--- title: "02-RNA-seq" author: "Claudia-Halibut" format: html editor: visual --- 4/9/2025 Objective: Installing Kallisto and running DESeq2 ```{bash} ## the following code downloads and runs the kallisto software /home/shared/kallisto/kallisto ``` ```{bash} ## check working directory pwd cd data/ pwd ``` ```{bash} ## the following code downloads the Pacific oyster fasta file of genes and does so ignoring the fact that gannet does not have a security certificate to authenticate via 'insecure' cd data/ curl --insecure -O https://gannet.fish.washington.edu/seashell/bu-github/nb-2023/Cgigas/data/rna.fna ``` ```{bash} ## calling on the rna file, while renaming it under cgigas /home/shared/kallisto/kallisto \ index -i \ data/cgigas_roslin_rna.index \ data/rna.fna ``` ```{bash} ## the following code will download the sequence reads cd data wget --recursive --no-parent --no-directories \ --no-check-certificate \ --accept '*.fastq.gz' \ https://gannet.fish.washington.edu/seashell/bu-github/nb-2023/Cgigas/data/nopp/ ``` ```{bash} ## check directory and print pwd ``` ```{bash} ## the following code will find files, remove L001, runs quant() function on each, locates index file, writes output file, and create sub-directory. 40 threads for computation and single end reads #NOTE: make sure files are routed correctly cd data mkdir ../output/kallisto_01 find ../data/*fastq.gz \ | xargs basename -s _L001_R1_001.fastq.gz | xargs -I{} /home/shared/kallisto/kallisto \ quant -i ../data/cgigas_roslin_rna.index \ -o ../output/kallisto_01/{} \ -t 40 \ --single -l 100 -s 10 ../data/{}_L001_R1_001.fastq.gz ``` ```{bash} ## runs the abundance_estimates_to_matrix.pl script from the Trinity RNA-seq assembly software package to create a gene expression matrix from kallisto output files #NOTE: Use ../output/kallisto_01 as the output directory and prefix for the gene expression matrix file cd data perl /home/shared/trinityrnaseq-v2.12.0/util/abundance_estimates_to_matrix.pl \ --est_method kallisto \ --gene_trans_map none \ --out_prefix ../output/kallisto_01 \ --name_sample_by_basedir \ ../output/kallisto_01/D54_S145/abundance.tsv \ ../output/kallisto_01/D56_S136/abundance.tsv \ ../output/kallisto_01/D58_S144/abundance.tsv \ ../output/kallisto_01/M45_S140/abundance.tsv \ ../output/kallisto_01/M48_S137/abundance.tsv \ ../output/kallisto_01/M89_S138/abundance.tsv \ ../output/kallisto_01/D55_S146/abundance.tsv \ ../output/kallisto_01/D57_S143/abundance.tsv \ ../output/kallisto_01/D59_S142/abundance.tsv \ ../output/kallisto_01/M46_S141/abundance.tsv \ ../output/kallisto_01/M49_S139/abundance.tsv \ ../output/kallisto_01/M90_S147/abundance.tsv \ ../output/kallisto_01/N48_S194/abundance.tsv \ ../output/kallisto_01/N50_S187/abundance.tsv \ ../output/kallisto_01/N52_S184/abundance.tsv \ ../output/kallisto_01/N54_S193/abundance.tsv \ ../output/kallisto_01/N56_S192/abundance.tsv \ ../output/kallisto_01/N58_S195/abundance.tsv \ ../output/kallisto_01/N49_S185/abundance.tsv \ ../output/kallisto_01/N51_S186/abundance.tsv \ ../output/kallisto_01/N53_S188/abundance.tsv \ ../output/kallisto_01/N55_S190/abundance.tsv \ ../output/kallisto_01/N57_S191/abundance.tsv \ ../output/kallisto_01/N59_S189/abundance.tsv ``` ```{r} ## load and install necessary packages and rearrange some lines because it wont run properly BiocManager::install("DESeq2") library(DESeq2) library(tidyverse) install.packages("RColorBrewer") install.packages("pheatmap") library(pheatmap) library(RColorBrewer) library(data.table) if (!require("BiocManager", quietly = TRUE)) install.packages("BiocManager") ``` ```{r} getwd() ``` ```{r} ## read in the count matrix (cell-by-gene matrix where each cell entry represents the number of RNA reads) setwd("~/Claudia-Halibut/assignments /output") countmatrix <- read.delim("../output/kallisto_01.isoform.counts.matrix", header = TRUE, sep = '\t') rownames(countmatrix) <- countmatrix$X countmatrix <- countmatrix[,-1] head(countmatrix) ``` ```{r} ## round integers up to whole numbers for further analysis: #NOTE: 73,307 observations countmatrix <- round(countmatrix, 0) str(countmatrix) ``` ```{r} ## get DEGs based on Desication #NOTE: the function DESeqData..(), will not run without being in the same block as DESeq2 library. BiocManager::install("DESeq2") library(DESeq2) deseq2.colData <- data.frame(condition=factor(c(rep("control", 12), rep("desicated", 12))), type=factor(rep("single-read", 24))) rownames(deseq2.colData) <- colnames(data) deseq2.dds <- DESeqDataSetFromMatrix(countData = countmatrix, colData = deseq2.colData, design = ~ condition) deseq2.dds <- DESeq(deseq2.dds) deseq2.res <- results(deseq2.dds) deseq2.res <- deseq2.res[order(rownames(deseq2.res)), ] ``` ```{r} ## stop here for the night and assess data results tomorrow. 4/10/2025 deseq2.dds <- DESeq(deseq2.dds) deseq2.res <- results(deseq2.dds) deseq2.res <- deseq2.res[order(rownames(deseq2.res)), ] ``` ```{r} head(deseq2.res) ``` ```{r} ## Count number of hits with adjusted p-value less then 0.05 #NOTE: 607 condition desicated vs 6 control?? dim(deseq2.res[!is.na(deseq2.res$padj) & deseq2.res$padj <= 0.05, ]) ``` ```{r} ##Decipher this tmp <- deseq2.res # The main plot plot(tmp$baseMean, tmp$log2FoldChange, pch=20, cex=0.45, ylim=c(-3, 3), log="x", col="darkgray", main="DEG Dessication (pval <= 0.05)", xlab="mean of normalized counts", ylab="Log2 Fold Change") # Getting the significant points and plotting them again so they're a different color tmp.sig <- deseq2.res[!is.na(deseq2.res$padj) & deseq2.res$padj <= 0.05, ] points(tmp.sig$baseMean, tmp.sig$log2FoldChange, pch=20, cex=0.45, col="red") # 2 FC lines abline(h=c(-1,1), col="blue") ``` ```{r} #sent file to output, but double check tomorrow setwd("~/Claudia-Halibut/assignments /output") write.table(tmp.sig, "output/DEGlist.tab", row.names = T) ```