--- title: "Assign taxonomy" author: "Sarah Tanja" format: gfm toc: true toc-title: Contents toc-depth: 5 toc-location: left bibliography: "../microbiome_bibtex.bib" reference-location: margin citation-location: margin --- ```{r setup, include=FALSE} knitr::opts_chunk$set( echo = TRUE, # Display code chunks eval = FALSE, # Evaluate code chunks warning = FALSE, # Hide warnings message = FALSE, # Hide messages comment = "" # Prevents appending '##' to beginning of lines in code output ) ``` # Goals Assign taxonomy to all the feature table sequences # Load packages ```{r} library(knitr) library(dplyr) library(stringr) library(readr) library(reticulate) ``` # Get taxonomy classifier ```{r} # Specify the directory where you want to save the downloaded file output_directory <- '' # Download the file and save it to the specified directory wget.download('https://data.qiime2.org/2023.9/common/silva-138-99-515-806-nb-classifier.qza', out=output_directory) ``` # Activate qiime2 environment in R This is equivalent to `conda activate qiime2-2023.5` in the terminal but allows running qiime commands in r chunks with engine ='bash' throughout the quarto markdown doc. ```{r load-qiime-env, eval=TRUE} use_condaenv(condaenv = "qiime2-2023.5", conda = "/home/shared/8TB_HDD_02/stanja/miniconda3/condabin/conda") # Check successful env loading py_config() ``` > # classify reads qiime feature-classifier classify-sklearn --i-classifier ../training-feature-classifiers/silva-naive-bayes-classifier.qza --i-reads 250414_StonyCoral_270x200_representative-sequences.qza --p-n-jobs 40 --o-classification 250414_270x200_representative-sequences_taxonomy