directory. [default = no output
file]

binary: optional logical (TRUE or FALSE) to convert the data to binary presence/absence
before computing distance. [default = FALSE]

diag: optional logical (TRUE or FALSE) to return the diagonals of the distance matrix

to the console. Note, the diagonals are always printed in the saved distance matrix

28

if outfile is specified. [default = FALSE]

upper: optional logical (TRUE or FALSE) to return the upper half of the distance matrix
to the console. Note, the upper half is always stored in the saved distance matrix if
outfile is specified. [default = FALSE]

na.rm: optional logical (TRUE or FALSE) whether to use pairwise deletion of missing

values when computing distances. [default=TRUE]

... optional other parameters for method = 'gower' which accepts 'range.global'
parameter of 'decostand'.

Details:
As noted above, data.dist is simply a convenience wrapper for the vegdist() function in the
vegan library that simply adds the correlation distance metric. See help(vegdist) for details
and references; but, briefly, the following distance measures are available:

 euclidean: d[jk] = sqrt(sum (x[ij]-x[ik])^2)

 manhattan: d[jk] = sum(abs(x[ij] - x[ik]))

 correlation: if abs=FALSE (default):

d[jk] = (1 - r[ij])/2

where r[ij] is the correlation coefficient between samples j and k. d[jk]
ranges from 0 to 1, where 0 equals a correlation of 1 and 1 equals a
correlation of -1 and .5 equals a correlation of 0.

else if abs=TRUE:

d[jk] = abs(r[ij])

where r[ij] is the correlation coefficient between samples j and k. d[jk]
ranges from 0 to 1, where 0 equals a correlation of 1 or -1 and 1 equals
a correlation of 0.

The correlation coefficient is specified in the cor.method and can be one of the
following options:

pearson: Pearson product-moment correlation
kendall: Kendall’ tau rank-based measure of association
spearman: Spearman’s rho rank-based measure of association

29

proportional city-block measures:

gower: d[jk] = sum (abs(x[ij]-x[ik])/(max(x[i])-min(x[i]))

canberra: d[jk] = (1/NZ) sum ((x[ij]-x[ik])/(x[ij]+x[ik])),
where NZ is the number of non-zero entries.

bray: d[jk] = (sum abs(x[ij]-x[ik])/(sum (x[ij]+x[ik]))

Jaccard: 2B/(1+B), where B is Bray-Curtis (‘bray’) dissimilarity.

kulczynski: d[jk] = 1 - 0.5*((sum min(x[ij],x[ik])/(sum x[ij]) + (sum min(x[ij],x[ik])/(sum
x[ik]))

Other distance measures:

morisita: d[jk] = 2*sum(x[ij]*x[ik])/((lambda[j]+lambda[k]) * sum(x[ij])*sum(x[ik])),
where lambda[j] = sum(x[ij]*(x[ij]-1))/sum(x[ij])*sum(x[ij]-1)

horn: Like 'morisita', but lambda[j] = sum(x[ij]^2)/(sum(x[ij])^2)

binomial: d[jk] = sum(x[ij]*log(x[ij]/n[i]) + x[ik]*log(x[ik]/n[i]) - n[i]*log(1/2))/n[i]
where n[i] = x[ij] + x[ik]

Binomial index is derived from Binomial deviance under null hypothesis that
the two compared communities are equal. It should be able to handle variable
sample sizes. The index does not have a fixed upper limit, but can vary among
sites with no shared species. For further discussion, see Anderson & Millar
(2004).

mountford: M = 1/alpha where alpha is the parameter of Fisher's log series assuming that
the compared communities are samples from the same community (cf.
'fisherfit', 'fisher.alpha'). The index M is found as the positive root of
equation exp(a*M) + exp(b*M) = 1 + exp((a+b-j)*M), where j is the
number of species occurring in both communities, and a and b are the number
of species in each separate community (so the index uses presence-absence
information). The Mountford index is in the range 0... log(2), but the
dissimilarities are divided by log(2) so that the results will be in the
conventional range 0 ... 1.

raup: Raup-Crick dissimilarity is a probabilistic index based on presence/absence
data. It is defined as 1 - prob(j), or based on the probability of observing at
least j species in shared in compared communities. This probability (and the
index) is dependent on the number of species missing in both sites, and adding

30

all-zero species to the data or removing missing species from the data will
influence the index. The probability (and the index) may be almost zero or
almost one for a wide range of parameter values. The index is nonmetric: two
communities with no shared species may have a dissimilarity slightly below
one, and two identical communities may have dissimilarity slightly above
zero.

Value:
A distance matrix.

Author:
K. McGarigal, September 14, 2006

References:
See references for vegdist in the vegan library.

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
data.stand(x, 'range', 'AMGO:WWPE', 'column', 'D:/stats/testout', TRUE, FALSE, TRUE)

31

Function: data.stand

Description:
Performs various data standardizations for numeric data in a data frame, including both row
and/or column standardizations. Data.stand is largely a convenience wrapper for the
decostand() function in the vegan library (see details). Note, in contrast to data
transformations (see data.trans), standardizations (or relativizations) adjust matrix elements
by a row or column standard (e.g., maximum, sum, mean, etc.). In addition, data.stand
produces paired histograms depicting the raw (unstandardized) data paired against the
standardized data, both with kernel density overlays, for efficient evaluation of the effects of
the standardization on the distribution of each variable (column).

Usage:
data.stand(x, method, var=' ', margin='column', outfile=' ', plot=TRUE, save.plot=FALSE,
na.rm=TRUE, ...)

Dependency:
library(vegan)

Arguments:
x: required name of data frame containing one or more numeric variables.

method: required data standardization method: 'total', 'max', 'freq', 'normalize', 'range',
'standardize', 'chi.square', 'hellinger', or 'wisconsin' (see details below).

var: optional list of one or more numeric variables to summarize, e.g., 'var1' or
'var1:var5'. If omitted, x object must contain all numeric variables.

margin: optional choice of ‘column’ or ‘row’ margins for the standardization. Each
method has a default margin (see details), but this can be overridden here. If
method = ‘wisconsin’, margin is ignored, since this is a special double
standardization involving both row and column standards. [default = ‘column’]

outfile: optional name of an output file in comma-delimited format, e.g., 'testout' or
‘D:/R/work/testout’. The output file will automatically be given a .csv extension.
Note, path does not need to be included if the desired output location is the
current working directory. [default = no output file]

plot: optional logical (TRUE or FALSE) to determine whether paired histograms
depicting the raw and standardized data are plotted or not. [default = TRUE]

save.plot: optional logical (TRUE or FALSE) to automatically save all plots as jpegs with

the following naming convention: ‘shist.var.jpg’, where ‘var’ is variable name.

32

[default = FALSE]

na.rm: optional logical (TRUE or FALSE) whether to ignore missing values.
[default=TRUE]

... optional additional arguments to be passed to the decostand, hist() and plot()
functions, including the following graphical defaults:
col.hist=’blue’ color of histogram
col.line='black' color of the kernel density line
las=1 horizontal orientation of axis labels
lab=c(5,5,4) number of x and y tick marks and length of labels

Details:
It is often desirable to standardize (or relativize) ecological data. Sometimes this is done to
place variables, measured in different units and scales, on equal footing. In community data
sets consisting of species abundance data, it is often desirable to standardize the data to shift
the focus from absolute abundance profiles to relative abundance profiles, either to eliminate
or reduce the effect of differences in species abundances or differences in plot totals. The
consequences of standardization can be dramatic or subtle depending on the heterogeneity of
the data. For example, a row total standardization (i.e., adjusting each sample to a relative
abundance profile, so that the adjusted row totals are all equal to 1) can have a profound
effect on the results of subsequent analyses if the rows differ greatly in total abundance. But
if they differ only slightly, then a row total standardization will have little effect. In any case,
standardization is an extremely important tool. As noted above, data.stand is simply a
convenience wrapper for the decostand() function in the vegan library. See the
help(decostand) for details and references; but, briefly, the following transformations are
available:

total: divide by margin total. [default margin = ‘row’]

max: divide by margin maximum. [default margin = ‘column’]

freq: divide by margin maximum and multiply by number of nonzero items, so that
the average of non-zero entries is one (Oksanen 1983). [default margin =
‘column’]

normalize: make margin sum of squares equal to one. [default margin = ‘row’]

range: standardize values into range 0 ... 1. If all values are constant, they will be
transformed to 0. [default margin = ‘column’]

standardize: scale into zero mean and unit variance. [default margin = ‘column’]

hellinger: square root of method = ‘total’ [default margin = ‘row’]

33

chi.square: divide by row sums (i.e., row totals) and square root of column sums (i.e.,
column totals), and adjust for square root of matrix total. When used with
Euclidean distance, the matrix should be similar to the the Chi-square
distance used in correspondence analysis.

wisconsin: divide by row maximum (i.e., row max standardization) followed by column
totals (i.e., column total standardization). This is a common ‘double’
standardization that first adjusts sample differences through a rather drastic
row maximum standardization and then adjusts species differences through
the less drastic column total standardization. While this double standardization
has proven useful in ordination of community sets, the double standardization
makes interpretation of the standardized data values exceedingly difficult.

Note, most of these standardizations have been employed for community data sets consisting
of species abundances. However, these standardizations may also be useful for other types of
ecological data, although in these cases additional caution is warranted before applying these
standardizations. In addition, note that most standardization methods will give non-sense
results with negative data entries that normally should not occur in the community data. If
there are empty sites or species (or constant with 'method = ‘range’), many standardizations
will change these into 'NaN'.

Value:
A new data frame with the standardized data.

Author:
K. McGarigal, September 14, 2006

References:
See references for decostand in the vegan library.

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
data.stand(x, 'range', 'AMGO:WWPE', 'column', 'D:/stats/testout', TRUE, FALSE, TRUE)

34

Function: data.trans

Description:
Performs various monotonic data transformations for numeric data in a data frame, including
the natural log, power and arcsin square root transformations. Note, these transformations are
applied to each element of the data matrix, independent of the other elements. They are
‘monotonic’ because they change the values of the data points without changing their rank.
In addition, data.trans produces paired histograms depicting the raw (untransformed) data
paired against the transformed data, both with kernel density overlays, for efficient evaluation
of the effects of the transformation on the distribution of each variable (column).

Usage:
data.trans(x, method, var=' ', exp=1, outfile=' ', plot=TRUE, save.plot=FALSE,...)

Dependency:
None.

Arguments:
x: required name of data frame containing one or more numeric variables.

method: required data transformation method: ‘log’,’power’, or ‘asin’ (see details below).

var: optional list of one or more numeric variables to summarize, e.g., 'var1' or
'var1:var5'. If omitted, x object must contain all numeric variables.

exp: optional exponent in the range 0-1 for the power transformation (method =
‘power’). Note, exp=0 results in a binary (presence/absence) transformation;
exp=.5 is equivalent to the square root transformation; and exp=1 results in no
change. [default = 1]

outfile: optional name of an output file in comma-delimited format, e.g., 'testout' or
‘D:/R/work/testout’. The output file will automatically be given a .csv extension.
Note, path does not need to be included if the desired output location is the
current working directory. [default = no output file]

plot: optional logical (TRUE or FALSE) to determine whether paired histograms
depicting the raw and transformed data are plotted or not. [default = TRUE]

save.plot: optional logical (TRUE or FALSE) to automatically save all plots as jpegs with

the following naming convention: ‘thist.var.jpg’, where ‘var’ is variable name.
[default = FALSE]

... optional additional arguments to be passed to the qqnorm() and qqline() functions,

35

including the following defaults:
col.hist=’blue’ color of histogram
col.line='black' color of the kernel density line
las=1 horizontal orientation of axis labels
lab=c(5,5,4) number of x and y tick marks and length of labels

Details:
It is often necessary or desirable to transform the raw numerical data to improve the
distribution of the data. Ecological data are commonly highly skewed and may extend over
two or more orders of magnitude because of a few extreme values. This is especially
common in community data sets comprised of count data and biomass data. It is usually
desirable to reduce the absolute range of variation in these cases to reduce the effect of these
extreme values. The log and power transformations are useful in these situations. In addition,
it is sometimes useful to binarize species data to examine the presence/absence signature
separate from the quantitative abundance signature, or in some cases there is insufficient
quantitative variation to warrant an analysis of quantitative abundances. The zero-power
transformation is a quick and easy way to binarize the data into presence/absence.

log: The natural logarithmic transformation is valid for positive data (i.e., x>0) and results
in unbounded values (i.e., negative infinity to positive infinity). The log
transformation compresses high values and spreads low values by expressing the
values as orders of magnitude. Because the log of zero is undefined, a small constant
is typically added to all data points. If the lowest nonzero value in the data is one (as
in count data), then it is best to add one to each data point before the transformation,
because the log(1) = 0. If the lowest nonzero value differs from one by more than an
order of magnitude, then adding one will distort the relationship between zeros and
other values in the data set. To address this, the generalized procedure outlined in
McCune and Grace (2002) is followed that (1) tends to preserve the original order of
magnitudes in the data and (2) results in values of zero when the initial value was
zero. Given:

min(x) = the smallest nonzero value in the data
int(x) = truncates x to an integer by dropping digits after the decimal point
c = order of magnitude constant = int(log(min(x))
d = decimal constant = log (c)-1

then the log transformation is given as:

power: The power transformation is given as:

The zero-power transformation (i.e., p=0) is valid for data in any range and results in
binary data (0's and 1's) . All other power transformations (i.e., p>0) are valid for non-
negative data (i.e., x$0) and result in non-negative data. Different exponents change
the effect of the transformation. p=0.5 gives the square root transformation, which is

36

similar in effect to, but less drastic than, the log transformation. The smaller the
exponent, the more the compression applied to high values. Exponents less than say
0.3 are essentially presence-absence transformations, yielding values close to 1 for all
nonzero values.

asin: The arcsine-squareroot transformation is valid only for proportion data, 0-1 inclusive,
and results in data in the same range. It is given as:

The arcsine-squareroot transformation spreads the ends of the scale for proportion
data, while compressing the middle. This transformation is generally recommended
for proportion data, often improving normality. The multiplication of 2/pi rescales the
result to range from 0 to 1.

Value:
A new data frame with the transformed data.

Author:
K. McGarigal, September 14, 2006

References:
McCune, B., and J. B. Grace. 2002. Analysis of Ecological Communities. MjM Software
Design, Gleneden Beach, Oregon.

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
data.trans(x, 'power', 'AMGO:WWPE', 0, 'D:/stats/testout', TRUE, FALSE)

37

Function: dist.plots

Description:
Produces three distribution plots of the dissimilarities in a dissimilarity/distance matrix,
including a box-and-whisker plot of the between- and within-group dissimilarities, a
histogram of the within-group dissimilarities in each group, and a normal quantile-quantile
plot for the within-group dissimilarities in each group. This function is simply a convenience
wrapper for the boxplot(), hist() and qqnorm() functions that makes it efficient to quickly
produce grouped box-and-whisker plots, histograms and qqnorm plots from a dissimilarity
matrix. These plots can be useful for assessing the assumptions of various parametric and
nonparametric tests of group differences.

Usage:
dist.plots(x, groups, distance='euclidean', na.rm=TRUE, ...)

Dependency:
library(vegan) if x is data frame or matrix.

Arguments:
x: required name of data frame or matrix containing one or more numeric variables

or a distance matrix (i.e., class = ‘dist’) typically derived from a function like
vegdist(), dist() or data.dist().

groups: required vector (either numeric or character) containing the group membership of
each observation in x.

distance: optional name of dissimilarity/distance measure for use in the vegdist() function
in the vegan library: 'manhattan', 'euclidean', 'euclidean', 'bray', 'kulczynski',
'jaccard', 'gower', 'morisita', 'horn', 'mountford', 'raup', or 'binomial' (see vegdist()
for details). [default = ‘euclidean’]

na.rm: optional logical (TRUE or FALSE) for pairwise deletion of missing observations
when computing dissimilarities. [default=TRUE]

... optional additional arguments to be passed to the plotting functions, including the
following defaults:
col='blue' color of box and whiskers, histograms and qqnorm points
col.line='red' color of line for kernel density overlay and qqline
las=1 horizontal orientation of axis labels

Details:
dist.plots produces three different types of plots useful for examining the distribution of
among- and within-group dissimilarity values in a dissimilarity matrix. See Value below for a

38

description of each plot.

Value:
Returns three different plots:

Plot 1: The first plot is a grouped box-and-whisker plot of the among- and within-group
dissimilarities. The first box-and-whisker represents the distribution of the among- or
between-group dissimilarities. The remaining boxes represent the distribution of the within-
group dissimilarities for each group.plot.

Plot 2: The second plot is a set of histograms of the within-group dissimilarities for each
group with a kernel density line overlay.

Plot 3: The third plot is set of normal quantile-quantile plots for the within-group
dissimilarities for each group.

Author:
K. McGarigal, September 14, 2006

References:
None.

Examples:
turtle<-read.csv('byturtle.csv',header=TRUE)
grp<-turtle[,3]
y<-turtle[,6:30]
y.std<-data.stand(y,method='standardize',margin='column',plot=FALSE)
y.eucl<-data.dist(y.std,method='euclidean')
dist.plots(y.eucl,grp)

39

Function: distributions

Description:
Suite of plotting functions of two types for examining several different common probability
distributions. The first plotting function (e.g., dbinom.plot) produces a plot of the probability
mass function (pmf) for discrete distributions or a probability density function (pdf) for
continuous distributions for any specified combination of values for the parameters of the
distribution. A single plot is produced with a separate series or curve for each unique
combination of parameter values. The second plotting function (e.g., binom.plot) produces a
plot containing four subplots: (1) pmf or pdf, as above, (2) cumulative mass function (cmf)
for discrete distributions or cumulative density function (cdf) for continuous distributions, (3)
quantile mass function (qmf) for discrete distributions or quantile distribution function (qdf)
for continuous distributions, and (4) a histogram of a random sample drawn from the
specified distribution. A separate plot is produced for each unique combination of parameter
values. These functions are simply convenience wrappers for the built-in R functions for
some of the common probability distributions.

Usage:

Note, in the examples below, the parameters values are simply examples, but can be
substituted for any values.

Discrete distributions:

Binomial distribution plots:
dbinom.plot(size=10,prob=c(.1,.5,.9))
binom.plot(size=c(10,100),prob=c(.1,.5,.9))

Poisson distribution plots:
dpois.plot(events=25,lambda=c(.5,1,3,12))
pois.plot(events=25,lambda=c(.5,1,3,12))

Negative binomial plots:
dnbinom.plot(events=25,mu=c(1,2),size=c(.1,1,10))
nbinom.plot(events=25,mu=c(1,2),size=c(.1,1,10))

Geometric distribution plots:
dgeom.plot(events=25,prob=c(.2,.5,.7))
geom.plot(events=25,prob=c(.2,.5,.7))

Continuous distributions:

Normal distribution plots:

40

dnorm.plot(mean=c(10,12),sd=c(1,2,3),xlim=c(0,20),ylim=c(0,1))
norm.plot(mean=c(10,12),sd=c(1,2,3),xlim=c(0,20))

Gamma distribution plots:
dgamma.plot(shape=c(1,2,5),scale=c(1,2,3),xlim=c(0,25),ylim=c(0,1))
gamma.plot(shape=c(1,2,5),scale=c(1,2,3),xlim=c(0,25))

Exponential distribution plots:
dexp.plot(rate=c(1,.5,.1),xlim=c(0,15),ylim=c(0,1))
exp.plot(rate=c(1,.5,.1),xlim=c(0,15))

Beta distribution plots:
dbeta.plot(shape1=c(.5,1,2,5),shape2=c(.5,1,2,5),ylim=c(0,5))
beta.plot(shape1=c(.5,1,2,5),shape2=c(.5,1,2,5))

Lognormal distribution plots
dlnorm.plot(mean=c(0,2),sd=c(.2,.5,1),xlim=c(0,15),ylim=c(0,2))
lnorm.plot(mean=c(0,2),sd=c(.2,.5,1))

Chi-square distribution plots
dchisq.plot(df=c(1,10,100))
chisq.plot(df=c(1,10,100))

Fisher’s F distribution plots
df.plot(df1=c(1,2,20),df2=c(10,20))
f.plot(df1=c(1,2,20),df2=c(10,20))

Student’s t distribution plots
dt.plot(df=c(1,10,100))
t.plot(df=c(1,10))

Dependency:
None.

Arguments:
param1: optional value(s) for the first parameter of the corresponding distribution. For

example, the first named parameter of the binomial distribution is ‘size’. The
syntax for specifying multiple values is “=c(value1, value2, ...)” or
“=c(value1:value2)”. Note, some functions will only accept a single value for the
first parameter. [default = arbitrary number]

param2: optional values(s) same as param1.

param3: optional values(s) same as param1.

41

xlim: optional values in some of the functions to control the range of values for the x-
axis. The range must be appropriate given the specified parameter values. [default
= arbitrary range]

ylim: optional values in some of the functions to control the range of values for the y-
axis. The range must be appropriate given the specified parameter values. [default
= arbitrary range]

Details:
See the corresponding help files in R for each of the distributions; e.g. ?dbinom.

Value:
Returns plots as described above.

Author:
K. McGarigal, February 28, 2009

References:
None.

Examples:
see usage above.

42

Function: drop.var

Description:
Drops variables (columns) from a data frame based on specified thresholds in any
combination of three column summary statistics: coefficient of variation, percentage of zeros
and percentage of missing values.

Usage:
drop.var(x, var=' ', outfile=' ', min.cv=0, min.po=0, min.fo=0, max.po=100, max.fo=nrow(x),
pct.missing=100)

Dependency:
None.

Arguments:
x: required name of data frame containing one or more numeric variables.

var: optional list of one or more numeric variables to summarize, e.g., 'var1' or
'var1:var5'. If omitted, x object must contain all numeric variables.

outfile: optional name of an output file in comma-delimited format, e.g., 'testout' or
‘D:/R/work/testout’. The output file will automatically be given a .csv extension.
Note, path does not need to be included if the desired output location is the
current working directory. [default = no output file]

min.cv: optional threshold level for the column coefficient of variation
(cv=100*sd/mean); variables below this level will be dropped. [default = 0]

min.po: optional minimum percent occurrence; i.e., minimum percentage of samples
(rows) with a non-zero value. Variables (columns) with a percent occurrence
below this level will be dropped. This is generally used to drop rare species in
community data sets. [default = 0]

min.fo: optional minimum frequency of occurrence; i.e., minimum number of samples
(rows) with a non-zero value. Variables (columns) with a frequency of occurrence
below this level will be dropped. This is generally used as an alternative to
‘minpo’ to drop rare species in community data sets. [default = 0]

max.po: optional maximum percent occurrence; i.e., maximum percentage of samples
(rows) with a non-zero value. Variables (columns) with a percent occurrence
above this level will be dropped. This is generally used to drop ubiquitous species
(i.e., present everywhere) in community data sets. [default = 0]

43

max.fo: optional maximum frequency of occurrence; i.e., maximum number of samples
(rows) with a non-zero value. Variables (columns) with a frequency of occurrence
above this level will be dropped. This is generally used as an alternative to
‘maxpo’ to drop ubiquitous species (i.e, present everywhere) in community data
sets. [default = 0]

pct.missing: optional threhold level for the column percentage of missing values; variables
above this level will be dropped. [default =100].

Details:
Insufficiently sampled variables can have a deleterious effect on many multivariate analyes.
Variables with too little information may not have deleterious effect, but may inconsequential
as they offer little in terms of pattern of variation. More importantly, variables with too many
missing values may be poorly sampled and may result in too many observations being
deleted or ignored in subsequent analyses due to incomplete observations. Finally, variables
with too few non-zero elements may not provide sufficient information to reliable estimate a
response profile. For example, it is inappropriate to try an estimate a species optimum along
an environmental gradient with only 2 or 3 non-zero occurrences. In this case, sufficiency is
the extent to which each species’ ecological character is accurately described by the data.
Species with very few records are not likely to be accurately placed in ecological space. You
must decide at what level of frequency of occurrence you want to accept the ‘message’ and
eliminate species below this level.

Value:
A new data frame without the offending variables.

Author:
K. McGarigal, September 14, 2006

References:
None.

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
drop.var(x, 'AMGO:WWPE', 'D:/stats/testout', min.cv=5, max.po=95, pct.missing=10)

44

Function: edf.plots

Description:
Produces empirical distribution function (EDF) plots for individual variables (columns) of a
data frame. If a grouping variable is specified, EDF plots for each group are displayed in
panels on the same page for efficient comparison.

Usage:
ecdf.plots(x, var=' ', by=' ', ...)

Dependency:
None.

Arguments:
x: required name of data frame containing one or more numeric variables.

var: optional list of one or more numeric variables to summarize, e.g., 'var1' or
'var1:var5'. If omitted, x object must contain all numeric variables.

by: optional vector of grouping variables to use for column summary, e.g.,
c('var1','var2',...). Note, grouping variables only effect column summaries; they
are ignored for row summaries. [default = no groups]

... optional additional arguments to be passed to the plot() and line() functions,
including the following defaults:
col=’blue’ color of the edf
las=1 horizontal orientation of axis labels
lab=c(5,5,4) number of x and y tick marks and length of labels

Details:
edf.plots is simply a convenience wrapper for the plot() and line() functions that makes it
efficient to quickly produce EDF plots for many variables, and optionally by a grouping
variable. See help(plot) and help(line) for details on those functions. Note, the EDF is simply
a plot of the observed values on the y-axis in rank order from smallest to largest.

Value:
No object is returned.

Author:
K. McGarigal, September 14, 2006

References:
None.

45

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
edf.plots(x, 'AMGO:WWPE', c('BASIN','SUB'))

46

Function: ecdf.plots

Description:
Produces empirical cumulative distribution function (ECDF) plots for individual variables
(columns) of a data frame. If a grouping variable is specified, ECDF plots for each group are
displayed in panels on the same page for efficient comparison.

Usage:
ecdf.plots(x, var=' ', by=' ', ...)

Dependency:
None.

Arguments:
x: required name of data frame containing one or more numeric variables.

var: optional list of one or more numeric variables to summarize, e.g., 'var1' or
'var1:var5'. If omitted, x object must contain all numeric variables.

by: optional vector of grouping variables to use for column summary, e.g.,
c('var1','var2',...). Note, grouping variables only effect column summaries; they
are ignored for row summaries. [default = no groups]

... optional additional arguments to be passed to the plot() and ecdf() functions,
including the following defaults:
col=’blue’ color of the ecdf
las=1 horizontal orientation of axis labels
lab=c(5,5,4) number of x and y tick marks and length of labels

Details:
ecdf.plots is simply a convenience wrapper for the ecdf() function that makes it efficient to
quickly produce ECDF plots for many variables, and optionally by a grouping variable. See
help(plot) and help(ecdf) for details on those functions. Note, the ECDF gives the
probability, or proportion, of values (on the y-axis) falling below any given value of x.
Compare this to the raw empirical distribution (EDF) which is simply a plot of the observed
values of the variable in rank order from smallest to largest.

Value:
No object is returned.

Author:
K. McGarigal, September 14, 2006

47

References:
None.

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
ecdf.plots(x, 'AMGO:WWPE', c('BASIN','SUB'))

48

Function: foa.plots

Description:
Produces 10 plots of species frequency of occurrence and abundance, and is designed for
community data sets containing samples (rows) by species abundance (columns) data.

Usage:
foa.plots(x, var=' ', margin='column', outfile=' ', na.rm=TRUE, ...)

Dependency:
None.

Arguments:
x: required name of data frame containing samples (rows) and species abundance

(column) data.

var: optional list of one or more numeric variables to summarize, e.g., 'var1' or
'var1:var5'. If omitted, x object must contain all numeric variables.

margin: optional choice of column or row summary. Note, this does not effect the plots
produced; it only effects the summary table returned. [default = ‘column’]

outfile: optional name of an output file in comma-delimited format, e.g., 'testout' or
‘D:/R/work/testout’. The output file will automatically be given a .csv extension.
Note, path does not need to be included if the desired output location is the
current working directory. [default = no output file]

na.rm: optional logical (TRUE or FALSE) whether to ignore missing values.
[default=TRUE]

... optional additional arguments to be passed to the hist() and plot() functions,
including the following defaults:
type='o' Line type
col.point='blue' color of points and lines in high-level plot
col.line='red' color of lines in line overlays
las=1 horizontal orientation of axis labels
lab=c(5,5,4) number of x and y tick marks and length of labels

Details:
foa.plots produces the following plots of species and occurrence and abundance, in addition
to the table of summary statistics returned to the object (see Value):

Plot1: Empirical distribution of species occurrence – plot of species frequency of

49

occurrence (y-axis)(i.e., number of plots where present) against the cumulative
number of species (x-axis). X-axis is the rank-order of species based on their
frequency of occurrence among plots. The 5 , 50 and 95 percentiles of theth th th

distribution are shown as horizontal line overlays.

Plot2: Empirical distribution of species relative occurrence – same as plot 1 except that
the y-axis is the species relative frequency of occurrence (i.e., percentage
occurrence in the sample plots). In addition, the 5%, 50% and 95% thresholds are
shown as horizontal line overlays.

Plot3: Histogram of species occurrence – histogram of species occurrence (i.e., number
of plots where present) with a kernel density overlay. The x-axis represents
species frequency of occurrence; y-axis represents density.

Plot4: Histogram of log-transformed species occurrence – same as plot3 except the
species occurrence data is log(natural)-transformed.

Plot5: Empirical distribution of species mean abundance – plot of species mean
abundance where it occurs (i.e., mean of non-zero plots)(y-axis) against the
cumulative number of species (x-axis). X-axis is the rank-order of species based
on their mean abundance among plots where they occur. The 5 , 50 and 95th th th

percentiles of the distribution are shown as horizontal line overlays.

Plot6: Frequency of occurrence versus mean abundance – plot of species mean
abundance where it occurs (i.e., mean of non-zero plots)(y-axis) against species
frequency of occurrence (x-axis).

Plot7: Frequency of occurrence versus log of mean abundance – same as plot6 except the
species mean abundance is log(natural)-transformed.

Plot8: Empirical distribution of species per plot – plot of the number of species per plot
(i.e., plot richness)(y-axis) against the cumulative number of plots (x-axis). X-axis
is the rank-order of plots based on their richness (i.e. number species present). The
5 , 50 and 95 percentiles of the distribution are shown as horizontal lineth th th

overlays.

Plot9: Empirical distribution of total plot abundance – plot of the total abundance of all
species per plot (y-axis) against the cumulative number of plots (x-axis). The x-
axis is the rank-order of plots based on their total abundance. The 5 , 50 and 95th th th

percentiles of the distribution are shown as horizontal line overlays.

Plot10: Plot richness versus plot total abundance – plot of the total abundance of all
species per plot (y-axis) against the number of species per plot (i.e., plot
richness)(x-axis).

50

Value:
A new data frame containing the following variables, depending on whether the margin call
was for column or row summaries:

For margin=’column’:
spc.pres: species frequency of occurrence (i.e., number of plot where present)
spc.perc: species percent occurrence (i.e., percentage of plots species present)
spc.log: log(natural) of species frequency of occurrence
spc.mean: species mean abundance where present (i.e, non-zero plots)

For margin=’row’
plt.pres: number of species per plot
plt.sum: total abundance per plot

Author:
K. McGarigal, September 23, 2009

References:
None.

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
foa.plots(x, 'AMGO:WWPE', margin='row')

51

Function: hclus.cophenetic

Description:
Computes and plots the cophenetic correlation of hierarchical clustering. The cophenetic
distance between two observations that have been clustered is defined to be the intergroup
dissimilarity at which the two observations are first combined into a single cluster. The
cophenetic correlation is the correlation between the dissimilarities in the original p-
dimensional space and the cophenetic distances. It can be argued that a dendrogram is an
appropriate summary of some data if the correlation between the original distances and the
cophenetic distances is high. Otherwise, it should simply be viewed as the description of the
output of the clustering algorithm. Cophenetic correlations >.75 are considered good.

Usage:
hclus.cophenetic(d, hclus, fit='lm', ...)

Dependency:
None if hclust() employed.
Cluster if agnes() or dian() employed.

Arguments:
d: required name of dissimilarity/distance matrix (class = ‘dist’).

hclus: required R object representing a hierarchical clustering. For the default method, an
object of class 'hclust' or with a method for as.hclust() such as agnes() and diana().

fit: optional selection of method for fitting a line to the cophenetic scatterplot: ‘lm’, ‘rlm’,
and ‘lqs’ (see details). [default = ‘lm’]

... optional additional graphical arguments to be passed to the plot() function.

Details:
The cophenetic scatterplot shows the observed dissimilarities on the x-axis against the
cophenetic distances on the y-axes. The strength of the linear relationship is given by the
cophenetic correlation coefficient, which is simply a bivariate Pearson product-moment
correlation. A fitted regression line is shown using one of three optional linear fitting
methods:

lm: fits a linear model using conventional least squares (see help(lm)).

rlm: fits a linear model by robust regression using an M estimator (see help(rlm)).

lqs: fits a regression to the _good_ points in the dataset, thereby achieving a regression
estimator with a high breakdown point (see help(lqs)).

52

Value:
Returns a scalor containing the cophenetic correlation coefficient.

Author:
K. McGarigal, October 18, 2006

References:
None.

Examples:
bird.niche<-read.csv('bird.niche.csv',header=TRUE)
x<-bird.niche[bird.niche$NOBLOCKS>4,]
y<-x[,-c(1,50:56)] #selecting numeric variables of interest
y.std<-data.stand(y,method='standardize',margin='column',plot=FALSE)
y.eucl<-data.dist(y.std,method='euclidean')
y.eucl.ave<-hclust(y.eucl,method='average')
hclus.cophenetic(y.eucl,y.eucl.ave)

53

Function: hclus.scree

Description:
Computes a scree plot for an agglomerative hierarchical clustering (HC). The scree plot
depicts the dissimilarity value of the fusion/split against the number of clusters.

Usage:
hclus.scree(x, ...)

Dependency:
None if hclust() employed
Cluster if agnes() employed.

Arguments:
d: required R object representing a hierarchical clustering; currently, an object of class

'hclust' or with a method for as.hclust() such as agnes().

... optional additional graphical arguments to be passed to the plot() function.

Details:
For an agglomerative HC, as the number of clusters increases, the dissimilarity value at
which clusters fuse together typically increases monotonically (‘reversals’ or ‘inversions’ are
possible with some fusion strategies; e.g., centroid and median linkage). In this case, the
scree curve is read from right to left. Abrupt changes in the scree slope or a pronounced
“elbow” in the scree plot is an indication of where there is a large change in dissimilarity as
clusters fuse together. This usually corresponds to a level in the dendrogram where the
branches are relatively long. This is a logical level at which to “cut” the dendrogram. Note,
the scree plot does not express any information that is not already present in the dendrogram
itself, but some find it a useful way to summarize the dendrogram. Unfortunately, I have not
yet figured out how to extract the necessary information from the diana() object, so at the
current time a scree plot can only be produced from an agglomerative clustering using
hclust() or agnes().

Value:
None.

Author:
K. McGarigal, October 18, 2006

References:
None.

Examples:

54

bird.niche<-read.csv('bird.niche.csv',header=TRUE)
x<-bird.niche[bird.niche$NOBLOCKS>4,]
y<-x[,-c(1,50:56)] #selecting numeric variables of interest
y.std<-data.stand(y,method='standardize',margin='column',plot=FALSE)
y.eucl<-data.dist(y.std,method='euclidean')
y.eucl.ave<-hclust(y.eucl,method='average')
hclus.scree(y.eucl.ave)

55

Function: hclus.table

Description:
Produces a table depicting the agglomeration sequence for an agglomerative hierarchical
clustering (HC) using the hclust() function. This function simply extracts agglomeration
sequence and dissimilarity information from the hclust object and displays in a convenient
table format.

Usage:
hclus.table(x)

Dependency:
None.

Arguments:
x: required R object representing an agglomerative hierarchical clustering; currently,

required object of class 'hclust'.

Details:
For an agglomerative HC, as the number of clusters increases, the dissimilarity value at
which clusters fuse together typically increases monotonically (‘reversals’ or ‘inversions’ are
possible with some fusion strategies; e.g., centroid and median linkage). The agglomeration
table gives the sequence of fusions and the corresponding distance at which the fusion took
place. The information in this table is used to create the dendrogram plot.

The agglomeration sequence reported is interpreted as follows. If a number j in the row is
negative, then the single observation |j| is merged at this stage. If j is positive, then the merger
is with the cluster formed at stage j of the algorithm.

Value:
A list containing three components:

dist.method: the dissimilarity/distance measure used.

method: the fusion method (e.g., ‘average’, ‘ward’, etc.) used to derive the hierarchical
clustering.

cluster.table: the agglomeration table, containing four columns. The first column gives the
number of clusters at that level of the agglomeration sequence; the second and
third columns give the identity of the two entities or clusters being fused (see
‘details’ for interpretation); and the fourth column gives the dissimilarity
value at which the fusion took place.

56

Author:
K. McGarigal, October 18, 2006

References:
None.

Examples:
bird.niche<-read.csv('bird.niche.csv',header=TRUE)
x<-bird.niche[bird.niche$NOBLOCKS>4,]
y<-x[,-c(1,50:56)] #selecting numeric variables of interest
y.std<-data.stand(y,method='standardize',margin='column',plot=FALSE)
y.eucl<-data.dist(y.std,method='euclidean')
y.eucl.ave<-hclust(y.eucl,method='average')
hclus.table(y.eucl.ave)

57

Function: hist.plots

Description:
Produces histograms for individual variables (columns) of a data frame with a kernel density
overlay. If a grouping variable is specified, histograms are constructed separately for each
group and plotted together on the same page for efficient comparison.

Usage:
hist.plots(x, var=' ', by=' ', save.plot=FALSE, na.rm=TRUE, ...)

Dependency:
None.

Arguments:
x: required name of data frame containing one or more numeric variables.

var: optional list of one or more numeric variables to summarize, e.g., 'var1' or
'var1:var5'. If omitted, x object must contain all numeric variables.

by: optional vector of grouping variables to use for column summary, e.g.,
c('var1','var2',...). Note, grouping variables only effect column summaries; they
are ignored for row summaries. [default = no groups]

save.plot: optional logical (TRUE or FALSE) to automatically save all plots as jpegs with
the following naming convention: ‘hist.var.jpg’, where ‘var’ is variable name.
[default = FALSE]

na.rm: optional logical (TRUE or FALSE) whether to ignore missing values.
[default=TRUE]

... optional additional arguments to be passed to the hist() and plot() functions,
including the following defaults:
col.hist='blue' color of histogram bars
col.line='black' color of line in kernel density overlay
las=1 horizontal orientation of axis labels
lab=c(5,5,4) number of x and y tick marks and length of labels

Details:
hist.plots is simply a convenience wrapper for the hist() and plot() functions that makes it
efficient to quickly produce histograms with kernel density overlays for many variables, and
optionally by a grouping variable. Note, the axes for the histogram and the kernel density
curve do not align perfectly and I have not found a solution in R yet. So, the kernel density
curve may appear shifted to one side or slightly compressed or expanded compared to the

58

histogram.

Value:
No object is returned.

Author:
K. McGarigal, September 14, 2006

References:
None.

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
hist.plots(x, 'AMGO:WWPE', c('BASIN','SUB'), TRUE, col.line=’red’)

59

Function: intrasetcor

Description:
Finds the so-called "intRA-set correlation" or (weighted) correlation of weighted averages
(sums) scores (WA scores) and constraints (LC scores). This function is fashioned (copied)
after the intersetcor() function in the vegan library, which computes the so-called “intER-set
correlations.

Usage:
intrasetcor(object)

Dependency:
None.

Arguments:
object: required object from 'cca', 'rda', 'capscale' or 'decorana'.

Details:
Intra-set correlations are related to the canonical coefficients but differ in several important
aspects. Both canonical coefficients and intra-set correlations relate to the rate of change in
community composition per unit change in the corresponding environmental variable, but for
canonical coefficients it is assumed that other environmental variables are being held
constant, while for intra-set correlations other environmental variables are assumed to covary
as they do in the data set. When variables are inter-correlated, canonical coefficients become
unstable – the multicollinearity problem; however, intra-set correlations are not effected.

Canonical coefficients and intra-set correlations indicate which environmental variables are
more influential in structuring the ordination, but cannot be viewed as an independent
measure of the strength of relationship between communities and environmental variables.
“[intra-set correlations] have all the problems of correlations, like being sensitive to extreme
values, and they focus on the relationship between single constraints and single axes instead
of multivariate analysis.” (Oksanen). Intra-set correlations are probably only meaningful at
all if the site scores are derived as LC scores. Fitted vectors ('envfit') provide a better
alternative.

Value:
A vector or matrix of correlations where rows represent the constraints (explanatory
variables) and the columns represent the canonical axes.

Author:
K. McGarigal, November 28, 2006

References:

60

None.

Examples:
moths<-read.csv('moths.csv',header=TRUE)
hab.full<-read.csv('moths.full.csv',header=TRUE)
y.rda<-rda(moths[,-1]~.,data=hab.full[,-1])
round(intersetcor(y.rda),3)

61

Function: lda.structure

Description:
Structure coefficients (also referred to as “structure correlations” or “correlation loadings” or
just plain “loadings) for the corresponding eigenvectors derived from lda(). Structure
coefficients are simple linear correlation coefficients between the original variables and the
canonical functions (i.e., the linear discriminants). The squared structure coefficients give the
percentage of variance in each original variable accounted for by each principal component.
Note that these are linear correlations, which can be misleading if the relationships are non-
linear.

Usage:
lda.structure(x.lda, x, dim=ncol(x.lda), digits=3, cutoff=0)

Dependency:
library(MASS).

Arguments:
x.lda: required object of class lda, i.e., the result of lda() applied to data frame

containing one or more numeric variables and a grouping vector.

x: required name of data frame containing one or more numeric variables; actually,
it must be the same set of variables used to derive the lda.

dim: optional number of dimensions to print. [default = all Q dimensions, equal to G-1
or P, whichever is smaller; where G is the number of groups and P is the number
of discriminating variables]

digits: optional number of significant digits to report for the structure coefficients.
[default = 3]

cutoff: optional minimum structure coefficient for suppressing the printing of small
coefficients (loadings). [default = 0]

Details:
Structure coefficients can be computed in different ways. They can either be computed
directly from the eigenvector coefficients or they can be calculated directly as the Pearson
product-moment bivariate correlation between each variable and the canonical scores for
each canonical function. Lda.structure() adopts the latter approach.

In contrast to the eigenvector coefficients (i.e., the raw canonical coefficients), the structure
coefficients are correlations and directly measure the strength of the linear relationship
between each variable and each canonical function. Large positive values indicate that

62

samples positioned on the positive end of the canonical axis contain larger values of the
corresponding variable, and vice versa for negative values. Structure coefficients are usually
used as the basis for interpreting the meaning of the canonical functions.

Value:
A data frame containing the structure coefficients.

Author:
K. McGarigal, November 4, 2006

References:
None.

Examples:
turtle<-read.csv('byturtle.csv',header=TRUE)
grp<-turtle[,3]
y<-turtle[,6:30]
y.lda<-lda(y,grouping=grp)
y.lda.pred<-predict(y.lda)
scores<-y.lda.pred$x
lda.structure(scores,y)

63

Function: mantel2

Description:
This function is simply a convenience wrapper for the mantel() function in the vegan library
to supplement the information in the output object in order to facilitate plotting the results
with plot.mantel(). Mantel() finds the Mantel statistic as a matrix correlation between two
dissimilarity matrices. The significance of the statistic is evaluated by permuting rows and
columns of the first dissimilarity matrix.

Usage:
mantel2(xdis, ydis, method='pearson', permutations=1000, strata)

Dependency:
library(vegan).

Arguments:
Exactly as in mrpp():

xdis, ydis: required dissimilarity matrices or 'dist' objects (i.e., class = ‘dist’).

method: optional correlation method, as accepted by cor((): 'pearson', 'spearman' or
'kendall'. [default = ‘pearson’]

permutations: optional number of permutations in assessing significance. [default = 1000]

strata: optional integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata. [default = none]

Details:
mantel2() simply adds the xdis and ydis objects as components to the list object that is output
from the mantel() function for the purpose of facilitating the plots constructed using
plot.mantel() in BIOSTATS.

Value:
 The function returns a list of class 'mantel' with following components:

call: function call.

method: correlation method used, as returned by cor.test().

statistic: the Mantel statistic.

signif: empirical significance level from permutations.

64

perm: a vector of permuted values of the Mantel test statistic.

permutations: number of permutations.

xdis: the dissimilarity matrix input as the X-matrix.

ydis: the dissimilarity matrix input as the Y-matrix.

Author:
K. McGarigal, October 25, 2006

References:
see mantel() in vegan library.

Examples:
turtle<-read.csv('byturtle.csv', header=TRUE)
y<-turtle[,6:30]
grp<-turtle[,3]
y.std<-data.stand(y, method='standardize', margin='column', plot=FALSE)
y.eucl<-data.dist(y.std, method='euclidean')
contrast<-contrast.matrix(grp)
y.mantel<-mantel2(contrast, y.eucl)

65

Function: mantel.part

Description:
This function computes a series of Mantel and partial Mantel tests between a single y-set
(typically species data set) and two or more explanatory variables sets, and optionally
including another conditional data set that is partialled out of all tests. This function is
essentially a convenience wrapper for the mantel() function in the ecodist library.

Usage:
mantel.part(y, x1, x2, x3=' ', p=' ', digits=3, ydist='euclidean', xdist='euclidean',
pdist='euclidean', yscale=FALSE, xscale=TRUE, pscale=FALSE, ...)

Dependency:
library(ecodist).

Arguments:
y: required y-set of variables (data frame or matrix) or dissimilarity matrix (i.e.,

class = ‘dist’).

x1-x2: required x-sets of explanatory variables (data frame or matrix) or dissimilarity
matrices (i.e., class = ‘dist’). The data frame must have the same number of rows
(samples) as the y-set or have the same dimensions as the y-distance matrix.

x3: optional x-set of explanatory variables, same as above.

p: optional set of conditional variables (data frame or matrix) or dissimilarity matrix
(i.e., class = ‘dist’). If provided, this data set is partialled out of all analyses (see
details).

digits: optional number of digits to report in the output. [default = 3]

ydist: optional distance/dissimilarity measure to use for the y-set of variables (see
data.dist() for the available options); ignored if ‘y’ is a distance matrix (class =
‘dist’). [default = ‘euclidean’]

xdist: optional distance/dissimilarity measure to use for the x-set of variables (see
data.dist() for the available options); ignored if ‘x’ is a distance matrix (class =
‘dist’). The same distance measure is used for all explanatory data sets. [default =
‘euclidean’]

pdist: optional distance/dissimilarity measure to use for the p-set of conditional
variables if provided (see data.dist() for the available options); ignored if ‘p’ is a
distance matrix (class = ‘dist’). [default = ‘euclidean’]

66

yscale: optional logical (TRUE or FALSE) indicating whether the y-set variables should
be column standardized (i.e., z-score standardization) before computing the
distance matrix; ignored if ‘y’ is a distance matrix (class = ‘dist’). [default =
FALSE]

xscale: optional logical (TRUE or FALSE) indicating whether the x-sets of explanatory
variables should be column standardized (i.e., z-score standardization) before
computing the distance matrix; ignored if ‘x’ is a distance matrix (class = ‘dist’).
[default = TRUE]

pscale: optional logical (TRUE or FALSE) indicating whether the p-set of conditional
variables, if provided, should be column standardized (i.e., z-score
standardization) before computing the distance matrix; ignored if ‘p’ is a distance
matrix (class = ‘dist’). [default = FALSE]

... optional additional arguments to be passed to the mantel() function in the ecodist
library. In particular, there are options for ranked data, permutation tests, and
bootstrapped confidence limits.

Details:
Mantel statistic is simply a correlation between entries of two dissimilarity matrices (some
use cross products, but these are linearly related). However, the significance cannot be
directly assessed, because there are N(N-1)/2 entries for just N observations and the
observations are clearly not independent. Consequently, a Monte carlo permutation test is
conducted in which the first dissimilarity matrix is permuted. Partial Mantel statistic uses
partial correlation conditioned on one or more additional matrices. Only the first matrix is
permuted so that the correlation structure between second and first matrices is kept
constant.

The mantel.part() function simply calls the mantel() function in ecodist many times, each
time designating a different model. The models analyzed include the marginal effects of each
of the explanatory data sets; that is, the correlation between each explanatory matrix and the
y-matrix without partialling out any of the other explanatory sets. However, if a conditional
data set is provided, it is partialled out. These so-called marginal tests measure the correlation
between two matrices without considering confounding between explanatory data sets. Thus,
the marginal tests provide a measure of the total correlation between an explanatory data set
and the y-set.

In addition, the models analyzed include a series of conditional effects in which one or more
explanatory data sets are partialled out before computing the correlation between the
explanatory data set and the y-matrix. As before, if a conditional data set is provided, it is
partialled out as well. These so-called conditional tests measure the partial correlation
between two matrices after considering the correlation due to other conditional data sets.
Thus, the conditional tests provide a measure of the independent or unique correlation

67

between an explanatory data set and the y-set.

Note, although mantel() function (in ecodist library) called by mantel.part() silently accepts
other methods than 'pearson' (see mrank argument in the mantel() function in ecodist which
can be passed from mantel.part() to compute rank correlations), partial correlations will
probably be wrong with other methods according to Oksanen.

Value:
 The function returns a list of class 'mantel.part' with following components:

call: function call.

ptable: name of conditional data set if provided.

xtables: names of the explanatory data sets provided.

marginal: data frame containing the Mantel statistics for the marginal effects. Each marginal
test is a test of the relationship between a single explanatory data set and the
species data set. If a conditional data set is provided, the test is a partial Mantel
test that removes the effect of the conditional data set before computing the
congruence between the explanatory and species data sets. The following results
(columns) are reported for each marginal test (rows):
• Standardized Mantel r statistic: This is a correlation coefficient and is a

measure of the strength of the relationship between distance matrices.
• pval1-pval3: These are p-values derived from a Monte carlo permutation test,

where each p-value represents a different null hypothesis test.
< pval1: one-tailed p-value (null hypothesis: r # 0).
< pval2: one-tailed p-value (null hypothesis: r $0).
< pval3: two-tailed p-value (null hypothesis: r = 0).
In most applications we are interested in the first test. That is, we expect the
correlation between the explanatory distance matrix and the species distance
matrix to be positive. Thus, the appropriate null hypothesis is that the Mantel r
is # 0.

• llim-ulim: lower and upper confidence limits on the Mantel r statistic. By
default this is a 95% confidence interval.

partial: data frame containing the partial Mantel statistics for the conditional effects. Each
partial Mantel test is a test of the relationship between a single explanatory data
set and the y-set after conditioning on one or more other data sets; that is, after
partialling out the effects of one or both of the remaining explanatory data sets. If
a conditional data set is provided, it is included with the other data sets being
partialled out of each test. Otherwise the results are as described above for the
marginal Mantel tests.

68

Author:
K. McGarigal, December 5, 2006

References:
see mantel() in ecodist library.

Examples:
moths<-read.csv('moths.csv',header=TRUE)
hab.plot<-read.csv('moths.plot.csv',header=TRUE)
hab.patch<-read.csv('moths.patch.csv',header=TRUE)
hab.land<-read.csv('moths.land.csv',header=TRUE)
hab.space<-read.csv('moths.space.csv',header=TRUE)
y<-moths[,-1]
x.plot<-hab.plot[,c(2,9,10)]
x.patch<-hab.patch[,c(4,6,7)]
x.land<-hab.land[,c(3,8,9)]
x.space<-hab.space[,c(3,7,8)]
y.log<-data.trans(y,method='log',plot=FALSE)
y.chord<-data.stand(y.log,method='normalize',margin='row',plot=FALSE)
z<-mantel.part(y.chord,x.plot,x.patch,x.land,p=x.space,ydist='euclidean',xdist='euclidean',
pdist='euclidean',yscale=FALSE,xscale=TRUE,pscale=FALSE)

69

Function: mrpp2

Description:
This function is simply a convenience wrapper for the mrpp() function in the vegan library to
supplement the information in the output object in order to facilitate plotting the results with
plot.mrpp(). Mrpp() provides a test of whether there is a significant difference between two
or more groups of sampling units. The significance of the statistic is evaluated by permuting
the sample observations and their associated distances.

Usage:
mrpp2<-function(dat, grouping, permutations=1000, distance='euclidean', weight.type=1,
strata)

Dependency:
Vegan.

Arguments:
Exactly as in mrpp():

dat: required data matrix or data frame in which rows are samples and columns are
response variable(s), or a dissimilarity object (i.e., class = ‘dist’) or a symmetric
square matrix of dissimilarities.

grouping: required vector (factor or numeric index) for grouping observations.

permutations: optional number of permutations to assess the significance of the MRPP
statistic, delta. [default = 1000]

distance: optional choice of distance metric that measures the dissimilarity between two
observations. See vegdist() in the vegan library or data.dist() in BIOSTATS for
options. This will be used only if 'dat' was not a dissimilarity structure of a
symmetric square matrix. [default = ‘euclidean’]

weight.type: optional choice of group weights. See details in mrpp() for options. [default =
1]

strata: optional integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata. [default = none]

Details:
See the details in the help file for mrpp() for a complete description of this function. mrpp2()
simply adds two components (class.vec and diss.vec) to the list object (see below) that is
output from the mrpp() function for the purpose of facilitating the plots constructed using

70

plot.mrpp() in BIOSTATS.

Value:
 The function returns a list of class ‘mrpp’ with following items:

call: function call.

delta: the overall weighted mean of group mean distances.

E.delta: expected delta, under the null hypothesis of no group structure. This is the mean
of the permuted deltas.

Pvalue: significance of the test.

A: a chance-corrected estimated of the distances explained by group identity; a value
analogous to a coefficient of determination in a linear model.

distance: choice of distance metric used; the "method" entry of the dist object.

weight.type: the choice of group weights used.

boot.deltas: the vector of "permuted deltas," the deltas calculated from each of the
permuted data sets.

permutations: the number of permutations used.

class.vec: the class membership vector equal in length to the number of elements in the
lower triangle of the distance matrix, giving the value ‘between’ for all elements
represent between-group distances and the value of the corresponding group (from
the grouping vector) for all other elements.

diss.vec: the dissimilarity vector equal in length to the number of elements in the lower
triangle of the distance matrix; simply the dissimilarities given in the distance
matrix but in their vector form.

Author:
K. McGarigal, October 25, 2006

References:
see mrpp() in vegan library.

Examples:
turtle<-read.csv('byturtle.csv', header=TRUE)
y<-turtle[,6:30]

71

grp<-turtle[,3]
y.std<-data.stand(y, method='standardize', margin='column', plot=FALSE)
y.eucl<-data.dist(y.std, method='euclidean')
y.mrpp<-mrpp2(y.eucl, grp)

72

Function: mv.outliers

Description:
Screens numeric data in a data frame for potential multivariate “outliers.” Specifically,
mv.outliers computes the distance between samples (row) based on a specified distance
measure (from data.dist) and then computes for each sample its mean distance to all other
samples. The resulting mean distance scores are standardized to zero mean and unit variance
(i.e., z-score standardization) and the results are displayed in paired histograms depicting the
distribution of mean distance scores and the distribution of z-scores. In addition, a list of the
samples exceeding a specified threshold in standard deviations from the mean average
distance is produced. An alternative method is also provided based on Mahalanobis distance.
Briefly, the Mahalanobis distance of each sample point to the remaining set of observations is
computed and compared to the expected distribution of values based on the chi-square
distribution (see details below).

Usage:
mv.outliers(x, method, var=' ', cor.method='pearson', outfile=' ', sd.limit=3, alpha=.001,
plot=TRUE, save.plot=FALSE, use='complete.obs', na.rm=TRUE, ...)

Dependency:
library(vegan)
library(MASS)

Arguments:
x: required name of data frame containing one or more numeric variables.

method: required distance measure: ‘mahalanobis’, 'euclidean', 'manhattan', 'correlation',
'canberra', 'bray', 'kulczynski', 'jaccard', 'gower', 'morisita', 'horn', 'mountford',
'raup', 'binomial' (see below for details).

var: optional list of one or more numeric variables to summarize, e.g., 'var1' or
'var1:var5'. If omitted, x object must contain all numeric variables.

cor.method: optional type of correlation coefficient for method = ‘correlation’, including:
‘pearson’, ‘kendall’ and ‘spearman’. [default = ‘pearson’]

outfile: optional name of an output file in comma-delimited format, e.g., 'testout' or
‘D:/R/work/testout’. The output file will automatically be given a .csv extension.
Note, path does not need to be included if the desired output location is the
current working directory. [default = no output file]

sd.limit optional threshold level in standard deviations for flagging extreme values.
[default = 3]

73

alpha: optional alpha level for determining the critical chi-square value above which
samples are deemed “outliers”. [default = .001]

plot: optional logical (TRUE or FALSE) to determine whether paired histograms
depicting the distribution of average distances and standard deviations in average
distances are plotted or not, or if method = ‘mahalanobis’, a kernel density plot
and quantile-quantile plot. [default = TRUE]

save.plot: optional logical (TRUE or FALSE) to automatically save all plots as jpegs with

the following naming convention: ‘dhist.method.jpg’, where ‘method’ is distance
method chosen. [default = FALSE]

use: optional character string giving a method for computing covariances in the
presence of missing values if method = ‘correlation’. This must be (an
abbreviation of) one of the strings: ‘all.obs’, ‘complete.obs’ or
‘pairwise.complete.obs’. [default = ‘complete.obs’]

na.rm: optional logical (TRUE or FALSE) whether to ignore missing values.
[default=TRUE]

... optional additional arguments to be passed to the decostand(), hist(), and plot()
functions, including the following graphical defaults:
col.hist=’blue’ color of histogram
col.line='black' color of the kernel density line
col.point=’blue’ color of the points in the mahalanobis plots
las=1 horizontal orientation of axis labels
lab=c(5,5,4) number of x and y tick marks and length of labels

Details:
Extreme values can exert undue influence on the results of most multivariate techniques.
Thus, it is good practice to screen the data for extreme values before conducting any analysis.
There are many ways to identify extreme observations. Mv.outliers identifies samples (rows)
that have extreme values based on their average multivariate distance to all other samples or
their mahalanobis distance to the group of all other samples. Consequently, this is a true
“multivariate” method of identifying extreme values. Importantly, just because an
observation is extreme, doesn’t mean that it should automatically be deemed an “outlier” and
deleted from the data set. In general, no observation should be dropped unless it can be
justified on ecological grounds, e.g., that it represents a real ecological oddity.

If you are planning on using a distance matrix is in a subsequent analysis (e.g., principal
coordinates analysis, non-metric multidimensional scaling, Mantel test, cluster analysis, etc.),
then the chosen distance method for multivariate outlier detection should be the same.

The mahalanobis method computes the distance between each observation and the data

74

cloud, and does so using a robust estimator of the covariance matrix based on the cov.rob() in
the MASS library. See help(cov.rob) for details on this function. Briefly, it involves
computing a multivariate location (center of the data cloud) and scale (variance-covariance)
estimate with a high breakdown point - this can be thought of as estimating the mean and
covariance of the 'good' part of the data (i.e., without the extreme observations).
Unfortunately, there are least two ways this method can fail with typical ecological data sets.
First, if the data matrix contains any variable with an interquartile range of zero (i.e., 1 andst

3 quartiles of the data the same), the cov.rob() function will fail. Unfortunately, thisrd

condition is quite common in community data sets because often many species occur
infrequently among samples (i.e., lots of zero counts). An unsatisfying solution is to drop all
offending variables, but this can result in dropping a significant number of variables (species)
and may involve dropping variables that are the most likely to produce extreme (or outlying)
observations. A second unsatisfying solution is to compute the covariance matrix using the
standard cov() function, which is unsatisfying because the full set of observations, including
the potential outliers, is included in the covariance estimation. Second, Mahalanobis distance
requires the covariance matrix to be invertable (i.e., non-singular). A matrix is singular and
therefore “ill-conditioned” if the determinant is zero (i.e., there is a zero eigenvalue). This
can occur whenever there is a perfect linear dependency among two or more variables. The
simple solution of course, in this case, is to drop one or more of the offending variables and
try again. A more elegant solution (not implemented here) is to compute the principal
components, drop the components with eigenvalues less than some small threshold value,
and then compute Mahalanobis distance on the reduced set of principal component scores.

If method = ‘mahalanobis’ is chosen the Mahalanobis distance can be calculated and a kernel
density plot and quantile-quantile plot are generated. The density plot displays the
distribution of Mahalanobis distances with the critical threshold distance based on the
specified alpha-level depicted as a vertical line. Note, the critical value is based on the chi-
square distribution which assumes an underlying multivariate normal distribution. In
addition, a quantile-quantile (QQ) plot is also generated, which plots the sample quantiles of
the observed Mahalanobis distribution against the expected quantiles of a theoretical
distribution derived from the chi-square distribution. If the actual data are perfectly
multivariate normal, the QQ plot should be a diagonal straight line (i.e., slope of one).
Departure from this diagonal indicates deviations from expected and individual points that
fall far off this line may be deemed extreme points.

Value:
Returns a new data frame containing the reduced set of samples (rows) with extreme values,
either based on standard deviations in average distance to all other samples or the
Mahalanobis distance.

Author:
K. McGarigal, September 14, 2006

References:

75

None.

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
mv.outliers(x, 'correlation', 'AMGO:WWPE', 'pearson', 'D/stats/testout', 2.5, .005)

76

Function: nhclus.scree

Description:
Computes a scree plot for a nonhierarchical clustering (NHC) using the pam() function in the
Cluster library. The scree plot depicts the sum of within-cluster dissimilarities to cluster
medoids for a given number of clusters, which is the objective function minimized by the
algorithm. In addition, the scree plot depicts the average silhouette width of all sampling
entities for a given number of clusters (see details).

Usage:
nhclus.scree(x, ...)

Dependency:
Cluster.

Arguments:
x: required data matrix or data frame, or dissimilarity matrix or object. In the case of a

matrix or data frame, each row corresponds to an observation, and each column
corresponds to a variable. All variables must be numeric. Missing values (NA's) are
allowed-as long as every pair of observations has at least one case not missing. If ‘x’
is a data matrix or data frame, then at least one additional argument must be passed to
the pam() function designating the dissimilarity metric to use (e.g., metric =
‘euclidean’), although only ‘euclidean’ and ‘manhattan’ are allowed (see pam and
clara functions).

In case of a dissimilarity matrix (class = ‘dist’), 'x' is typically the output of
data.dist(), vegdist(), dist() or daisy(). Also a vector of length n*(n-1)/2 is allowed
(where n is the number of observations), and will be interpreted in the same way as
the output of the above-mentioned functions. Missing values (NAs) are not allowed in
this case.

... optional additional arguments to be passed to the pam() function.

Details:
In contrast to hierarchical clustering (HC), with NHC we typically need to specify a priori the
number of clusters sought. However, in many cases we don’t have a good idea of how many
clusters to expect and we would like characteristics of the data to determine how many
clusters to keep. For this purpose, we can construct a scree plot of an objective criterion
against the number of clusters and look for indications of the “best” number of clusters to
retain. Once possible criterion is the average within-cluster dissimilarity, which declines
monotonically as the number of clusters increases; it typically declines rapidly at first and
then levels off somewhat. An abrupt leveling off or a so-called “elbow” in the scree plot can
provide an indication of the number of clusters to keep.

77

Another criterion available in the Cluster library is the average silhouette width. For each
observation i, the silhouette width s(i) is defined as follows:

Put a(i) = average dissimilarity between i and all other points of the cluster to which i
belongs (if i is the only observation in its cluster, s(i) = 0 without further calculations).
For all other clusters C, put d(i,C) = average dissimilarity of i to all observations of C.
The smallest of these d(i,C) is b(i) = min_C d(i,C), and can be seen as the dissimilarity
between i and its “neighbor” cluster, i.e., the nearest one to which it does not belong.
Finally,

s(i) = (b(i) - a(i)) / max(a(i), b(i)).

Observations with a large s(i) (almost 1) are very well clustered, a small s(i) (around 0)
means that the observation lies between two clusters, and observations with a negative s(i)
are probably placed in the wrong cluster. The average silhouette width for all observations
can be plotted against the number of clusters in a scree plot. We expect the average silhouette
width to be highest when the number of clusters equals the natural clustering of the data.

Note, the scree plot will depict the objective criteria for 2 to max.k number of clusters.
Obviously, max.k cannot exceed the number of sample observations N and it probably makes
no sense for max.k to approach N.

Value:
Returns a data frame containing three columns of data used to create the scree plot. The first
column gives the number of clusters (ranging from 2 to max.k). The second column gives the
sum of the within-cluster dissimilarities for the corresponding number of clusters. The third
column gives the average silhouette width across all observations for the corresponding
number of clusters.

Author:
K. McGarigal, October 18, 2006

References:
None.

Examples:
bird.niche<-read.csv('bird.niche.csv',header=TRUE)
x<-bird.niche[bird.niche$NOBLOCKS>4,]
y<-x[,-c(1,50:56)] #selecting numeric variables of interest
y.std<-data.stand(y,method='standardize',margin='column',plot=FALSE)
y.eucl<-data.dist(y.std,method='euclidean')
nhclus.scree(y.eucl,max.k=20)

78

Function: nmds.monte

Description:
Monte carlo permutation test of significant of the final stress statistic derived from nonmetric
multidimensional scaling (NMDS). Stress is a measure of goodness-of-fit between the
original sample distances in p-dimensional space and distances in the reduced k-dimensional
ordination space. This function is wrapper for the metaMDS() function in the vegan library.

Usage:
nmds.monte(x, k, distance='bray', autotransform=FALSE, trace=0, zerodist=’add’,perm=100,
col.hist='blue', col.line='red', lty=2, las=1, lab=c(5,5,4), ...)

Dependency:
library(vegan)

Arguments:
x: required data frame or matrix containing one or more numeric variables.

k: required number of dimensions to test.

distance: optional distance measures to use in the NMDS ordination; can use any of the
measures available in the vegdist() function in the vegan library. [default = ‘bray’]

autotransform: optional logical (TRUE or FALSE) to specify whether or not to use simple
heuristics for possible data transformation (see below). [default = FALSE]

trace: optional level of tracing (outputting) the NMDS function. Trace = 0 will suppress
the printing of any intermediate results; trace >=2 will produce voluminous
output. [default = 0]

zerodist: optional handling of zero dissimilarities: either 'fail' or 'add' a small positive
value. Option ‘fail’ will cause the function to fail if zero dissimilarities are
encountered, which happens anytime two rows are identical.

perm: optional number of permutations of the data matrix for the randomization test.
Note, the processing time can be unbelievably long, so the default is set at 100,
and even that can take hours on large data sets. [default = 100]

... optional additional arguments to be passed to the hist() and metaMDS() functions,
including the following defaults:
col.hist='blue' color of histogram bars
col.line='red' color of vertical line represent observed eigenvalue
lty=2 line type for the vertical line (dashed)

79

las=1 horizontal orientation of axis labels
lab=c(5,5,4) number of x and y tick marks and length of labels

Details:
nmds.monte() randomly shuffles each column of the data matrix to remove any real
correlation structure and then computes NMDS for the specified number of dimensions,
storing the final stress value. This is repeated many times (default = 100) and the resulting
distribution of stress values represents the expected distribution under the null hypothesis of
no real correlation structure. Note, by shuffling each column independently, we are
maintaining the exact data domain (i.e., we are not sampling any new values on any
variable). By comparing the observed stress statistic to the random distribution of stress
values, we can determining directly the probability of observing our stress value if in fact it
was derived from a data set without any real correlation structure (i.e., the p-value). This is
simple and direct way to test the statistical significance of the final stress statistic, but tends
to be a conservative test by ecological criteria. Consequently, this test is best used in
conjunction with other criteria for determining the importance of each ordination axis.

If zero dissimilarities are encountered the function will fail unless the optional argument
zerodist=’add’ is used (which is the default in nmds.monte). This argument will add a very
small number to each distance element of the computed distance matrix.

This Monte carlo randomization test is helpful for selecting dimensionality but is not
foolproof (McCune and Grace 2002). Strong outliers caused by one or two extremely high
values and/or a single dominant species (in community data sets) can result in
randomizations with final stress values similar to the real data. In addition, with very small
data sets (say <10 samples), this test can be too conservative. Randomizations in this case can
produce configurations with final stress equal to zero.

Value:
Prints to the console the permuted stress values and returns a data frame containing the
observed stress statistic and the corresponding p-value.

Author:
K. McGarigal, October 4, 2006

References:
McCune, B., and J. B. Grace. 2002. Analysis of Ecological Communities. MjM Software
Designs, Gleneden Beach, Oregon.

Examples:
nmds.monte(x, dim=3)

80

Function: nmds.scree

Description:
Scree plot of the final stress statistic against the number of dimensions in a Nonmetric
Multidimensional Scaling (NMDS) analysis. This function is a convenience wrapper for the
metaMDS() function. Specifically, nmds.scree() calls the metaMDS() function several times,
once for each number of specified dimensions, and then plots the final stress from each
ordination against the number of dimensions. Note, given the computational demands of
NMDS, this scree plot can take a long time to generate for large data sets.

Usage:
nmds.scree(x, distance='bray', k=6, trymax=50, autotransform=FALSE, trace=0, ...)

Dependency:
library(vegan).

Arguments:
x: required data frame or matrix containing one or more numeric variables).

distance: optional distance metric to use in nonmetric multidimensional scaling (NMDS).
Any of the distance metrics available in the vegdist() function of the vegan library
can be used. [default = ‘bray’]

k: optional maximum number of dimensions to compute NMDS. A separate NMDS
will be computed using the metaMDS() function in the vegan library for 1 to k
dimensions. [default = 6 dimensions]

trymax: optional maximum number of random starts in search of stable solution for
NMDS. [default = 50]

autotransform: optional logical (TRUE or FALSE) to specify whether or not to use simple
heuristics for possible data transformation (see below). [default = FALSE]

trace: optional level of tracing (outputting) the NMDS function. Trace = 0 will suppress
the printing of any intermediate results; trace >=2 will produce voluminous
output. [default = 0]

... optional additional arguments passed to the metaMDS() or plot() functions.

Details:
The scree plot for nonmetric multidimensional scaling (NMDS) is a bit different than the
familiar scree plot of eigenvalues. NMDS is not an eigenvector technique. Instead, NMDS
computes a stress statistic which is a measure of goodness-of-fit between the original

81

distances in p-dimensional space and distance in the reduced k-dimensional ordination space.
The NMDS scree plot is a plot of stress against the number of dimensions and can be used
similarly as an aide to determine the appropriate number of dimensions to use in the final
solution.

If zero dissimilarities are encountered the function will fail unless the optional argument
zerodist=’add’ is used. This argument will add a very small number to each distance element
of the computed distance matrix.

MetaMDS() has the option for automatic data transformation. Specifically, if the data values
are larger than common class scales, the function performs a Wisconsin double
standardization using wisconsin() in the vegan library. If the values look very large, the
function also performs 'sqrt' transformation. Both of these adjustments are generally found to
improve the results. However, the limits are completely arbitrary (at present, data maximum
50 triggers 'sqrt' and >9 triggers 'wisconsin'). If you want to have a full control of the
analysis, you should set 'autotransform = FALSE' and make explicit standardization in the
command, which is the default implemented in ordi.scree().

Value:
None.

Author:
K. McGarigal, October 4, 2006

References:
None.

Examples:
nmds.scree(rip.bird, distance=’gower’) #for NMDS scree plot

82

Function: norm.test

Description:
Simply a convenience wrapper for a set of normality tests in the nortest library, including the
Anderson-Darling test, Cramer-von Mises test, Lilliefors (Kolmogorov-Smirnov) test,
Pearson chi-square test, and Shapiro-Francia test for normality. This function computes the
select test for each variable in the specified data set. If a grouping variable is specified, the
test is conducted on the residuals of a one-way analysis of variance (i.e., the group mean-
centered values).

Usage:
norm.test(x, groups=' ', var=' ', method='ad', ...)

Dependency:
library(nortest).

Arguments:
x: required numeric vector of data values, or data frame or matrix containing one or

more numeric variables.

groups: optional vector (either numeric or character) containing the group membership of
each observation in x. If omitted, the normality test is conducted on the entire
vector. If present, the normality test is conducted on the residuals of a one-way
analysis of variance (i.e., the group mean-centered values).

var: optional list of variables in x to test. If omitted, all variables in x are tested.
[default = test all variables]

method: optional choice of test method: ‘ad’, ‘sf’, ‘cvm’, ‘lillie’, or ‘pearson’ (see details).
[default = ‘ad’]

... optional additional arguments passed on to the test functions.

Details:
The following normality tests are included:

ad: Anderson-Darling test for the composite hypothesis of normality. The
Anderson-Darling test is the recommended EDF test by Stephens (1986).
Compared to the Cramer-von Mises test (as second choice) it gives more weight
to the tails of the distribution.

sf: Shapiro-Francia test is simply the squared correlation between the ordered sample
values and the (approximated) expected ordered quantiles from the standard

83

normal distribution, and is known to perform well.

cvm: Cramer-von Mises test is an EDF omnibus test for the composite hypothesis of
normality.

lillie: Lilliefors (Kolmogorov-Smirnov) test is an EDF omnibus test for the composite
hypothesis of normality. The test statistic is the maximal absolute difference
between empirical and hypothetical cumulative distribution function. The
Lilliefors (Kolomorov-Smirnov) test is the most famous EDF omnibus test for
normality. Compared to the Anderson-Darling test and the Cramer-von Mises test
it is known to perform worse.

pearson: Pearson chi-square test for the composite hypothesis of normality The Pearson
chi-square test is usually not recommended for testing the composite hypothesis
of normality due to its inferior power properties compared to other tests.

Value:
Returns a data frame containing three columns. The first column lists the variable name, the
second column gives the test statistic (depending on selected test), and the third column gives
the p-value for the null hypothesis test. There is a separate row for each variable tested.

Author:
K. McGarigal, November 4, 2006

References:
See ad.test(), sf.test(), cvm.test(), lillie.test() and pearson.test() in the nortest library.

Examples:
turtle<-read.csv('byturtle.csv',header=TRUE)
grp<-turtle[,3]
y<-turtle[,6:30]
norm.test(y,grp,method='cvm')

84

Function: ordi.monte

Description:
Monte carlo permutation test of significant of the eigenvalues derived from an eigenvector
ordination analysis. Currently computes Monte carlo tests for principal components analysis
(PCA) using the prcomp() function, correspondence analysis (CA) using the cca() function in
the vegan library, and detrended correspondence analysis (DCA) using the decorana()
function in the vegan library. For nonmetric multidimensional scaling (NMDS), which is not
an eigenvector technique, see nmds.monte().

Usage:
ordi.monte(x, ord, dim=length(x), perm=1000, center=TRUE, scale=TRUE, digits=3,
plot=TRUE, col.hist='blue', col.line='red', lty=2, las=1, lab=c(5,5,4),...)

Dependency:
none.

Arguments:
x: required data frame or matrix containing one or more numeric variables.

ord: required ordination method: ‘pca’, ‘ca’, or ‘dca’

dim: optional number of dimensions to test. Note, if ord = ‘dca’ the maximum number
of dimensions is set to 4, since this is all that the decorana() function produces.
[default = all P dimensions, or 4 in the case of DCA]

perm: optional number of permutations of the data matrix for the randomization test.
[default = 1000]

center: optional choice of centering the matrix prior to conducting the principal
components analysis in ord = ‘pca’. Rarely would you ever not center. [default =
TRUE]

scale: optional choice of standardizing the data matrix (i.e., column z-score
standardization) so that the correlation matrix rather than covariance matrix is
decomposed if ord = ‘pca’. Almost always want to scale data matrix for PCA.
[default = TRUE]

digits: optional number of significant digits to report for p-values. [default = 3]

plot: optional choice of whether to plot a histogram of the random permutation
distribution for each dimension requested. [default = TRUE]

85

... optional additional arguments to be passed to the hist() functions, including the
following defaults:
col.hist='blue' color of histogram bars
col.line='red' color of vertical line represent observed eigenvalue
lty=2 line type for the vertical line (dashed)
las=1 horizontal orientation of axis labels
lab=c(5,5,4) number of x and y tick marks and length of labels

Details:
Ordi.monte randomly shuffles each column of the data matrix to remove any real correlation
structure and then computes the eigenvalues for the randomly permuted data matrix. This is
repeated many times (default = 1000) and the resulting distribution of eigenvalues represents
the expected distribution under the null hypothesis of no real correlation structure. Note, by
shuffling each column independently, we are maintaining the exact data domain (i.e., we are
not sampling any new values on any variable). By comparing the observed eigenvalue to the
random distribution of eigenvalues, we can determining directly the probability of observing
our eigenvalue if in fact it was derived from a data set without any real correlation structure
(i.e., the p-value). This is simple and direct way to test the statistical significance of each
eigenvalue, but tends to be a conservative test by ecological criteria. Consequently, this test is
best used in conjunction with other criteria for determining the importance of each ordination
axis.

Value:
Returns a data frame containing the eigenvalues and the corresponding p-values.

Author:
K. McGarigal, October 4, 2006

References:
None.

Examples:
x<-prcomp(rip.bird, scale=TRUE)
ordi.monte(x, dim=5)

86

Function: ordi.overlay

Description:
Ordination plot overlay of variables. The overlay variables can be either intrinsic (i.e., same
variables used to compute the ordination) or extrinsic (i.e., other variables not used in the
ordination). Ordi.overlay() generates two types of plots: (1) a typical ordination plot of
sample scores in which the point symbol is scaled proportional to the magnitude of the
overlay variable, and (2) a scatterplot of the ordination scores against the overlay variable
with a superimposed quantile or robust spline regression envelope line (see details).

Usage:
ordi.overlay(x.ord, x, var=' ', fit=TRUE, choices=c(1,2), expand=5, alpha=.95, pch=19, ...)

Dependency:
vegan; fields.

Arguments:
x.ord: required ordination object from which scores can be extracted using the scores()

function in the vegan library, e.g., the result of prcomp(), rda(), cca(), decorana(),
or metaMDS() applied to data frame containing one or more numeric variables.

x: required data frame or matrix containing the numeric overlay variables. Note, the
overlay variables must be numeric. The data frame or matrix must have the same
samples in the same order as the data from which the ordination object was
derived.

var: optional list of one or more numeric variables to summarize, e.g., 'var1' or
'var1:var5'. If omitted, x object must contain all numeric variables.

fit: optional choice of whether to plot scatterplots with fitted envelopes along with the
ordination plot of samples scaled by the overlay variable. [default = TRUE]

choices: optional choice of ordination axes to plot. [default = c(1,2)]

expand: optional choice of scaling constant to control the size of the symbols in the
ordination plot. The symbols will be scaled as follows: expand*y[,i]/max(y[,I]).
Consequently, a larger scaling constant will increase the size of all sample points.
[default = 5]

alpha: optional choice of quantile for the scatterplot envelop. An alpha of .95 will fit a
cubic spline to the 95 quantile of the distribution (i.e., essentially an envelop thatth

captures 95% of the values of the overlay variable. [default = .95]

87

digits: optional number of significant digits to report for p-values. [default = 3]

plot: optional choice of whether to plot a histogram of the random permutation
distribution for each dimension requested. [default = TRUE]

... optional additional arguments to be passed to the plot() function, including the
following defaults
pch point symbol type

Details:
The ordi.overlay() function with fit=TRUE displays two scatterplots for the overlay variable
corresponding to the chosen ordination axes. In addition, a quantile or robust spline
regression (using the qsreg() in the fields library) envelope is superimposed on each
scatterplot. The envelope is an estimate of the 95 (dy default) quantile of the distribution.th

The fitted quantile envelope can be quite revealing of nonlinear relationships. For example,
unimodal species response functions along underlying gradients will reveal themselves in the
fitted envelopes.

Value:
None.

Author:
K. McGarigal, September 26, 2006

References:
None.

Examples:
x<-prcomp(rip.bird, scale=TRUE)
ordi.overlay(x, rip.hab)

88

Function: ordi.part

Description:
This function computes a variance decomposition or partitioning of a constrained ordination
using the rda() or cca() functions in the vegan library. Specifically, given a y-set of variables
(typically species data) and two or three explanatory sets of variables, and optionally an
additional conditional data set, this function partitions the total variance in the y-set
explainable by each explanatory set independent and jointly.

Usage:
ordi.part(y, x1, x2, x3=' ', p=' ', method='rda', model='reduced', digits=3, ...)

Dependency:
library(vegan).

Arguments:
y: required y-set of variables (data frame or matrix) composed of numeric variables

(typically species data).

x1-x2: required x-sets of explanatory variables (data frame or matrix) composed of
numeric and/or character variables (typically environmental variables). The data
frame must have the same number of rows (samples) as the y-set and be similarly
ordered.

x3: optional x-set of explanatory variables, same as above. [default = not provided]

p: optional set of conditional variables (data frame or matrix) composed of numeric
and/or character variables. If provided, this data set is partialled out of all analyses
(see details). [default = not provided]

method: optional constrained ordination method: ‘rda’ or ‘cca’. Currently, this function
only accepts these two options and calls the corresponding functions in the vegan
library. [default = ‘rda’]

model: optional permutation model for the Monte carlo testing: ‘direct’, ‘reduced’, or
‘full’ (see details). [default = ‘reduced’]

digits: optional number of digits to report in the output. [default = 3]

... optional additional arguments to be passed to the rda(), cca() and anova.cca()
functions in the vegan library. In particular, there are options for controls on the
permutation tests.

89

Details:
The variance partitioning method described here is correlational, but differs from traditional
correlation studies in that it explicitly measures both the independent explanatory power and
confounding among several sets of explanatory variables. The variance decompositions that
result provide a comprehensive picture of the relative importance, independent effects, and
confounding of the factors included in the analysis. The canonical partitioning method was
originally used to partition variation in community data sets among environmental and spatial
components (Borcard et al. 1992, Borcard and Legendre 1994, Legendre and Borcard 1994).
Liu and Brakenhielm (1995) used a related method to partition variance in a plant community
into components explainable by geographical position, climate and pollutant deposition.
Anderson and Gribble (1998) extended the technique to include the effects of temporal
variation, so that variation in community data is partitioned into the components explainable
by environmental, spatial, and temporal factors, and their overlap. More recently, Cushman
and McGarigal (2002 and 2004) extended the method to address the specific challenges of
hierarchically structured data.

The ordi.part() function simply calls the corresponding constrained ordination function in
vegan many times, each time designating a different model. Details of the specific models
required to partition two or three explanatory data sets are provided elsewhere (see Cushman
and McGarigal 2002).

Value:
 The function returns a list of class 'ordi.part' with following components:

call: function call.

ptable: name of conditional data set if provided.

xtables: names of the explanatory data sets provided.

total: data frame containing a summary of the overall “unpartitioned” constrained
ordination, including the following:
• Total inertia (either ‘variance’ in RDA/CAP or the ‘mean squared contingency

coefficient” in CCA) is interpreted as the total “variance” in the species data
set. This is the total “variance” in the species data that is partitionable into
various components, both explained and unexplained. Reported as the total
inertia and as the proportion of the total inertia (always = 1).

• Conditional inertia is the total “variance” in the species data set attributable to
the conditional data set, if provided. This measures how much of the species
variance is effectively removed before the subsequent partitioning into
explained and unexplained components. Reported as the conditional inertia
and as the proportion of the total inertia.

• Constrained inertia is the total “variance” in the species data set attributable to
all of the explanatory variables or constraints; it is equal to the sum of the

90

canonical eigenvalues. This is the so-called “explained variance”. Reported as
the constrained inertia and as the proportion of the total inertia.

• Unconstrained inertia is the total “variance” in the species data set left
unexplained or unaccounted for by the conditional and/or explanatory
variables; it is equal to the sum of the unconstrained eigenvalues. This is the
so-called “residual variance”. Reported as the unconstrained inertia and as the
proportion of the total inertia.

marginal: data frame containing the results for the marginal effects. Marginal effects
represent the total “variance” in the species data attributable to a single
explanatory data set or a combination of explanatory data sets, without partialling
out any other explanatory data sets. This is the variance that can be attributed to a
set of explanatory variables without consideration of potential confounding with
other variables. For example, the marginal effect of the x1 set of variables is the
sum of the canonical eigenvalues based on the set of constraints in x1. This is the
variance in the y data that can be accounted for by the x1 variables, but we cannot
say whether it is due uniquely or independently to x1 because some (or even all)
of the variance explained may be confounded (and therefore inseparable) with
other explanatory variables not in the model. Similarly, the marginal effect x12 is
the sum of the canonical eigenvalues based on the set of constraints in x1 and x2
combined (as if they were a single set of variables). The marginal effects (rows)
are reported as (columns):
• Total inertia attributed to the corresponding marginal variables (equal to the

sum of the canonical eigenvalues). This is the marginal effect size.
• Proportion of the total species variance (equal to the sum of the canonical

eigenvalues divided by the total inertia). This is the relative effect size given
in terms of the total species variance.

• Proportion of the total constrained inertia (equal to the sum of the canonical
eigenvalues divided by the total constrained inertia). This is the relative effect
size given in terms of the total “explained” variance. This effect size can be
quite large even though the percent of species variance explained is quite low.
This is a useful measure if the question centers on how much of the explained
variance is due to each factor.

• Monte carlo test of significance of the marginal effect size. This is a
permutation test of the null hypothesis that the species are unrelated to the
explanatory variables (with or without controlling for conditional variables).
There are several optional arguments for controlling the permutation test (see
help(anova.cca) for more details).

components: data frame containing the results for each partition component. Each
component corresponds to a single exclusive (non-overlapping) partition of
the total species variance, as can be represented in a Venn diagram (see
plot.ordi.part).

91

A two-way partitioning (involving two explanatory data sets) has three
components:
• x1 - pure x1 effects; the species variance explained due to x1 constraints

alone, independent of the variance due to x2.
• x2 - pure x2 effects; the species variance explained due to x2 constraints

alone, independent of the variance due to x1.
• x12 - joint x1-x2 effects; the species variance that is jointly explained by

x1 and x2 constraints; i.e., the confounded variance that cannot
exclusively be associated with either x1 or x2.

In addition, the remaining “unexplained” variance is usually referred to as the
“residual” variance and is equal to the sum of the unconstrained eigenvalues.
If a “conditional” data set was provided, the explained variance, partitioned
into the three components above, and the residual variance are based on the
variance in the species data after accounting for that due to the conditional
data set.

A three-way partitioning (involving three explanatory data sets) has seven
components.
• x1 - pure x1 effects; the species variance explained due to x1 constraints

alone, independent of the variance due to x2 and x3.
• x2 - pure x2 effects; the species variance explained due to x2 constraints

alone, independent of the variance due to x1 and x3.
• x3 - pure x2 effects; the species variance explained due to x2 constraints

alone, independent of the variance due to x1 and x2.
• x12 - joint x1-x2 effects; the species variance that is jointly explained by

x1 and x2 constraints (i.e., the confounded variance that cannot
exclusively be associated with either x1 or x2) but independent of x3.

• x13 - joint x1-x3 effects; the species variance that is jointly explained by
x1 and x3 constraints (i.e., the confounded variance that cannot
exclusively be associated with either x1 or x3) but independent of x2.

• x23 - joint x3-x3 effects; the species variance that is jointly explained by
x2 and x3 constraints (i.e., the confounded variance that cannot
exclusively be associated with either x2 or x3) but independent of x1.

• x123 - joint x1-x2-x3 effects; the species variance that is jointly explained
by x1, x2 and x3 constraints (i.e., the confounded variance that cannot
exclusively be associated with either x1, x2 or x3).

Similar to above, the remaining “unexplained” variance is the “residual”
variance and is equal to the sum of the unconstrained eigenvalues. If a
“conditional” data set was provided, the explained variance, partitioned into
the seven components above, and the residual variance are based on the
variance in the species data after accounting for that due to the conditional
data set.

92

In the component data table, the third column reports the partition sizes in
terms of the proportion of the total explained (or constrained) variance instead
of the proportion of the total species variance.

Note, in either case, the component effect size for the joint or overlapping
components (e.g., v12, v13, v23, v123) can be negative if the effect of the
variables together is stronger than sum of both separately. In general, such
components of “variance”' are not to be trusted due to interactions between
two sets of variables.

The final column in the component data table reports the results of a Monte
carlo test of significance of the component effect size similar to that described
above for the marginal effects. However, a test is only possible for
components that can be expressed as a partial constrained ordination model.
Thus, only the conditional effects of the explanatory variable subsets can be
tested. The components representing the joint or overlapping regions of the
components cannot be tested directly because their effect size is determined
algebraically and not by a direct model.

Author:
K. McGarigal, December 5, 2006

References:
Anderson, M.J. and N.A. Gribble. 1998. Partitioning the variation among spatial, temporal
and environmental components in a multivariate data set. Australian Journal of Ecology 23:
158-167.

Borcard, D. and P. Legendre. 1994. Environmental control and spatial structure in ecological
communities: an example using oribatid mites (Acari, Orbiatei). Environ. Ecol. Stat. 1:37-53.

Borcard, D., P. Legendre, and P. Drapeau. 1992. Partialling out the spatial component of
ecological variation. Ecology 73:1045-1055.

Cushman, S. A., and K. McGarigal. 2004. Hierarchical analysis of forest bird species-
environment relationships in the Oregon Coast Range. Ecological Applications 14:1090-
1105.

Legendre, P. and D. Borcard. 1994. Rejoiner. Environ. Ecol. Stat. 1:57-61.

Cushman, S. A., and K. McGarigal. 2002. Hierarchical, multi-scale decomposition of
species-environment relationships. Landscape Ecology 17:637-646.

Liu, Q.H. and S. Brakenhielm. 1995. A statistical approach to decompose ecological
variation. Water, Air, and Soil Pollution (1-4): 61-87.

93

Smouse, P. E., J. C. Long, and R. R. Sokal. 1986. Multiple regression and correlation
extensions of the Mantel test of matrix correspondence. Systematic Zoology 35:627-632.

Examples:
moths<-read.csv('moths.csv',header=TRUE)
hab.plot<-read.csv('moths.plot.csv',header=TRUE)
hab.patch<-read.csv('moths.patch.csv',header=TRUE)
hab.land<-read.csv('moths.land.csv',header=TRUE)
hab.space<-read.csv('moths.space.csv',header=TRUE)
y<-moths[,-1]
x.plot<-hab.plot[,c(2,9,10)]
x.patch<-hab.patch[,c(4,6,7)]
x.land<-hab.land[,c(3,8,9)]
x.space<-hab.space[,c(3,7,8)]
y.log<-data.trans(y,method='log',plot=FALSE)
y.chord<-data.stand(y.log,method='normalize',margin='row',plot=FALSE)
z<-ordi.part(y.chord,x.plot,x.patch,x.land,p=x.space,method='rda')

94

Function: ordi.scree

Description:
Scree plot of eigenvalues from eigenvector ordinations (see nmds.scree for stress-based scree
plot for nonmetric multidimensional scaling). Currently, scree plots can be produced from
ordination objects containing results from several different eigenvector ordination methods
(see details below). In all cases, the scree plot depicts the eigenvalues in descending order. In
the case of principal components derived from a correlation matrix (using either the
prcomp(), princomp() or rda() functions), the scree plot also depicts the broken stick
distribution, which is based on the expected distribution of eigenvalues when the total
variance is distributed randomly among components, and the latent root criterion, which is
based on the uniform distribution of variance among eigenvalues (i.e., eigenvalue = 1). A
second plot shows the cumulative proportion of variance or inertia, as appropriate,
accounted for by each eigenvalue.

Usage:
ordi.scree(x, ord, ...)

Dependency:
library(vegan)

Arguments:
x: required ordination object (of class = ‘prcomp’, ‘princomp’, ‘rda’, ‘cca’, or

‘capscale’.

ord: required ordination method: ‘pca’, ‘ca’, ‘mds’, ‘rda’, ‘cca’, ‘cmds’ (see details
below).

... optional additional graphics arguments passed to the plot() function.

Details:
A scree plot is a standard graphical display of the eigenvalues which is often used to help
determine the appropriate number of ordination axes to retain for interpretation. The scree
plot typically declines rapidly after the first eigenvalue and eventually levels off. The first
major slope break is often considered the maximum number of eigenvalues to retain. For
principal components analysis (PCA) based on the correlation matrix, the broken stick
distribution represents the distribution of eigenvalues under the broken stick model, which
assumes that the total variance is randomly divided among the P components. Eigenvalues
above the broken stick line are deemed “significant”.

Currently, ordi.scree() produces scree plots for the following methods:

pca: Principal Components Analysis (PCA) or partial Principal Components Analysis

95

(pPCA) of either a covariance or correlation matrix computed using functions
prcomp(), princomp() or rda(). The eigenvalues plotted are the unconstrained
eigenvalues of the covariance or correlation matrix. Note, if the ordination was based
on the correlation matrix (i.e., column centered and standardized data), the broken-
stick and latent root criteria are also plotted.

rda: Redundancy Analysis (RDA) (or constrained Principal Components Analysis) or
partial Redundancy Analysis (pRDA) of either a covariance or correlation matrix
computed using the rda() function. The eigenvalues plotted are the constrained
eigenvalues of the data matrix.

ca: Correspondence Analysis (CA, also Reciprocal Averaging, RA) or partial
Correspondence Analysis (pCCA) of a community data matrix computed using the
cca() function (but without supplying a constraints matrix). The eigenvalues plotted
are the unconstrained eigenvalues of the community matrix.

cca: Canonical Correspondence Analysis (CCA, or constrained Correspondence Analysis)
or partial Canonical Correspondence Analysis (pCCA) of a community data matrix
computed using the cca() function. The eigenvalues plotted are the constrained
eigenvalues of the data matrix.

mds: Multidimensional Scaling (MDS, also Principal Coordinates Analysis) of a data
matrix computed using the cmdscale() function. The eigenvalues plotted are the
unconstrained eigenvalues of the data matrix.

cmds: Constrained Multidimensional Scaling (CMDS, or constrained Principal Coordinates
Analysis) or partial Constrained Multidimensional Scaling (pCMDS) of a data matrix
computed using the capscale() function. The eigenvalues plotted are the constrained
eigenvalues of the data matrix.

Value:
None.

Author:
K. McGarigal, October 7, 2006

References:
None.

Examples:
x<-prcomp(rip.bird, scale=TRUE)
ordi.scree(x,ord=’pca’)

96

Function: pca.communality

Description:
Computes final communality estimates for variables in a principal components analysis.
Final communalities are the sum of the squared structure correlations (loadings) and
represent the percentage of a variable’s variance that is linearly accounted for (explained) by
the retained principal components.

Usage:
pca.communality(x.pca, x, dim=length(x.pca$sdev), digits=3)

Dependency:
none.

Arguments:
x.pca: required object of class prcomp, i.e., the result of prcomp() applied to data frame

containing one or more numeric variables.

dim: optional number of dimensions or principal components to retain. Note, retaining
all principal components will result in final communality estimates of 1 for each
variable, since 100% of a variable’s variance is accounted for by all P principal
components, where P equals the number of variables in the data matrix. [default =
P]

digits: optional number of significant digits to report for the communality estimates.
[default = 3]

Details:
Final communality estimates are simply squared correlation coefficients representing the sum
of the squared structure coefficients (correlations) for each variable across the retained
principal components. Final communalities increase monotonically with each additional
retained principal component and equal 1 when all components are retained. Final
communalities provide an indication of how well each variable is capture by the ordination
solution. However, because communalities are based on linear correlation coefficients, they
only account for the linear relationships with the ordination axes. A variable (e.g., species)
with a strong unimodal relationship to the ordination axes is likely to have a small final
communality even though the patterning is quite strong.

Value:
Returns a data frame or vector containing the final communalities for the P variables.

Author:
K. McGarigal, September 26, 2006

97

References:
None.

Examples:
x<-prcomp(rip.bird,scale=TRUE)
pca.communality(x,rip.bird,dim=5)

98

Function: pca.eigenval

Description:
Summary of the eigenvalues and associated statistics derived from a principal components
analysis using the prcomp() function. In addition to the eigenvalues, the proportion of total
variance accounted for by each eigenvalue, the cumulative proportion of variance accounted
for by each eigenvalue, and the broken stick value for each component (i.e., the expected
eigenvalue if the total variance was randomly distributed among components) are output in
the summary.

Usage:
pca.eigenval(x.pca, dim=length(x.pca$sdev), digits=7)

Dependency:
none.

Arguments:
x.pca: required object of class prcomp, i.e., the result of prcomp() applied to data frame

containing one or more numeric variables.

dim: optional number of dimensions or eigenvalues to print in the summary. [default =
all P dimensions]

digits: optional number of significant digits to report for the eigenvalues and associates
statistics. [default = 7]

Details:
The eigenvalues are derived from a singular value decomposition of the centered and
possibly scaled (standardized) data matrix using the prcomp() function. The eigenvalues are
equal to the squared singular values and equal the variances of the corresponding principal
components. The eigenvalue divided by the sum of all P eigenvalues equals the proportion of
variance associated with each component. Eigenvalues less than one account for less variance
than a single original variable when the decomposition is based on the correlation matrix.
The broken stick values are based on the expected eigenvalue distribution if the total variance
is random distributed among components. Eigenvalues larger than the corresponding broken
stick value are deemed “significant”.

Value:
Returns a data frame containing the eigenvalue summary.

Author:
K. McGarigal, September 26, 2006

99

References:
None.

Examples:
x<-prcomp(rip.bird, scale=TRUE)
pca.eigenval(x, dim=5)

100

Function: pca.eigenvec

Description:
Summary of the eigenvectors (or variable loadings) derived from a principal components
analysis using the prcomp() function.

Usage:
pca.eigenvec(x.pca, dim=length(x.pca$sdev), digits=7, cutoff=0)

Dependency:
none.

Arguments:
x.pca: required object of class prcomp, i.e., the result of prcomp() applied to data frame

containing one or more numeric variables.

dim: optional number of dimensions or eigenvectors to print in the summary. [default =
all P dimensions]

digits: optional number of significant digits to report for the eigenvectors. [default = 7]

cutoff: optional minimum eigenvector coefficient for suppressing the printing of small
coefficients (loadings). [default = 0]

Details:
The eigenvectors are the weights of the variables in the linear equations that define the
principal components. Each of the P original variables has a weight (or loading) on each
principal component. The eigenvector coefficients represent the strength and direction of the
relationship between each variable and each principal component. If the eigenvectors are
derived from the correlation matrix, they are proportional to the correlations between the
original variables and the ordination axes, but they are NOT correlation coefficients.
Nevertheless, large positive values indicate that samples positioned on the positive end of the
ordination axis contain larger values of the corresponding variable, and vice versa for
negative values.

Note, it is often the case that eigenvector coefficients from two different computers or
programs will come out with the same values but with opposite signs. The orientation of
eigenvectors is arbitrary, and the sign is only meaningful with respect to other values on the
same axis.

Value:
Returns a data frame containing the eigenvectors.

101

Author:
K. McGarigal, September 26, 2006

References:
None.

Examples:
x<-prcomp(rip.bird, scale=TRUE)
pca.eigenvec(x, dim=5, digits=3, cutoff=.1)

102

Function: pca.structure

Description:
Structure coefficients (also referred to as “structure correlations” or “correlation loadings” or
just plain “loadings) for the corresponding eigenvectors derived from prcomp(). Structure
coefficients simple linear correlation coefficients between the original variables and the
principal components. The squared structure coefficients give the percentage of variance in
each original variable accounted for by each principal component. Note that these are linear
correlations, which can be misleading if the relationships are non-linear.

Usage:
pca.structure(x.pca, x, dim=length(x.pca$sdev), digits=3, cutoff=0)

Dependency:
None.

Arguments:
x.pca: required object of class prcomp, i.e., the result of prcomp() applied to data frame

containing one or more numeric variables.

x: required name of data frame containing one or more numeric variables; actually,
it must be the same set of variables used to derive the PCA.

dim: optional number of dimensions to print. [default = all P dimensions]

digits: optional number of significant digits to report for the structure coefficients.
[default = 3]

cutoff: optional minimum structure coefficient for suppressing the printing of small
coefficients (loadings). [default = 0]

Details:
Structure coefficients can be computed in different ways. They can either be computed
directly from the eigenvector coefficients or they can be calculated directly as the Pearson
product-moment bivariate correlation between each variable and the principal component
scores for each component. Pca.structure() adopts the latter approach.

In contrast to the eigenvector coefficients, the structure coefficients are correlations and
directly measure the strength of the linear relationship between each variable and each
principal component. Large positive values indicate that samples positioned on the positive
end of the ordination axis contain larger values of the corresponding variable, and vice versa
for negative values. Structure coefficients are often as the basis for interpreting the meaning
of the principal components.

103

Value:
A data frame containing the structure coefficients.

Author:
K. McGarigal, September 26, 2006

References:
None.

Examples:
x<-prcomp(rip.bird, scale=TRUE)
pca.structure(x.pca, rip.bird, dim=3, cutoff=.3)

104

Function: plot.anosim

Description:
Produces two plots from an ‘anosim’ object (i.e., the result of anosim() in the vegan library),
including a grouped box-and-whisker plot of the between- and within-group dissimilarities
and a histogram of the permuted values of the test statistic, R.

Usage:
plot.anosim(x, title1='ANOSIM (within- vs between-group rank dissimilarities)',
title2='ANOSIM (observed vs expected R)', col='blue', ...)

Dependency:
None.

Arguments:
x: required anosim object; the result of the anosim() function in the vegan library.

title1: optional title for the first plot, the box-and-whisker plot of between- and within-
group dissimilarities. [default = 'ANOSIM (within- vs between-group rank
dissimilarities)']

title2: optional title for the second plot, the histogram of the permuted values of the test
statistic, R. [default = 'ANOSIM (observed vs expected R)']

... optional additional arguments to be passed to the boxplot and hist functions,
including the following defaults:
col='blue' color of box-and-whiskers and histogram

Details:
plot.anosim is simply a convenience wrapper for the boxplot() and hist() functions that makes
it efficient to quickly produce a grouped box-and-whisker plot and histogram of the results of
ANOSIM.

Value:
No object is returned.

Author:
K. McGarigal, October 25, 2006

References:
None.

Examples:

105

turtle<-read.csv('byturtle.csv',header=TRUE)
y<-turtle[,6:30]
grp<-turtle[,3]
y.std<-data.stand(y,method='standardize',margin='column',plot=FALSE)
y.eucl<-data.dist(y.std,method='euclidean')
y.anosim<-anosim(y.eucl,grp)
plot.anosim(y.anosim)

106

Function: plot.mantel

Description:
Produces two plots from a ‘mantel’ object (i.e., the result of mantel2() in BIOSTATS),
including a scatterplot of the two input dissimilarity matrices and a histogram of the
permuted values of the test statistic, r.

Usage:
plot.mantel(x, title1='MANTEL Scatterplot)', title2='MANTEL (observed vs expected R)',
col='blue', ...)

Dependency:
None.

Arguments:
x: required mantel object; the result of the mantel2() function in BIOSTATS.

title1: optional title for the first plot, the scatterplot of the two dissimilarity matrices.
[default = 'MANTEL Scatterplot)']

title2: optional title for the second plot, the histogram of the permuted values of the test
statistic, r. [default = 'MANTEL (observed vs expected R)']

... optional additional arguments to be passed to the plot and hist functions,
including the following defaults:
col='blue' color of points and histogram

Details:
plot.mantel is simply a convenience wrapper for the plot() and hist() functions that makes it
efficient to quickly produce a scatterplot and histogram of the results of MANTEL.

Value:
No object is returned.

Author:
K. McGarigal, October 25, 2006

References:
None.

Examples:
turtle<-read.csv('byturtle.csv',header=TRUE)
y<-turtle[,6:30]

107

grp<-turtle[,3]
y.std<-data.stand(y,method='standardize',margin='column',plot=FALSE)
y.eucl<-data.dist(y.std,method='euclidean')
contrast<-contrast.matrix(grp)
y.mantel<-mantel2(contrast,y.eucl)
plot.mantel(y.mantel)

108

Function: plot.mrpp

Description:
Produces two plots from an ‘mrpp’ object (i.e., the result of mrpp() in the vegan library or
mrpp2() in BIOSTATS), including a grouped box-and-whisker plot of the between- and
within-group dissimilarities and a histogram of the permuted values of the test statistic, delta.

Usage:
plot.mrpp(x, title1='MRPP (within- vs between-group dissimilarities)', title2='MRPP
(observed vs expected delta)', col='blue', ...)

Dependency:
None.

Arguments:
x: required mantel object; the result of the mantel() function in the vegan library or

mantel2() function in BIOSTATS.

title1: optional title for the first plot, the box-and-whisker plot of between- and within-
group dissimilarities. [default = 'MRPP (within- vs between-group
dissimilarities)']

title2: optional title for the second plot, the histogram of the permuted values of the test
statistic, R. [default = 'MRPP (observed vs expected delta)']

... optional additional arguments to be passed to the boxplot and hist functions,
including the following defaults:
col='blue' color of box-and-whiskers and histogram

Details:
plot.mantel is simply a convenience wrapper for the boxplot() and hist() functions that makes
it efficient to quickly produce a grouped box-and-whisker plot and histogram of the results of
MANTEL.

Value:
No object is returned.

Author:
K. McGarigal, October 25, 2006

References:
None.

109

Examples:
turtle<-read.csv('byturtle.csv',header=TRUE)
y<-turtle[,6:30]
grp<-turtle[,3]
y.std<-data.stand(y,method='standardize',margin='column',plot=FALSE)
y.eucl<-data.dist(y.std,method='euclidean')
y.mrpp2<-mrpp2(y.eucl,grp)
plot.mrpp(y.mrpp2)

110

Function: plot.ordi.part

Description:
This function plots the results of a variance decomposition or partitioning of a constrained
ordination using the ordi.part() function in BIOSTATS. Specifically, this function produces a
Venn diagram depicting the components of the partition and their effect sizes.

Usage:
plot.ordi.part(x, which='total', digits=1, ...)

Dependency:
None.

Arguments:
x: required ordi.part object, the result of ordi.part().

which: optional choice of whether to plot the component effect sizes as the percentage of
the total y-set variance explained (which = ‘total’) or as the percentage of the total
constrained or explained variance (which = ‘constrained’). [default = ‘total’]

digits: optional number of digits to report in the output. [default = 1]

... optional additional graphical arguments to be passed to the text() function for
example to control text size and color.

Details:
The Venn diagram depicts the components of a two- or three-way partition of a constrained
ordination, in addition to the so-called “residual” variance and “conditional” variance if
provided. The components can be displayed either as the percentage of the total y-set
variance accounted for (which=’total’) or the percentage of the total explained variance
accounted for (which=’constrained’). If a “conditional” data set is provided, the Venn
diagram includes a description of the percent of species variance accounted for by the
conditional data set (reported in the lower left corner of the plot). In this case, all other
reported components reflect the percentage of species variance accounted for by each
component independent of that due to the conditional variables. The “residual” or
unexplained variance is also reported in the lower right corner of the plot. This is equal to the
percentage of the species variance that is accounted for by the sum of the unconstrained
eigenvalues; i.e., that not due to the explanatory variables.

Value:
 Returns the Venn diagram to the graphics device.

Author:

111

K. McGarigal, December 5, 2006

References:
None.

Examples:
moths<-read.csv('moths.csv',header=TRUE)
hab.plot<-read.csv('moths.plot.csv',header=TRUE)
hab.patch<-read.csv('moths.patch.csv',header=TRUE)
hab.land<-read.csv('moths.land.csv',header=TRUE)
hab.space<-read.csv('moths.space.csv',header=TRUE)
y<-moths[,-1]
x.plot<-hab.plot[,c(2,9,10)]
x.patch<-hab.patch[,c(4,6,7)]
x.land<-hab.land[,c(3,8,9)]
x.space<-hab.space[,c(3,7,8)]
y.log<-data.trans(y,method='log',plot=FALSE)
y.chord<-data.stand(y.log,method='normalize',margin='row',plot=FALSE)
z<-ordi.part(y.chord,x.plot,x.patch,x.land,p=x.space,method='rda')
plot.ordi.part(z,which='total')

112

Function: qqnorm.plots

Description:
Produces normal quantile-quantile plots for individual variables (columns) of a data frame. If
a grouping variable is specified, box-and-whisker plots for each group are displayed side-by-
side on the same page for efficient comparison.

Usage:
qqnorm.plots(x, var=' ', by=' ', save.plot=FALSE, na.rm=TRUE, ...)

Dependency:
None.

Arguments:
x: required name of data frame containing one or more numeric variables.

var: optional list of one or more numeric variables to summarize, e.g., 'var1' or
'var1:var5'. If omitted, x object must contain all numeric variables.

by: optional vector of grouping variables to use for column summary, e.g.,
c('var1','var2',...). Note, grouping variables only effect column summaries; they
are ignored for row summaries. [default = no groups]

save.plot: optional logical (TRUE or FALSE) to automatically save all plots as jpegs with
the following naming convention: ‘qqnorm.var.jpg’, where ‘var’ is variable name.
[default = FALSE]

na.rm: optional logical (TRUE or FALSE) whether to ignore missing values.
[default=TRUE]

... optional additional arguments to be passed to the qqnorm() and qqline() functions,
including the following defaults:
col.point=’blue’ color of qqnorm points
col.line='red' color of the qqline
las=1 horizontal orientation of axis labels

Details:
qqnorm.plots is simply a convenience wrapper for the qqnorm() and qqline() functions that
makes it efficient to quickly produce normal quantile-quantile plots for many variables, and
optionally by a grouping variable. See help(qqplot) for details on qqnorm() and qqline().
Note, a qqline (line project through the 1 and 3 quartiles of the data) will be added to thest rd

plot if and only if the inter-quartile range is >0.

113

Value:
No object is returned.

Author:
K. McGarigal, September 14, 2006

References:
None.

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
qqnorm.plots(x, 'AMGO:WWPE', c('BASIN','SUB'), FALSE, TRUE)

114

Function: ran.split

Description:
Generic function for randomly splitting a grouped data set into two sets, typically a
calibration (or training) set and a validation (or testing) set for use in discriminant
analysis/classification.

Usage:
ran.split(x, grouping=' ', prop=.5)

Dependency:
none.

Arguments:
x: required numeric vector of data values, or data frame or matrix containing one or

more numeric variables and optionally a grouping variable (either numeric or
character) in the first column of the data frame or matrix.

grouping: optional vector (either numeric or character) containing the group membership of
each observation in x. If omitted, the grouping variable is assumed to be the first
variable (column) in x.

prop: optional number between 0-1 specifying the proportion of observations to be
placed in the calibration data set. The remaining observations are placed in the
validation data set. [default = .5]

Details:
Observations in the original data set are randomly subdivided into calibration and validation
data sets. There is no provision (currently) for stratified random subsetting to ensure that
proportional group sample sizes are preserved in the calibration and validation data sets.
Consequently, ran.split() will produce a different outcome each time and the proportion of
observations in each group in each subset will vary somewhat. With large data sets the
departure from initial proportions should be relatively minor.

Value:
Returns a list with three components. The first component is a data frame containing the
number of samples and the proportion of samples in the calibration and validation data sets.
The second and third components are tables containing the frequencies in each group for the
calibration and validation data sets, respectively.

Also returns two objects: grp.cal and grp.val which contain the group membership of each
observation in the calibration and validation data sets, respectively. These are created to
facilitate use of the calibration and validation data sets in subsequent calls to lda() and qda().

115

Author:
K. McGarigal, November 4, 2006

References:
None.

Examples:
turtle<-read.csv('byturtle.csv',header=TRUE)
grp<-turtle[,3]
y<-turtle[,6:30]
ran.split(y,grp,prop=.5)

116

Function: redun.plot

Description:
Generic function for assessing the degree of “true” redundancy in a data matrix, typically
used to assess the degree of redundancy in a data matrix prior to ordination.

Usage:
redun.plot(x, var=' ', ...)

Dependency:
none.

Arguments:
x: required data frame or matrix containing one or more numeric variables.

var: optional list of one or more numeric variables, e.g., 'var1' or 'var1:var5'. If
specified, a separate plot is produced for each variable depicting the ecdf for the
correlations involving that species. If omitted, the x object must contain all
numeric variables and the plot is for pairwise correlations between all variables.

perm: optional integer number of random permutations. [default = 1000]

quantiles: optional vector containing the lower and upper quantiles of the random
permutation distribution to plot. [default = c(.025,.975)]

... optional additional arguments to be passed to the plot() function.

Details:
Creates a plot depicting the actual redundancy versus that expected by chance. Specifically,
the lower triangle of a correlation matrix depicting the unique pairwise correlations among
the variables is rank ordered from the largest negative correlation to the largest positive
correlation and then plotted. The same empirical cumulative distribution (ecdf) function is
plotted for the data set after random permutation of the columns (variables) of the data
matrix. More specifically, the specified lower (default = .025) and upper (default = .975)
quantiles of the random permutation ecdf is plotted, by default producing a 95 percentile
envelope about the null distribution of rank order correlations. A comparison of the two
distributions reveals the degree of “true” redundancy. Specifically, the observed ecdf falling
outside the random permutation envelope represents “true” redundancies; i.e., higher
correlations than would be expected by chance. If specific variables are listed (var =), then a
separate ecdf for the correlations involving the corresponding variable is produced.

Value:
Plot of the ecdf’s. The x-axis is the rank order of correlations from the largest negative

117

correlation to the largest positive correlation. The y-axis is the correlation and ranges from -1
to 1.

Author:
K. McGarigal, November 28, 2006; modified February 13, 2008

References:
None.

Examples:
moths<-read.csv('moths.csv',header=TRUE)
redun.plot(moths, var='ITAME:EUMA')

118

Function: replace.missing

Description:
Replaces missing values with median or mean of column.

Usage:
replace.missing<-function(x, var=' ', method='median', outfile=' ')

Dependency:
None.

Arguments:
x: required name of data frame containing one or more numeric variables with

missing data (NA).

var: optional list of one or more numeric variables to summarize, e.g., 'var1' or
'var1:var5'. If omitted, x object must contain all numeric variables.

method: optional method of missing values replacement: ‘median’or ‘mean of column.
[default = ‘median’]

outfile: optional name of an output file in comma-delimited format, e.g., 'testout' or
‘D:/R/work/testout’. The output file will automatically be given a .csv extension.
Note, path does not need to be included if the desired output location is the
current working directory. [default = no output file]

Details:
None.

Value:
A new data frame with missing values replaced.

Author:
K. McGarigal, September 14, 2006

References:
None.

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
replace.missing(x, 'AMGO:WWPE', method='mean', 'D:/R/stats/testout')

119

Function: scatter.plots

Description:
Produces a separate scatterplot for each unique combination of x and y variables with an
optional Lowess regression line.

Usage:
scatter.plots(data, y=' ', x=' ', fit='lowess', ...)

Dependency:
None.

Arguments:
data: required name of data frame containing two or more numeric variables.

y: required list of one or more numeric variables to treat as dependent variables
(y’s), e.g., 'var1' or 'var1:var5'.

x: required list of one or more numeric variables to treat as independent variables
(x’s), e.g., 'var1' or 'var1:var5'.

fit: optional choice of a lowess or a linear regression fit to the scatterplot: ‘lowess’,
‘linear’, or ‘’ for no fitted line. [default = lowess]

... optional additional arguments to be passed to the plot() function, including the
following defaults:
col.line='red' color of the lowess regression line
cex.main=2 character size of the main title of the plot

Details:
scatter.plots is simply a convenience wrapper for the plot() function that makes it efficient to
quickly produce scatterplots for many x-y variables. See help(plot) for details on plot() and
lowess() for details on lowess regression.

Value:
No object is returned.

Author:
K. McGarigal, February 13, 2008

References:
None.

120

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
scatter.plots(data=x, y='AMGO', x='AMRO:WWPE')

121

Function: sum.stats

Description:
Computes a variety of row or column summary statistics for numeric variables in a data
frame, including several statistics appropriate for summarizing a community data set
consisting of species abundances.

Usage:
sum.stats(x, var=' ', by=' ', margin='column', outfile=' ', ...)

Dependency:
None.

Arguments:
x: required name of data frame containing one or more numeric variables.

var: optional list of one or more numeric variables to summarize, e.g., 'var1' or
'var1:var5'. If omitted, x object must contain all numeric variables.

by: optional vector of grouping variables to use for column summary, e.g.,
c('var1','var2',...). Note, grouping variables only effect column summaries; they
are ignored for row summaries. [default = no groups]

margin: optional choice of column or row summary. [default = ‘column’]

outfile: optional name of an output file in comma-delimited format, e.g., 'testout' or
‘D:/R/work/testout’. The output file will automatically be given a .csv extension.
Note, path does not need to be included if the desired output location is the
current working directory. [default = no output file]

Details:
sum.stats computes the following row or column summary statistics for the selected variables
(columns), and ignores missing values (na.rm=TRUE), except where noted:

nobs: number of observations (including missing values)
min: minimum value
max: maximum value
mean: average value
median: median value (i.e., 50 percentile)th

sum: sum of all values
sd: sample standard deviation
cv: coefficient of variation (i.e., 100*sd/mean)
xeros: number of elements with the value zero

122

pct.xeros: percent of observation with the value zero
nobs.missing: number of missing observations (NA)
pct.missing: percent of observations with missing values (NA)
se: standard error (i.e., sd/sqrt(non-missing obs))
se.ratio: standard error ratio (i.e., 100*se/mean)
richness: number of non-zero elements

sh.diversity: Shannon’s diversity index:

iwhere P equals the i element of the row or column divided by theth

corresponding row or column sum and i is from 1 to p row or column
elements.

sh.evenness: Shannon’s evenness index:

where m is the richness (i.e., number of non-zero elements).

si.diversity: Simpson’s diversity index:

si.evenness: Simpson’s evenness index:

If a ‘by’ argument is given, these summary statistics are computed for each level of the ‘by’
variable(s).

In addition to the above row/column stats, a statistical summary of the row/columns
summary stats is also provided (for each group if a ‘by’ argument is given). Specifically, the
number observations (nobs), minimum (min), maximum (max), median (median), standard
deviation (sd) and coefficient of variation (cv) of the row/column summary statistics are
reported.

Value:
A list containing two components:

Row.summary or Column.summary: Data frame with the row or column summary statistics.

123

Table.summary: Data frame with the statistical summary of the row or column summary
statistics.

Author:
K. McGarigal, September 14, 2006

References:
None.

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
sum.stats(x, 'AMGO:WWPE', c('BASIN','SUB'), 'row', 'D:/stats/testout')

124

Function: tau

Description:
Computes the Tau statistic (Klecka 1980) from a classification table, typically the result of a
classification of samples into groups using the predict() function on an object from linear
(lda) or quadratic discrimination (qda). Tau is a chance-corrected measure of classification
accuracy and is suitable when the prior probabilities of group membership are known or not
assumed to be proportional to group sample sizes. In the latter case, Cohen’s Kappa is
generally the statistic of choice (see cohen.kappa()).

Usage:
tau(y, prior)

Dependency:
None.

Arguments:
y: required name of a table (class = ‘table’) containing the frequency of observations in

each group (rows) classified into each group (columns). The table must be square and
contain a single row and column for each group.

prior: required vector of prior probabilities of class membership. The probabilities should
be specified in the order of the factor levels.

Details:
Tau is defined as:

owhere G is the number of groups, n is the total number of samples, n is the number of

i isamples correctly classified, n is the number of samples in the i group, and p is the priorth

probability of membership in the i groupth

The term involving the summation is the number of samples that would be correctly
classified on the basis of random assignment to groups in proportion to their prior
probabilities. If the groups are to be treated equally, then all the prior probabilities are set to
one divided by the number of groups. The maximum value for Tau is one and it occurs when
there are no errors in prediction. The minimum value of Tau is zero and it indicates no
improvement over chance. An intermediate value of Tau such as 0.82, for example, indicates
that classification based on the discriminating variables made 82% fewer errors than would

125

be expected by random assignment.

It is important to note that Tau, like any measure of classification success, is unbiased only
when computed with ‘holdout’ samples. In other words, for unbiased results, the accuracy of
the classification criterion should be evaluated by comparing the classification results and
chance-corrected criteria computed from a ‘holdout’ or ‘validation’ sample. This is because
the classification functions are more accurate for the samples they are derived from than they
would be for the full population. Thus, if the samples used in calculating the classification
function are the ones being classified, the result will be an upward bias in the correct
classification rate.

Value:
Returns an object containing the value of Tau.

Author:
K. McGarigal, November 4, 2006

References:
Klecka, W. R. 1980. Discriminant Analaysis. Sage University Paper series Quantitative
Applications in the Social Sciences, series no. 07-019. Beverly Hills and London: Sage
Publications..

Examples:
turtle<-read.csv('byturtle.csv',header=TRUE)
grp<-turtle[,3]
y<-turtle[,6:30]
y.qda<-qda(y,grouping=grp)
y.qda.pred<-predict(y.qda)
y.table<-table(grp,y.qda.pred$class)
tau(y.table,prior=y.qda$prior) #priors proportional to group sample sizes
tau(y.table,prior=c(.2,.8)) #priors specified

126

Function: uv.outliers

Description:
Screens numeric data in a data frame for potential univariate “outliers.” More accurately,
uv.outliers calculates the z-scores via a column standardization (i.e., adjusting the scores in
each column to have zero mean and unit variance) and then returns a list of the samples
(rows) and the corresponding z-scores that exceed a threshold level of standard deviations
from the mean. Optionally, extreme values can be computed separately for each group of
samples based on one or more grouping variables.

Usage:
univar.outliers(x, id=, var=, by=NULL, outfile=NULL, sd.limit=3)

Dependency:
None.

Arguments:
x: required name of data frame containing one or more numeric variables.

id: required list of one or more variables to retain in the output, for example, to identify
the record, e.g., 'var1' or 'var1:var5'.

var: required list of one or more numeric variables to summarize, e.g., 'var1' or 'var1:var5'.

by: optional vector of grouping variables to use for grouping records, e.g.,
c('var1','var2',...). Note, standardization will occur within each group of records.
[default = no groups]

outfile: optional name of an output file in comma-delimited format, e.g., 'testout' or
‘D:/R/work/testout’. The output file will automatically be given a .csv extension.
Note, path does not need to be included if the desired output location is the
current working directory. [default = no output file]

sd.limit optional threshold level in standard deviations for flagging extreme values.
[default = 3]

Details:
Extreme values can exert undue influence on the results of most multivariate techniques.
Thus, it is good practice to screen the data for extreme values before conducting any analysis.
There are many ways to identify extreme observations. Univar.outliers identifies samples
(rows) that have extreme values on one or more independent variables (columns);
consequently, this is a “univariate” method of identifying extreme values. By specifying one
or more grouping variables, you can screen for extreme values within each group of

127

observations. Importantly, just because an observation is extreme, doesn’t mean that it should
automatically be deemed an “outlier” and deleted from the data set. In general, no
observation should be dropped unless it can be justified on ecological grounds, e.g., that it
represents a real ecological oddity.

Value:
Returns a new data frame containing the reduced set of samples (rows) and variables
(columns) with extreme values.

Author:
K. McGarigal, September 14, 2006

References:
None.

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
uv.outliers(x, id='BLOCK ',var='AMGO:WWPE', by=c('BASIN','SUB'),
outfile='D:/stats/testout', sd.limit=3)

128

Function: uv.plots

Description:
Produces a set of four univariate plots for individual numeric variables (columns) of a data
frame, including a histogram, box-and-whisker plot, empirical distribution plot and normal
quantile-quantile plot. Each of these plots are described in more detail elsewhere (see
hist.plots, box.plots, edf.plots, and qqnorm.plots, respectively). Note, this function does not
produce plots for grouped data. If a grouping variable is present, then use the separate
plotting functions.

Usage:
uv.plots(x, var=NULL, ...)

Dependency:
None.

Arguments:
x: required name of data frame containing one or more numeric variables.

var: optional list of one or more numeric variables to summarize, e.g., 'var1' or
'var1:var5'. If omitted, x object must contain all numeric variables.

... optional additional arguments to be passed to the qqnorm() and qqline() functions,
including the following defaults:
col.fill=’blue’ color of the filled areas for box plot and histogram
col.point=’black’ color of the ecdf
col.line='red' color of the diagonal

Details:
uv.plots is simply a convenience wrapper for the hist(), boxplot(), plot(), qqnorm() and
qqline() functions that makes it efficient to quickly produce a set of univariate summary plots
for many variables. See the corresponding help files (e.g., help(qqplot)) for more details on
these functions.

Value:
No object is returned.

Author:
K. McGarigal, February 11, 2008

References:
None.

129

Examples:
x<-read.csv(‘testbird.csv’, header=TRUE)
uv.plots(x, 'AMGO:WWPE')

130

	all.subsets.gam
	all.subsets.glm
	box.plots
	by.names
	ci.lines
	class.monte
	clus.composite
	clus.stats
	cohen.kappa
	col.summary
	contrast.matrix
	cov.test
	data.dist
	data.stand
	data.trans
	dist.plots
	distributions
	drop.var
	edf.plots
	ecdf.plots
	foa.plots
	hclus.cophenetic
	hclus.scree
	hclus.table
	hist.plots
	intrasetcor
	lda.structure
	mantel2
	mantel.part
	mrpp2
	mv.outliers
	nhclus.scree
	nmds.monte
	nmds.scree
	norm.test
	ordi.monte
	ordi.overlay
	ordi.part
	ordi.scree
	pca.communality
	pca.eigenval
	pca.eigenvec
	pca.structure
	plot.anosim
	plot.mantel
	plot.mrpp
	plot.ordi.part
	qqnorm.plots
	ran.split
	redun.plot
	replace.missing
	scatter.plots
	sum.stats
	tau
	uv.outliers
	uv.plots

