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These Two Mice are Genetically Identical and the Same Age

) Learn.Genetics

GENETIC SCIENCE LEARNING CENTER

Nature AND Nurture

Chromosome 3 Pairs :
b While pregnant, both of their mothers were fed
Bisphenol A (BPA) but DIFFERENT DIETS:

3-year-old twins
- The mother of this mouse The mother of this mouse
~f——— Yallow shows where the received a normal mouse | received a diet supplemented

twins have epigenetic tags diet with choline, folic acid,
in the same place. betaine and vitamin B12
50-year-old twins
—a———— Red and green show where
the twins have epigenetic

tags in different places.

A a8

Queen Bee Larvae: Queens are raised in specially constructed cells
called "queen cups,” which are filled with royal jelly.

High Nurtured

Queen Worker

These mothers come from a long line of inbred rats, so their genomes are highly | [] AUDIO
similar. But they care for their pups very differently.

http://learn.genetics.utah.edu
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landscape and function is very different than

what is observed in vertebrates
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Figure | Frequency distribution of methylation ratios for CpG dinucleotides in oyster gill tissue. A
total of 2,625,745 CpG dinucleotides with >5x coverage are represented.

Gavery and Roberts (2013), PeerJ, DOI 10.7717/peerj.215
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Genome-wide profiling of DNA methylation and gene
expression in Crassostrea gigas male gametes

Claire E. Olson and Steven B. Roberts*
School of Aguatic and Fishery Sciences, University of Washington, Seattle, WA, USA

04 0.6

Proportion Methylation



Epigenetic S _ | | |
variation 8 7,642,816 CpG dinucleotides with
- at least 5x coverage were examined
b4
<
— Bisulfite conversion .
o
N |
= ¥ i ey,
S
bisulfite Jl \V g
/o BN o~ 8 -_
s i _
PCR l '

: i
8

[ T T T T 1
0.0 0.2 04 0.6 0.8 1.0

Proportion Methylation

frontiers in ORIGINAL RESEARCH ARTICLE
publshed: 17 June 2014
PHYSOLOGY doi: 10.3389/fphys 2014.00224

Genome-wide profiling of DNA methylation and gene
expression in Crassostrea gigas male gametes

Claire E. Olson and Steven B. Roberts*
School of Aguatic and Fishery Sciences, University of Washington, Seattle, WA, USA



Epigenetic
variation

»éllj_ ttl!’m clc'_l;%alu’wl Ic’_m 11 ;l 111 L EIG'_H!WJ1I.5!I-III CGI_I!(.)lﬁJLLISI ccll_lléliJJ!a? co|_|15|o1ln!e HH cm_“!ﬁﬁlso co|_1!5|15192

[ > > < < _<§ > > | S B EEN EEEEEEE T »

maosaic

associated with gene bodies



gigas (v9, id22701

Crassostrea : unmasked

JBrowse File View Help x9trac
0 100,000 200,000 300,000 400,000 500,000 600000 700,000 800,000 800,000 1,000,000 1,100,000 1,200,000 1,300,000
; Sequence
IS Q Q & Q scaffold1179] v |scaffold1179:361000 Go = &
=== GC Conter
400,000 450,000 500,000 550,000 600,000
= - T ' Features
1 GC Content
” CDS
' [T ' L gene
() Features MRNA
F L A exp
2 Bi
1“
1 -
BiGill Methylation
o
q 4
e . o IR ST g RUTRTHTEE T T TG 1y Il 1 G 1S U IR Tl ORI
BiGill RNAseq }"li ‘ !' | | {i U] i H R I '»"‘ ' il I i T ‘ lél“'l; I ‘:'Fi { | : | ‘
| QN i ‘ '} . | ‘ :I " I ! ‘ { { ‘l | H l q | il '} { : || " 1 ”w | if | ‘:
i i ‘ bt j |t [! “" ! Lt | 1 |1 | r
IR (R il 1" 1) 1 { t It |, & ‘1? P I \ A ' | \
AU i ‘ [ | | | 4 b i 1! l it
e | I I e B Ml i | Rt O ‘. filt |
‘ | | J bl i"::" [ 11 ‘ " | [ Wik | ‘i it Bt L ! lf' R ' 4 ll i ’ | :

bodies =~ 3

FOUNDATION

g‘é Questions, problems, suggestions? Contact “SaSSO C i ated VV it h g e n e

MOORE ()




Crassostrea gigas (v9, id22701): unmasked
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In silico approach
® Principle:
® Methylated cytosines aremhighly mutable
Co>T
® Methylated regions of DNA are depleted of CpG
dinucleotides over evolutionary time (CpG to TpQG)

R, CPaosevec Ihigh= unmethylated
CpG expected
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Indication of family-specific DNA methylation patterns in
developing oysters
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gene expression.
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Another possiblility Is that

. differentially methylated loci may
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! phenotypic variation by

iIncreasing transposable element
mobility.
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Proportion of CpG within a genomic region (%)
20

Indication of family-specific DNA methylation patterns in
developing oysters

Fam DMLs Claire E. Olson , Steven B. Roberts
doi: http://dx.doi.org/10.1101/01283 |
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Indication of family-specific DNA methylation patterns in
. developing oysters

Fam DMLs Claire E. Olson , Steven B. Roberts
doi: http://dx.doi.org/10.1101/01283 |
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IPython Notebook for downloading and analyzing data
the manusript: "Indication of family-specific DNA
methylation patterns in developing oysters"

bioRix preprint - http://dx.doi.orqg/10.1101/012831

To execute the IPython Notebook in its entirety you will need:

» |Python - install instructions

« BSMAP - install instructions

» bedtools - install instructions

e R - install instructions

« rpy2 (interface to R from Python) - install instructions




=il Summary
» Sparsely (~16 %) methylated genome

 Limited variation between cell type

* Gene body methylation correlated with
function

* Evidence indicates DMRs are predominant
In transposable elements
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Error bars: 95% CI
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A context dependent role for
¢ DNA methylation in bivalves |

S ¥4 Mackenzie R. Gavery and Steven B. Roberts
: on date 7 January 2014

In spemes that expenence a dlverse range of
environmental conditions, processes have evolved to
increase the number of potential phenotypes in a
population in order to iImprove the chances for an
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..... = 2 alternative start sites
X S sequence mutation
==== - change AA, premature stop codon

conventional transcription
=== transient methylation

e — gl alternate transcript

exon skipping

Roberts and Gavery 2012
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Very new data

Environmental impact (Estrogens)
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® = high methylation
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* 96 regions that were hypermethylated in EE2
— 90 are in genes
— 52 of these cross exon/intron boundary another
— 32 are in introns
— 6 are just in exons

e 287 regions that were hypomethylated in EE2
— 256 are in genes
— 138 cross exon/intron boundary

— 114 are in introns only and
— 4 are just in exons



Very new data
Environmental impact (Estrogens)
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Very new data
Environment and gene expression
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Very new data
Environment and gene expression
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Very new data
Environment and gene expression
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Very new data
Environment and gene expression
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Very new data
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Very new data
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not in this experiment
not even consistent methylation changes at loci level
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more guestions....
interesting but what is controlling?



Considerations

Germline methylation encoded with a pattern
oroduct of evolutionary forces
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Germline methylation encoded with a pattern
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Considerations

Lifespan

l or less?
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nvironmental perturbation
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Germline methylation encoded with a pattern



Could this provide a “memory”

Consideration for subsequent exposure?

Lifespan

l or less?
E

nvironmental perturbation
impacts DNA methylation
(predominantly demethylation)

Possibly incorporate
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Transgenerational
Impact

Germline methylation
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