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OPPORTUNITIES IN FUNCTIONAL GENOMICS: A PRIMER ON LAB AND

COMPUTATIONAL ASPECTS

STEVEN B. ROBERTS* AND MACKENZIE R. GAVERY

School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle,
WA 98105

ABSTRACT As computational and sequencing technologies continue to flourish, the barrier for those interested in

complementing traditional ecological and physiological studies with functional genomics is easier to overcome. Here, an

overview of transcriptome sequencing and DNA methylation analyses in shellfish is provided, primarily for those with

fundamental interests and training in a different domain. The approaches covered here can provide valuable information on

how organisms respond to their environment and also be used to evaluate evolutionary relationships. First, biological and

technological background is provided, highlighting studies in shellfish that have applied these approaches. This is followed by

practical methods and tools for conducting this work at the laboratory bench and in front of a computer. In an effort to provide

educational resources and the ability to update computational and analytical resources as they become available, a supplementary

repository for this work has been created and is available at https://github.com/sr320/fun-gen.
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BACKGROUND

When considering marine invertebrates whether in an eco-

logical, aquaculture, or culinary perspective, one does not often
consider the expression of genes and associated regulatory
mechanisms; however, for some disciplines this could be a valu-

able direction to expand and complement scientific endeavors.
Even for those interested in molecular biology, there is often
a steep learning curve from a clear fundamental understanding

to practical application. This is particularly the case for
functional genomics, a field that is increasingly shedding light
on numerous aspects of shellfish biology. In terms of ecology,

areas that could be studied using functional genomics ap-
proaches include adaptation, population structure, and species
interaction. From the physiological perspective, the focus of
this review, this would include understanding how fundamental

biology works (e.g., growth, reproduction, and immune re-
sponse). Combined, this information could be effectively ap-
plied in numerous ways including shellfish aquaculture,

resource management, and ecological modeling. Here, a short
introduction to gene expression and DNA methylation in
shellfish is provided, as well as practical advice on how to get

started.
This work focuses on ‘‘functional genomics’’ which are

approaches associated with the ‘‘expression’’ of the genome in
some manner. Briefly, there are portions of the genome (genes)

that can be transcribed, often then translated to proteins to
carry out fundamental processes. Specifically, there is a focus on
messenger RNA (mRNA), which is the RNA that is transcribed

from the genome where introns are excluded and a polyadeny-
lated tail is appended. There are numerous scientific questions
that can be addressed by examining mRNA expression pat-

terns, including providing a snapshot into environmental
response, identifying early signals of phenotypes, and charac-
terizing mechanisms of disease resistance. Gene expression

analysis can be used to address specific hypotheses, but also
can be a powerful tool for discovery and descriptive science. The

latter can easily form a basis for hypotheses that can be tested in
later experiments using genomic and nongenomic approaches.

There are a myriad of processes that can influence transcrip-

tional activity, including epigenetic mechanisms. Epigenetics is
a burgeoning field in nonmodel organisms that refers to
mechanisms that can alter expression in a heritable manner

without altering the underlying nucleotides themselves. Unlike
the nucleotides themselves, epigenetic mechanisms, including
DNA methylation, histone modifications, and noncoding
RNAs, are sensitive and responsive to environmental signals.

As such, epigenetic mechanisms have been proposed to be an
important link between the phenotype and environment, and
could transform how we consider adaptation depending on the

degree of heritability.
One could encapsulate functional genomics into the foun-

dation of what controls organismal physiology, including the

response to environmental stress. An additional component of
genomics is how alteration of nucleotides can alter a phenotype.
We will not explore aspects of genetic variation here, although

there are several reviews covering the topic in relation to
shellfish (D�egremont et al. 2015, Robledo et al. 2017). There
are also several comprehensive reviews on the application of
genomics in shellfish (Su�arez-Ulloa et al. 2013, G�omez-Chiarri

et al. 2015a, Sanmart�ın et al. 2016).

CURRENT STATE OF RESOURCES AND TECHNOLOGY

Ultimately, having a completely sequenced genome of an
organism can greatly increase the ability to study the expression

and variation; however, the number of species where the
genomes have been fully assembled to this level of complete
chromosomes is limited. One notable example where this has

been accomplished is Crassostrea virginica (GenBank accession
GCA_002022765, G�omez-Chiarri et al. 2015b). Given the
complex nature of genome arrangement in many marine in-

vertebrates, genome assembly is not a simple task and requires
significant resources in both computing hardware and bioin-
formatic expertise. The technology is advancing at such a rate
that it would be challenging to comment on ideal sequencing

and associated bioinformatic approaches for genome assembly.
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Generally, sequencing the genome of a shellfish species will
often involve identifying an individual with limited genome

complexity (e.g., inbred), generating sequencing libraries con-
stituted of variable fragment lengths, and relying on software to
assemble the many pieces of the genome together in the correct
order and orientation. If genomes are available for your species

of interest, this could certainly improve downstream analysis
and increase options for interpretation.

Some of the first mollusc genomes to be sequenced were the

California sea hare, Aplysia californica, and the owl limpet,
Lottia gigantea. The L. gigantea genome is 348 Mb, has a sub-
stantial number of repetitive elements (21% of the assembled

genome), and about 23,800 genes (Simakov et al. 2013). The
Pacific oyster, Crassostrea gigas, was the first bivalve genome
published with 11,969 scaffolds (Zhang et al. 2012). A total of
28,027 genes were predicted. In early 2017, a number of new

bivalve genomes were published including Patinopecten yes-
soensis (Wang et al. 2017) and genomes of a deep-sea vent/seep
mussel (Bathymodiolus platifrons) and a shallow-water mussel

(Modiolus philippinarum) (Sun et al. 2017). Another popular
bivalve, the eastern oyster (Crassostrea virginica), has also been
sequenced (G�omez-Chiarri et al. 2015b) with data available

ahead of publication (C. virginica isolate RU13XGHG1–28,
GenBank accession: GCA_002022765).

A primary entry into genomics and examining the organis-

mal response is describing the set of coding (mRNA) and
noncoding products expressed in the genome. Sequencing
technology is at a place where generating the full set of
expressed mRNA can be readily accomplished. The approach,

termed RNA-Seq, refers to the use of high-throughput or next-
generation sequencing (e.g., Illumina HiSeq, PacBio Sequel) to
sequence the full complement of mRNA in a given cell/tissue

type. The precursor to this approach would be sequencing
Expressed Sequence Tags using Sanger sequencing technology.
It is the evolution of sequencing technologies beyond the

Sanger-based that has made all aspects of genomics more
accessible.

In practical terms, to identify expressed portions of a ge-
nome, one would isolate this fraction from tissue or cells based

on attributes of eukaryotic coding transcripts (e.g., poly-
adenylated 3# end) and/or size fractionation. Details of this
are provided in the following section. The limits of what can be

derived from a single transcriptome should be considered;
however, there are a number of valuable products that could
be generated from anRNA-seq experiment including targets for

quantitative polymerase chain reaction analysis, basis for
comparative evolutionary studies, nucleotide diversity charac-
terization, and motif analyses. Examples of early transcriptome

studies using Expressed Sequence Tags include those focusing
on immune function in Crassostrea gigas (Gueguen et al. 2003)
and Crassostrea virginica (Jenny et al. 2002). In one of the early
uses of ‘‘next-generation’’ sequencing efforts in shellfish,

Hedgecock et al. (2007) used massively parallel signature
sequencing to examine gene expression patterns in two partially
inbred and two hybrid larval populations. There are numerous

studies in shellfish that provide valuable transcriptomic resources
using RNA-seq technology (Timmins-Schiffman Friedman 2012,
Zhang et al. 2012, N�u~nez-Acu~na & Gallardo-Esc�arate 2013,

Moreira et al. 2014, Pauletto et al. 2014, Teaniniuraitemoana
et al. 2014, Valenzuela-Mu~noz et al. 2014, Valenzuela-Miranda
et al. 2015).

Epigenetic mechanisms, such as DNA methylation, are key
to our understanding of how environment impacts phenotype,

as they can contribute to gene regulatory activity and be
influenced by the environment. DNA methylation refers to
the enzymatic addition of a methyl group to a cytosine residue
in DNA, which occurs almost exclusively at CpG dinucleotides

(i.e., a cytosine located 5# of a guanine) in animals. The
enzymatic machinery supporting DNA methylation includes
a family of DNA methyltransferases (DNMT) including the

maintenance methyltransferase DNMT1 and the de novo
methyltransferases DNMT3A/3B. In plant and mammalian
studies, it has been shown that DNA methylation is sensitive to

external factors includingmaternal behavior (Weaver et al. 2004),
nutrition (Dolinoy et al. 2007), and photoperiod (Azzi et al. 2014).

Most of the studies on DNA methylation in shellfish have
focused on Crassostrea gigas, as the available genome signifi-

cantly improves effectiveness of data analysis. One primary
means to identify DNAmethylation in any given cell or tissue is
to use bisulfite treatment of DNA, which converts unmethy-

lated cytosines to uracil, whereas methylated cytosines are
maintained as cytosine. Informatically, this sequence informa-
tion would be compared with a reference genome to determine

which cytosines are methylated. This approach, generally
termed ‘‘bisulfite sequencing,’’ can be performed on whole
genomes (whole genome bisulfite sequencing) or reduced rep-

resentation genomes (reduced representation bisulfite sequenc-
ing). Genome reduction techniques can be cost effective in that
more individuals can be sequenced for the same cost because
only a small fraction of the genome is being sequenced. DNA

methylation can be characterized at the fragment level using
antibody approaches without bisulfite treatment, whereas
bisulfite treatment will offer nucleotide-level resolution.

Alternatives to bisulfite sequencing approaches that apply
high-throughput sequencing include methylated DNA immu-
noprecipitation (MeDIP-Seq) and methylation-sensitive cut

counting techniques, such as EpiRADseq (Kurdyukov &
Bullock 2016, Schield et al. 2016, Dimond et al. 2017).
Techniques such as EpiRADseq are particularly useful for
nonmodel species lacking genomic resources.

DNAmethylation was examined genome-wide in the Pacific
oyster where it was reported that 15%of CpGs were methylated
in a somatic tissue (Gavery & Roberts 2013), compared with

60%–70% inmammals. In oysters, as in other invertebrates, the
methylated fraction of the genome tends to consist of gene
bodies, whereas other genomic regions exhibit less methylation.

In the Pacific oyster, high levels of methylation in gene bodies
(and putative promoter regions) are associated with high levels
of expression (Gavery & Roberts 2013, Olson & Roberts 2014).

Interestingly, genes with limited methylation in oysters have
variability in exon-specific expression across tissue types, in-
dicating that hypomethylation may be associated with in-
creased plasticity (Gavery & Roberts 2014). Similar results

have been observed in scleractinian reef corals (Dixon et al.
2014, Dimond & Roberts 2016). Whereas more studies are
needed to quantify this relationship, there are significant

implications for improving resilience in shellfish—particularly
if DNA methylation patterns are heritable. There are few
studies on heritability of methylation patterns, although

Rondon et al. (2017) have recently shown parental herbicide
exposure influences progeny DNA methylation patterns in
oysters.
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PRACTICAL ASPECTS

In this section, practical considerations for getting into

functional genomic analyses are provided. To reiterate, the
target audience here is the student and scientist with primarily
ecology-based training and limited training in molecular bi-
ology. This section is organized starting with living cells and

ending with data visualization, with a focus on transcriptomic
sequencing and sequence-based DNA methylation analyses.

Experimental Considerations

As with any experiment, replication, number of individuals,
effect size, and resources available need to be considered. One

resource to consider might be the availability of current
genomic resources. For instance, is the genome for your species
of interest available? This is not a necessity for many of the

applications, as RNA-Seq data can be assembled de novo;
however, for some DNA methylation characterization ap-
proaches (e.g., bisulfite sequencing) a draft or complete genome

is critical for analysis.
For functional genomics studies, the tissue and/or cell type

also needs to be carefully considered for biological relevance.

Unlike the DNA, where all cell types contain the same
nucleotide information, gene expression and associated gene
regulatory process provide a biological snapshot in time and
space for a particular cell type. For example, to determine how

a shellfish responds to a pathogen, one option would be to
isolate the primary immune cells, hemocytes, at multiple time
points post infection and compare expression and/or methyla-

tion differences in exposed organisms versus controls. Likewise,
if the goal of the study were to characterize how water
conditions alter regulatory mechanism associated with repro-

duction, gonad tissue would be a primary tissue to target for
analysis.

Once cells or tissue(s) from an organism are identified for
functional genomic analysis, samples will need to be preserved

to limit degradation. RNA is more labile than DNA, thus
proper extraction and preservation are critical. Acceptable
options, often dictated by proximity to resources, include

immediate –80�C freezer storage, liquid nitrogen, or a commer-
cial preservative such as RNAlater (Ambion). Total RNA can
be extracted using commercial products (e.g., TriReagent;

Sigma-Aldrich, Trizol; ThermoFisher) followed by further
purification of mRNA using a technology that targets the
poly-A 3# region of eukaryotic genes. Extraction of DNA for

sequence-based analysis of DNA methylation would also need
similar attention to target cells or tissue(s), with extraction of
DNA possible with commercial kits (e.g., E.Z.N.A. Mollusc
DNA kit; Omega Bio-Tek). Once DNA or mRNA is isolated, it

can be used for construction of libraries that can be sequenced
on high-throughput sequencing platforms. The number of
companies and associated sequencing technologies has seen

a turnover in the past decade with new technologies in devel-
opment. As of the writing of this review, Illumina is the primary
company involved in sequencer manufacturing and for simplic-

ity will be the basis for technology and sequence data formats
discussed here.

Library Preparation and Sequencing

Regardless of application, libraries generated for high-

throughput sequencing have the same basic architecture;

DNA or cDNA fragments (often referred to as ‘‘inserts’’) are
ligated to adapters on both ends. The adapters (typically

around 60 bp) contain regions to bind primers for the sequenc-
ing reaction and oftentimes have index regions so that multiple
samples can be pooled (and later demultiplexed) based on
unique indices. Inserts can be generated by sonication to

produce random fragments (typically used for whole genome
sequencing), or via digestion (e.g., heated, cationic digestion of
RNA in the case of RNA-seq). Enyzmatic digestion of DNA

enables high coverage of a reduced representation of the
genome (e.g., reduced representation bisulfite sequencing). In
these cases, a subsequent size-selection step typically follows to

only include a small range of fragments (;200 bp), which is
important to reduce sequencing bias due to variability in insert
size. Commercial kits (e.g., Illumina TruSeq) can be purchased
to generate libraries in-house. In addition, university-based core

facilities or companies can be contracted to construct libraries
and perform sequencing. It is advisable to contact the sequenc-
ing facility and/or experienced bioinformatition to determine

important parameters such as sequence read coverage, sample
size, pooling options, and budget considerations.

There are a few common variations on the type of sequence

data that is generated, usually designated by read length (e.g.,
100 bp is a common read length) and either paired-end or single-
end reads (sequencing both ends of the insert or just one,

respectively). These different options can have impacts on
sequencing costs, turnaround time, and data yields. These
parameters should be considered during the experimental de-
sign process. Again, it is recommended to consult with a se-

quencing facility to understand the differences in these options
as they apply to your specific experiment or goals.

Bioinformatics

Once the sequencing run is finished, there will be a large

amount of data in the form of text files (e.g., fastq files) that will
need to be processed to gain biological information. Data
management is one of the most common issues encountered
in bioinformatics, which includes moving, storing, opening, and

documenting files. Some minimal computational proficiency is
beneficial before delving into analysis of large amounts of
sequence-based data. Foremost is a basic understanding of

the command line and manipulating files in this manner. Some
great resources to gain proficiency in this area include Software
Carpentry Courses (software-carpentry.org) and a number of

other publications (Wilson et al. 2014, Buffalo 2015). Other
valuable considerations for any type of computational analysis
are reproducibility and version control, both of which are

covered well in the resources mentioned. Reproducibility is
valuable for the benefit of others, but more importantly for your
own workflow. A hallmark of data analysis in this field,
particularly when just starting out, is the need to rerun analysis

with minor adjustments in parameters. This often requires time
and computational resources given the size of the data files.
Fully documenting your work will allow for precise compari-

sons of the output of similar approaches, which in turn will
allow you to assess proper workflows. The nature of the data
and tools associated with genomics lends itself to sharing, and

as a field, genomics has been in the forefront of open science
practices. One primary reason for this is the realization that
within these massive sequence files are answers to questions and
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unrealized discoveries that often the investigator might not even
consider. In addition, there is great value in building on prior

work to advance our understanding of physiological responses.
For instance, a basic transcriptome generated from gonad tissue
of a shellfish at different maturational stages could be used by
other laboratory groups to identify genetic markers, develop

quantitative polymerase chain reaction assays, design primers
to identify homologs in other species, and create an in silico
reference for shotgun proteomic analysis. There are now several

exciting avenues for early publishing of genomic data products
including online notebooks, preprint servers (e.g., biorxiv), and
data descriptor publications (e.g., Scientific Data—Nature

Publishing Group). Jupyter Notebooks (jupyter.org) and
GitHub (github.com) are excellent means to properly document
analysis and facilitate open science.

The next section covers the computational aspects of

sequence data analysis from the raw data to visualization. Some
examples of useful software are provided, however a more
complete list of software and online platforms for data analysis

are provided in Table 1, along with the respective citations.

Sequence Read Quality and Trimming

An initial sequence file will be in the fastq format. Fastq files
are text based with nucleotide and quality information. Soft-

ware packages, including FastQC, are good for initial quality
assessment of the sequence data. It is important to understand if
the sequencing reads have been pretrimmed by the sequencing

facility or if they are raw sequences. Trimming typically includes
trimming low quality bases and adapter sequences and removal
of short sequences. Some sequencing facilities may perform

these trimming functions before providing the data, whereas
others will provide untrimmed sequences. It is important to
know if/how the sequences you receive from the sequencing
facility have been trimmed or not as it is very important to trim

sequences before downstream analyses. Table 1 includes pack-
ages that perform these trimming functions.

Sequence Read Assembly

In instances where there is no genome available for your

target species, a first step for gene expression–based projects

TABLE 1.

Software and resources useful in functional genomic data analyses.

Raw data quality control

FastQC (Andrews 2010)—quality metrics for high-throughput sequencing runs

Sequence trimming

Trimmomatic (Bolger etal. 2014)—adapter and quality trimming

TrimGalore! (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore)—wrapper for cutadapt (Martin 2011)—adapter and quality

trimming, extra functionality for bisulfite sequencing

Transcriptome sequence assembly and characterization

Trinity (Grabherr et al. 2011)—de novo assembly with downstream analysis capability

Trinotate (Haas et al. 2013)—annotation suite designed for automatic functional annotation of transcriptomes

Dammit! (Scott 2017)—a simple de novo transcriptome annotator

Transrate (Smith-Unna et al. 2016)—de novo transcriptome assembly quality analysis

Sequence read mapping

Bowtie(2) (Langmead et al. 2009)—alignment tool for high-throughput sequencing

BWA (Li & Durbin 2009)—alignment tool for high-throughput sequencing

STAR (Dobin et al. 2013)–alignment tool for high-throughput sequencing to a reference genome

TopHat(2) (Kim et al. 2013)—splice junction mapper for RNA-Seq reads (uses Bowtie)

BSMAP (Xi & Li 2009)—bisulfite sequencing specific alignment

Bismark (Krueger & Andrews 2011)—bisulfite sequencing specific alignment (uses Bowtie)

Samtools (Li et al. 2009)—SAM/BAM manipulations: conversion, sorting, indexing etc.

Differential gene expression and differential methylation analysis

RSEM (Li & Dewey 2011)—alignment based transcript abundance estimation

Kallisto (Bray et al. 2016)—alignment-free transcript abundance estimation

EdgeR (Robinson et al. 2010)—R package for differential expression analysis

DeSeq (Anders & Huber 2012)—R package for differential expression analysis

Methylkit (Akalin et al. 2012)—R package for analysis of DNA methylation profiles

MethylExtract (Barturen et al. 2013)—generates methylation maps and detects sequence variation

MACAU (Lea et al. 2015)—differential methylation analysis for bisulfite sequencing data

Platforms for genomic analyses and visualization

Galaxy (Goecks et al. 2013, Afgan et al. 2016)—web-based platform for accessible, reproducible, and transparent analysis and visualization

Integrated genome viewer (Robinson et al. 2011, Thorvaldsd�ottir et al. 2013)—visualization tool for interactive exploration of large, integrated

genomic datasets

CoGe (Lyons & Freeling 2008, Lyons et al. 2008)—online system for making the retrieval and comparison of genomic information and sequence

data

Cyverse (Merchant et al. 2016)—cyberinfrastructure for enabling data to discovery for the life sciences

Bedtools (Quinlan & Hall 2010)—suite of utilities for comparing genomic features

Samtools (Li et al. 2009)—suite of programs for interacting with high-throughput sequencing data

Cytoscape (Shannon et al. 2003)—software platform for visualizing complex networks

Revigo (Supek et al. 2011)—web service that visually summarizes gene ontology terms

SQLShare—(Howe et al. 2011)—database-as-a-service platform designed to facilitate data sharing and collaborative analysis
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would be to assemble a reference transcriptome using software
such as Trinity (Grabherr et al. 2011). Assembly of the reads is

required to confidently assign each of the short sequencing

reads to a particular gene. The output of an assembly is a fasta

format file with nucleotide information contained in ‘‘contigs.’’

Contigs are longer, contiguous lengths of sequences that have

been compiled from the short sequencing reads. A primary

challenge once a transcriptome is produced is attempting to

assign identification (annotation) to the putative genes. There

are a number of robust software packages for annotation and

assessment of transcriptome assemblies (see Table 1). These

packages rely on algorithms that compare unknown sequences

to known sequences. A widely used algorithm for this type of

comparison is BLAST (Altschul et al. 1990) and is available

online and as a stand-alone version. When annotating a new

transcriptome, BLASTwould need to be run locally (stand-alone

version) using the command line. A tutorial on installing and

using BLAST is available in the supplemental online repository.

Sequence Read Mapping

When performing a comparative RNA-Seq experiment, that
is looking at gene expression differences under specific condi-

tions, the quality-trimmed, short sequence reads are typically

aligned to a ‘‘reference,’’ which could be the newly assembled

transcriptomes, a reference transcriptome or a genome if avail-

able. There are many alignment tools designed specifically to

handle high-throughput sequencing reads (see Table 1). Some

programs are designed specifically if a reference genome is

available (e.g., TopHat, STAR). For particular applications,

such as bisulfite sequencing for DNA methylation, bisulfite-

specific aligners (e.g., Bismark and BSMAP) need to be used as

the sequences are heavily cytosine depleted. There are a number

of parameters that need to be considered for mapping, and

unfortunately, there is no simple recipe that can be followed.

Read the manual of the software you are working with to

understand the parameters. It is important to note that default

parameters are not always best particularly for nonmodel

species. Parameters that need to be considered include how

many mismatches between a read and a reference are accept-

able, what should happen to reads that map to more than one

location in the reference, and what should be carried out with

paired-end reads when the pairs are not identified.
A primary output of mapping sequence reads is a sequence

alignment/map (SAM) or binary alignment/map (BAM) file.

These files contain alignment information about each read,

location of alignment to the reference, and quality and unique-

ness of the alignment. Basic data that you would extract from

alignment files include expression information, which for RNA-

Seq, is typically ‘‘counts’’ (or number of reads) that map per

gene. Note that there are also alignment-free methods for

transcript quantification (e.g., Kallisto). For bisulfite sequence

data, percent methylation for each CpG dinucleotide can be

extracted from the alignment file by counting the number of

times a cytosine or thymine is observed at a particular locus.

There are a number of packages designed to take an alignment

file as input to extract counts or proportion methylation (see

Table 1). In addition, Samtools is a useful suite of tools for

sorting, indexing, and converting between SAM/BAM format,

some or all of whichmay be required depending on downstream

applications.

Differential Gene Expression and Differential Methylation Analysis

Commonly, an end goal of a gene expression or DNA
methylation experiment is to perform differential expression

or differential methylation analysis where data are statistically
modeled to identify biologically relevant differences between
experimental groups. There are a number of tools designed to

identify differences in high-throughput sequencing data, and
examples of commonly used software are listed in Table 1. As in
all aspects of informatics, care should be taken to understand

the way the data are being normalized, modeled, and statisti-
cally interpreted.

Beyond identification of differentially expressed genes or
differentially methylated cytosines (or regions) are possibilities

to annotate or summarize genes and regions in a broader
biological context. For differential methylation analysis, it is
common practice to annotate differentially methylated cyto-

sines or regions according to genes or other functional genomic
elements in close proximity in the genome. This type of spatial
analysis is relatively easy to perform using genome feature file

formats (e.g., bed, gff) and tools such as Bedtools. Another
commonly used approach to look at broader biological func-
tions of gene set lists is referred to as gene set enrichment

analysis. Enrichment analysis includes when differentially
expressed or differentially methylated gene lists can be statisti-
cally analyzed to see if genes within a biological function or
pathway are enriched in response to the experimental variable

of interest (see Table 1 for software suggestions). For additional
information regarding considerations for differential gene
expression analysis using RNA-Seq, see Conesa et al. (2016),

and for differential methylation analysis using bisulfite sequenc-
ing see Lea et al. (2017).

Visualizations

Often, there is value in taking the large amount of
nucleotide data and revealing biologically meaningful results

in a visual manner. Visualization of the data should happen at
different steps in the analysis pipeline. For instance, it is
helpful to see sequence quality information (e.g., FastQC) and

visualize sequence reads mapping back to a reference sequence
(e.g., Integrated genome viewer). Several software packages
mentioned previously have visualization built in (e.g., Trinity,

TopHat, Methylkit). There are numerous general use visual-
ization packages in R (R Core Team 2014) [e.g., ggplot2
(Wickham 2010), superheat (Barter & Yu 2015)] that can be
used to visualize gene expression/DNA methylation data in

the form of principal component analyses and heatmaps.
Heatmaps, in particular, can also be valuable for visualizing
the amount of variation within groups. Functional genomics

has many tools for looking past the single gene level to
networks of genes that may be regulated in response to
a particular condition. Resources such as The Database for

Annotation, Visualization, and Integrated Discovery can
provide information on regulatory networks that may be
associated with a set of differentially expressed or differen-

tially methylated genes, and allow for better biological in-
terpretation of the data. Particularly, working with shellfish,
caution should be taken when relying on pathway analysis as
this will commonly be based on model species and make

assumptions regarding similarity of gene function across
species.
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CONCLUSIONS

Sequencing technology, software, and consequently, an un-
derstanding of functional genomics is constantly changing. Thus,
although this review attempts to outline practical aspects along
with the current knowledge, it is likely that both will be different

in the next decade. The primary goal herewas to outline potential
value in exploring the functional genomics side of shellfish,
specifically expression of genes along with the epigenetic mech-

anisms associated with gene regulation. For shellfish particularly,
the epigenetic component has significant potential for expansion
as there is a firm foundational knowledge of primary processes,

with several outstanding questions. In addition, many shellfish
experience heterogeneity in environmental conditions, and hav-

ing a better understanding of epigenetic processes will provide

insight into organismal- and population-level responses. Recent

examples of this include the role of DNA methylation in oyster

development (Riviere et al. 2017) and a study describing how

DNA methylation status influences invasive species success

(Ardura et al. 2017). Going forward, our understanding of

biological and ecological processes will improve at the molecular

level, which will ultimately allow scientist to better predict

ecosystem impacts in our changing world.
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