Genomics on the Half Shell Environmental Epigenetics, Open Science, and the Oyster

Steven Roberts Associate Professor University of Washington School of Aquatic and Fishery Sciences robertslab.info @sr320

OSU IB Seminar - May 4, 2015

Open Science

- You are free to Share!
- Our lab practices open notebook science IP[y]: IPython Interactive Computing wikispaces

wikis for everyone

OpenNotebookScience **@ONScience** FOLLOWS YOU

Updates from *#openscience* notebooks, brought to you by @openscience. Start yours at onsnetwork.org/joinons/ S onsnetwork.org

 Data, Preprints, Proposals, Lab Meetings, Web Cams, Slidedecks

> These slides plus links @ github.com/sr320/talk-osu-2015

Physiology

Physiology

Physiology

Physiology

How fundamental processes work in aquatic species

Transcriptomes Proteomes

Physiology

Physiology

Oliver Bossdorf,¹* Christina L. Richards² and Massimo Pigliucci³

Oliver Bossdorf,¹* Christina L. Richards² and Massimo Pigliucci³

Genome Resources

Epigenetics

short RNAs

DNA Methylation

Epigenetics

Learn.Genetics

Queen Bee Larvae: Queens are raised in specially constructed cells called "queen cups," which are filled with royal jelly.

Nature AND Nurture

 Yellow shows where the twins have epigenetic tags in the same place.

 Red and green show where the twins have epigenetic tags in different places.

While pregnant, both of their mothers were fed Bisphenol A (BPA) but DIFFERENT DIETS:

The mother of this mouse received a **normal mouse** diet

The mother of this mouse received a diet **supplemented** with choline, folic acid, betaine and vitamin B12

These mothers come from a long line of inbred rats, so their genomes are highly similar. But they care for their pups very differently.

AUDIO

http://learn.genetics.utah.edu

Absent in several model organisms

Oysters?

mosaic

associated with gene bodies

associated with gene bodies

frontiers in PHYSIOLOGY

ORIGINAL RESEARCH ARTICLE published: 17 June 2014 doi: 10.3389/fphys.2014.00224

Genome-wide profiling of DNA methylation and gene expression in *Crassostrea gigas* male gametes

Claire E. Olson and Steven B. Roberts*

School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA

frontiers in PHYSIOLOGY

ORIGINAL

Genome-wide profiling of DNA methylation and gene expression in *Crassostrea gigas* male gametes

Claire E. Olson and Steven B. Roberts*

School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA

associated with gene bodies

Why are only a subset of genes methylated?

associated with gene bodies

Roberts and Gavery 2012

Roberts and Gavery 2012

in silico approach

- Principle:
 - Methylated cytosines are highly mutable

 Methylated regions of DNA are depleted of CpG dinucleotides over evolutionary time (CpG to TpG)

 $C \rightarrow T$

Epigenetic variation

Roberts and Gavery 2012

Roberts and Gavery 2012

Jay Dimond

Acropora palmata

Acropora cervicornis
Jay Dimond

Acropora palmata

Jay Dimond

Acropora palmata

Germline DNA methylation in five coral transcriptomes

mosaic

associated with gene bodies based on gene function

explanation?

CpG methylation clustering

Sperm & Larvae (72h & 120h)

Epigenetic

variation

New Results

Indication of family-specific DNA methylation patterns in developing oysters

Family and Developmental Variation

CpG methylation clustering

Inheritance

New Results

Indication of family-specific DNA methylation patterns in developing oysters

Claire E. Olson , Steven B. Roberts doi: http://dx.doi.org/10.1101/012831

Epigenetic

variation

Family and Developmental Variation

CpG methylation clustering

Epigenetic variation

Indication of family-specific DNA methylation patterns in developing oysters

20

0

Another possibility is that differentially methylated loci may provide advantageous phenotypic variation by increasing transposable element mobility.

Indication of family-specific DNA methylation patterns in developing oysters

Assumes some form of random process

occurring during gametogenesis?

Indication of family-specific DNA methylation patterns in developing oysters

Epigenetic variation

Fam DMLs

IPython Notebook for downloading and analyzing data the manusript: "Indication of family-specific DNA methylation patterns in developing oysters"

bioRix preprint - http://dx.doi.org/10.1101/012831

To execute the IPython Notebook in its entirety you will need:

- · IPython install instructions
- BSMAP install instructions
- bedtools install instructions
- R install instructions
- rpy2 (interface to R from Python) install instructions

- Sparsely (~16 %), mosiac methylated genome
- Gene body methylation correlated with function
- DNA methylation patterns are inherited
- DMRs are predominant in transposable elements

Function?

PeerJ

Predominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusc

Mackenzie R. Gavery and Steven B. Roberts

School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA

PeerJ

Predominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusc

Mackenzie R. Gavery and Steven B. Roberts

School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA

Gene expression

Theory: **Does not** influence expression level but rather alternative splicing.

Predominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusc

Mackenzie R. Gavery and Steven B. Roberts

School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA

BRIEFINGS IN FUNCTIONAL GENOMICS. VOL 13. NO 3. 217-222

A context dependent role for DNA methylation in bivalves

Mackenzie R. Gavery and Steven B. Roberts Advance Access publication date 7 January 2014

In species that experience a diverse range of environmental conditions, processes have evolved to increase the number of potential phenotypes in a population in order to improve the chances for an individual's survival.

Roberts and Gavery 2012

promoter exon intron exon

transcript

Roberts and Gavery 2012

Stochastic Variation A context dependent role for DNA methylation in bivalves

Mackenzie R. Gavery and Steven B. Roberts Advance Access publication date 7 January 2014

Gene expression

> Epigenetic variation

housekeeping

response to change

Targeted Regulation

A context dependent role for DNA methylation in bivalves

Mackenzie R. Gavery and Steven B. Roberts Advance Access publication date 7 January 2014

≯

Very new data Environmental impact (Estrogens)

- 96 regions that were hypermethylated in EE2
 - 90 are in genes
 - 52 of these cross exon/intron boundary another
 - 32 are in introns
 - 6 are just in exons
- 287 regions that were hypomethylated in EE2
 - 256 are in genes
 - 138 cross exon/intron boundary
 - 114 are in introns only and
 - 4 are just in exons

Very new data Environmental impact (Estrogens)

Exposure results in significant hypomethylation

stochastic or targeted?

Oyster	Hypo- methylated	Hyper- methylated
2	7224	2803
4	6560	3587
6	7645	4044

stochastic or targeted?

Oyster	Hypo- methylated	Hyper- methylated	No obvious association
2	7224	2803	with genome feature including <i>differentially</i>
4	6560	3587	expressed
6	7645	4044	yenes

stochastic or targeted or ..?

Oyster	Hypo- methylated	Hyper- methylated	Changes in methylation
2	7224	2803	are more prevalent
4	6560	3587	in introns, repeats, and
6	7645	4044	transposable elements.

Cuffdiff geneexp.sig.gtf

not in this experiment

not even consistent methylation changes at loci level

more questions.... interesting but what is controlling?
Take Home

Oyster genome has a fantastic degree of diversity contributing to phenotypic plasticity & adaptation potential.

Take Home

Oyster genome has a fantastic degree of diversity contributing to phenotypic plasticity & adaptation potential.

- large gene families
- very high mutation rate (snp/50bp)
- numerous exons per gene (potential for alternatives)
- genome full of repeats region
- high number of transposable elements
- lack of methylation of transposable suggest mobility
- family variation of methylation
- limited methylation environmental response genes is associated with spurious transcription

- inheritance of epigenetic marks as mechanism of improved adaptation

Next Steps

Dig into the heat-shock data

Transposable Elements

Consider other epigenetic process

credit: Flickr, Crea

Very new data Heritability Plasticity Local Adaptation

Genetics versus Epigenetics

Common Garden Experiment

Very new data Heritability Plasticity Local Adaptation

Open Science

web-native scholarship

Sharing

Photo credit: Flickr, Creative Commons, speechless

Open Data

Open Methods

Open Data

Sharing raw data

Public Sigenae Contig Browser Oyster e.g. BQ426804.p.cc

Go

Based on Ensembl release 40 - Aug 2006

Use Ensembl to...

Browse the Crassostrea gigas contigs database

Search Contig Browser

- 🏶 Data mining [BioMart]
- 🛑 Export data
- 🗯 Download data
- Digital Differential Display
- 🕚 Venn Diagrams

Docs and downloads

- About Contig Browser
- Contig Browser data

Other links

- Home
- Sigenae
- Agenae

Assembly The Oyster EST contig browser aims to produce and maintain an automatic annotation of Oyster EST libraries. This database <u>GigasDatabase</u> was initiated within the frame of the <u>AquaFirst</u> European project, it now gathers EST sequences

produced by a <u>Marine Genomics Europe</u> project (GOCE-CT-2004-505403) and a <u>Genoscope project</u>. <u>GigasDatabase</u> is regularly updated in the context of the ANR project "Gametogenes" (ANR-08-GENM-041).

About the *Crassostrea gigas* contigs

Annotation

Contigs were annotated searching sequence homologies against following databases:

- UniProtKB/Swiss-Prot Release 2011_03 of 08-Mar-2011
- RefSeq Protein Index Blast of 09-Jan-2011
- Pfam Release 24.0 of Jul-2009
- Sigenae Oyster Contigs V8
- RefSeq RNA Index Blast of 09-Jan-2011
- TIGR Fugu FGI 3.0

Statistics

Assembly:	pcg8, Mar 2011
Number of base pairs (Contigs):	67,875,621
Number of sequences (EST/mRNA):	1,013,570
Total number of contigs:	82,312
Number of singlets:	20,148

e.g. BO426804.p.cg.8, snp_EW777925_683

Polymorphism:	Mar 2011
Number of putative SNPs:	29,493
Number of contigs including SNP:	10,392

Example Data Points

Jump directly to the example entry points:

Contig: BQ426804.p.cg.8

SNP: <u>snp_EW777925_683</u>

database

Example

 Public Sigenae Contig Browser Oyster
 Search el Oyster: Anything ‡

 e.g. B0426804.p.cg

e.g. B0426804.p.ca.8, snp_EW777925_683

Based on Ensembl release 40 - Aug 2006

Use Ensembl to...

Browse the Crassostrea gigas contigs database

Search Contig Browser

About the *Crassostrea gigas* contigs

Table 1. Summary of assembly and RNA-Seq statistics for de novo assembly and reference mapping (GigasDatabase

v8).

			De novo assembly	Reference	ce mapping
	Assembly	Mapped reads	8,407,963	29,107,7	760
		Unmapped reads	36,944,698	16,244,9	901
I		Contigs	18,510	77,433	cell adhesion
		Average contig length	276	554	transport cell cycle proliferat
		Average contig coverage	62	16	stress
		Contigs annotated to GO Slim	3931	7296	signal
(RNA-Seq	Differentially expressed genes	2991	427	transduction RNA metabolism
		Enriched GO biological process	15	3	protein metabolism DNA metabolism

nome

🛑 Sigenae

- Agense

Contigs were annotated searching sequence homologies against following databases:

Characterizing short read sequencing for gene discovery and RNA-Seq analysis in *Crassostrea gigas*

Mackenzie R. Gavery, Steven B. Roberts *

- Sigenae Oyster Contigs V8
- RefSeq RNA Index Blast of 09-Jan-2011
- TIGR Fugu FGI 3.0

Statistics

cell-cell signaling

nental ses

Assembly:	pcg8, Mar 2011
Number of base pairs (Contigs):	67,875,621
Number of sequences (EST/mRNA):	1,013,570
Total number of contigs:	82,312
Number of singlets:	20,148
Polymorphism:	Mar 2011
Number of putative SNPs:	29,493
Number of contigs including SNP:	10,392

Example Data Points

Jump directly to the example entry points:

Contig: <u>BQ426804.p.cg.8</u>

SNP: <u>snp_EW777925_683</u>

Raw Data

1) As sequencing facility provdes data, files are downloaded to our local NAS (owl), in the root nightingales directory. http://owl.fish.washington.edu/nightingales/

2) The Nightingales Google Spreadsheet is updated.

3) Update the Nightingales Google Fusion Table with new information from the Nightingales Google Spreadsheet. This is accomplished by:

- deleting all rows in the Nightingales Google Fusion Table (Edit > Delete all rows)
- Importing data from the Nightingales Google Spreadsheet (File > Import more rows...)

4) Once metadata is included in the Google Fusion Table Nightingales, respective data files are moved to subdirectory labelled with first letter of genus followed by species ie C_gigas. Check url in Nightingales Fusion table to ensure it is accurate.

Querying Disparate Datasets

OYSTERGEN.ES

PACIFIC OLYMPIA

Querying Disparate Oyster Datasets | qDOD

The goal of this project is to produce a web-based interface for querying and visualizing *Crassostrea gigas* genomic datasets. This site serves as a portal for documenting our efforts, providing user access, as well as a means to gather feedback.

Preliminary Phase: Aggregating Datasets

Using SQLShare as a platform we have already begun to aggregate and format data. Anyone can view (and contribute) using the tag "qdod". Below is a table describing some of the relevant datasets. "Snapshot" provides you with a screenshot of the data in SQLShare and "Direct Link" brings you directly to the data in SQLShare. You can also open the table in a new webpage.

qDOD online			
qDOD_Cgigas_gene_fasta	sequence fasta file. Exon only.	http://goo.gl/ogCxl https://sqlshare.e	sc
qDOD_Zhang_Gil_gene_RNA-		https://sqlshare.e	sc
seq	Gill RNA-seq data (gene based)	http://goo.gl/8oISR seq	
qDOD_Zhang_Mgo_gene_RNA-	Male Gonad RNA-seq data (gene	https://sqlshare.e	sc
seq	based)	http://goo.gl/6buVz seq	

OYSTERGEN.ES /query

PACIFIC OLYMPIA

eScience Institute

Querying Disparate Oyster Datasets | qDOD

The goal of this project is to produce a web-based interface for querying and visualizing *Crassostrea gigas* genomic datasets. This site serves as a portal for documenting our efforts, providing user access, as well as a means to gather feedback.

Preliminary Phase: Aggregating Datasets

Using SQLShare as a platform we have already begun to aggregate and format data. Anyone can view (and contribute) using the tag "qdod". Below is a table describing some of the relevant datasets. "Snapshot" provides you with a screenshot of the data in SQLShare and "Direct Link" brings you directly to the data in SQLShare. You can also open the table in a new webpage.

qDOD online		
qDOD_Cgigas_gene_fasta	sequence fasta file. Exon only.	http://goo.gl/ogCxl https://sqlshare.esc
qDOD_Zhang_Gil_gene_RNA-		https://sqlshare.esc
seq	Gill RNA-seq data (gene based)	http://goo.gl/8oISR seq
qDOD_Zhang_Mgo_gene_RNA-	Male Gonad RNA-seq data (gene	https://sqlshare.esc
seq	based)	http://goo.gl/6buVz seq

SOLSHARE

oa

Your datasets	Tagged Datasets qdod	
All datasets	Name	Sharing /
Shared datasets	BiGO_Methylation_oysterv9_GFF GFF format file with percent methylation (score) information for	ê 000
Recent activity 293	bsmap gff gonad methylation oyster qdod sperm	< sr32U
Recently viewed »	qDOD_gene_length Sequence lengths of all genes in the oyster genome. This only includes trans fasta gene length oyster qdod	< sr320
Upload dataset New query	BiGill_methratio_v9_A.txt Methylation ratio information (MBD-Seq) from oyster gill tissue. Combin bsmap epigenetic gill mbd methylation oyster qdod	< sr320
YOUR TOP VIEWED	qDOD_Protein_Sequences Amino acid sequence for all proteins (v9) fasta oyster protein qdod	< sr320
qDOD_scaffol 35 ovster v9 mB 28	qDOD_oyster_gene_exon_number Number of exons for all genes in oyster genome (v9) exon oyster qdod	< sr320
oyster_v9_CD 23 BiGO betty pl 16	Zhang_etal_SuppTable14 S14. Transcriptomic representation of genes (RPKM) at different develor oyster qdod zhang	< sr320
qDOD_Cgigas 16	qDOD_Cgigas_gene_fasta Tabular format of Cgigas gene sequence fasta file Derived using Data: fasta oyster qdod	< sr320
POPULAR TAGS	qDOD_Zhang_Gil_gene_RNA-seq Paired end Gill RNA-Seq data from Zhang et al 2012. Exported gill oyster qdod rna-seq zhang	< sr320
oyster 45	Mgo_RNAseq_transcript Paired end Male Gonad RNA-Seq data from Zhang et al 2012 Exported f oyster qdod rna-seq zhang	< sr320
bioinformatics 21	qDOD_Zhang_Mgo_gene_RNA-seq Paired end Male Gonad RNA-Seq data from Zhang et al 2012 gonad oyster qdod rna-seq sperm zhang	< sr320


```
SELECT cgslim.CGI_ID,Description,evalue,SPID,GOID,term,GOSlim_bin,sequence
FROM [sr320@washington.edu].[qDOD_Cgigas_GO_GOslim] cgslim
LEFT JOIN [sr320@washington.edu].[qDOD_Cgigas_gene_fasta] cgf
on cgslim.CGI_ID = cgf.CGI_ID
Where term LIKE '%methyl%'|
OR
term LIKE '%histone%'
```

0

What genes are associated with <u>epigenetics</u>? What genes are associated with <u>immune response</u>? Which genetic markers are associated with <u>fast growth</u>? <u>resilience?</u> disease tolerance?

U	Publica	tions Interactions Pathways Gene Ontol	ogies Cp	Structural Elements G statistics
stati	ta Tables	Gene Annotations	er species genomes Sequence N	Transpositionents Actifs
	Web	platform		tes
	forcol	laboration,		
	analy	yses, and		
dynamic Da Bu	Sharing ata Table roupings	is essentia	Genetic Variation	
	iic Des	RNA-Sequencing	Single Nucleotide Poly	
	T Genom Jata Ty	Expressed Sequence Tag	Amplified Frag S Length Polymor	
		Expression Microarray	s Simple Sequence	

Open Methods

Open Methods

reproducibility

Data Acquisition and Analysis

Open Notebook Science

This repository Search		Explore Gis
sr320 / nb-2015		
My Lab Notebook http://nbvi	ewer.ipython.org/github/sr32	20/nb-2015/tree/
② 29 commits	₽ 1 branch	\otimes 0 relea
🕞 29 commits	I branch b-2015 / +	⊚ 0 relea
© 29 commits ℃ branch: master - П Cv-bsmap	₽ 1 branch ab-2015 / +	⊚ 0 relea
 ⊙ 29 commits ♥ branch: master → Π Cv-bsmap Steven Roberts authored 4 days 	₽ 1 branch b-2015 / + ego	⊗ O relea
© 29 commits ♥ branch: master → Π Cv-bsmap @ Steven Roberts authored 4 days ■ .ipynb_checkpoints	₽ 1 branch bb-2015 / + ago TE	⊗ 0 relea

http://genefish.wikispaces.com/

... there is a URL to a laboratory notebook that is freely available and indexed on common search engines. It does not necessarily have to look like a paper notebook but it is essential that all of the information available to the researchers to make their conclusions is equally available to the rest of the world.

-Jean-Claude Bradley

- open notebooks
- -wiki
- -evernote
- -IPython

open notebooks **-wiki** -evernote

-IPython

home

Wiki Home

A Members

🔎 Search

Recent Changes Pages and Files

PEN Notebook

Lab Notebooks

Sam's Notebook

Mac's Notebook

Emma's Notebook

Claire's Notebook

Steven's Notebook

Halley's Notebook Katie's Notebook

Brent's Notebook Doug's Notebook

Charles' Notebook

Jessica's Notebook Ahmed's Notebook

Etilet's Notebook Hannah's Notebook Edit 🖉 0 🕂 218 ..

This wiki has been developed as a resource for lab personnel and students to access information and publish research activities using an <u>open notebook science</u> a based system. All lab notebooks can be accessed via the side menu. The Roberts Lab is in the <u>School of Aquatic and Fishery Sciences</u> within the <u>College of Environment</u> at the <u>University of Washington</u>. More information can be found concerning <u>research</u>, <u>personnel</u>, and <u>outreach</u> on the <u>Roberts Lab Official Webpage</u>.

Laboratory Reference Material

Laboratory Protocols

- How-to
- Emergency Contact Information
- UW Lab Safety Manual
- <u>UW Biosafety Manual</u>
- Chemical Inventory ₽

Lab Activity and Communication

- Lab Meetings
- SPIAOT: Small Project Ideas and other tasks
- IPUS: Information for Prospective Undergraduate Students
- Lab Calendar

Data Repositories

• The Facle 2

Labcam	Connect	Access	Funding
	0w320 206.685.3742	M ¥ 23	030

open notebooks **-wiki** -evernote

-IPython

Sam's Notebook

<u>20130729</u>

DNA Isolation - Claire's C.gigas Development Isolated

Lab Notebooks

Sam's Notebook Mac's Notebook Emma's Notebook Claire's Notebook Steven's Notebook Halley's Notebook Katie's Notebook Brent's Notebook Ooug's Notebook Charles' Notebook Jessica's Notebook Ahmed's Notebook Hannah's Notebook

Featured Pages crassostreome

More Pages

PCR - Hexokinase Partial CDS

Performed PCR using the primers CG_HK_CDS_2132-2158 (SRID: 1521) and Cg_Hk_CDS_ C.gigas cDNA (from DATE).

Master mix calcs and cycling params are here.

Samples were run in duplicate.

Results:

home

Recent Changes Pages and Files

PEN Notebook

Lab Notebooks

Sam's Notebook

Mac's Notebook

Emma's Notebook

Claire's Notebook

A Members

🔎 Search

Edit 🖉 0 🐽 218 ..

This wiki has been developed as a resource for lab personnel and students to access information and publish research activities using an <u>open notebook science</u> \Im based system. All lab notebooks can be accessed via the side menu. The Roberts Lab is in the <u>School of Aquatic and Fishery Sciences</u> \Im within the <u>College of Environment</u> \Im at the <u>University of Washington</u> \Im . More information can be found concerning <u>research</u> \Im , <u>personnel</u> \Im , and <u>outreach</u> \Im on the <u>Roberts Lab Official Webpage</u> \Im .

Laboratory Reference Material

- Laboratory Protocols
- How-to
- Emergency Contact Information
- <u>UW Lab Safety Manual</u>
- <u>UW Biosafety Manual</u>
- Chemical Inventory ₽

Lab Activity and Communication

- Lab Meetings
- SPIAOT: Small Project Ideas and other tasks
- IPUS: Information for Prospective Undergraduate Students
- Lab Calendar

Data Repositories

• The Facle 2

Demand

PIEPERFEI		Cherry Carry	THERE BEING THERE A
Research in our lat on characterizing physiological respo marine organisms	hocuses inses of to	We are continually looking for new ways to engage and share with students, acientists, and the general	- Congratis to Mackanzie Gavery, who wom a Studien Spotight Award at Aquaculture 2013
environmental che Integrative approa	rgs. Using ches.we	public. Everyone can follow us on tumble, facebook youtube, tuittar withoaccas ficial out	 "Papers" page rebranded "Products".
adaptive potential nucleotide to organ	from the nismal	figsture. Web-based resources we have developed	- Claire Elix launches her website- check it out! (and i now on twitter)
this includes invest	gating the	the Colton Shellfah Collection	Authin
functional relation genetics, epigenetic transcription	ship of by and	crassostraome, Research Notes on Ocean Acidification and systemgenies.	

Labcam	Connect	Access	Funding
	0w320 206.685.3742	M ¥ 2	080

EVERNOTE

sr320 has shared a notebook with

Lab Notebook

open notebooks -wiki

Lab Notebook

Transition to IPython

Bismark: BiGill

Bismark: BiGo

Betty BiGO

Fixing MG Bedtools

QPX Revisions 5/3/13 ALL Files

5/3/13 Files for IGV

10.000

at http://sr320.github.io/ipython_nbi

/Volumes/NGS\ Drive/NGS\ Raw\

/bismark -n 1 -l 50 ./genome/ -1

Lifting Coordinates within genome.

QPX - Making a Genome Browser

5/17/13 ./bismark -n 1 -l 50

BiGill - combined notebook pages

5/21/13 Running on Hummingbird d-128-95-149

A ACTGATA L002 R1.fastg -- path to bowtie

219:bsmap-2.74 sr320\$./bsmap -w 1000 -a

8/2/13 As of July 2013 I have transitioned my lab notebook to IPython. My New Lab Notebook can be found

/genome/ /Volumes/Bav3/Software/bismark_v0.7.12/filtered_174gm

5/17/13 Running Genome Prep on genefish, and greenbird Genome

prep complete will try robertsmac:bismark v0.7.12 sr320\$

5/16/13 Summary of Successful flow in bold- ./bsmap -a

/Volumes/betty/filtered_174gm_A_NoIndex_L006_R1.fastq.gz -b /Volumes/betty/filtered_174gm_A_NoIndex_L006_R2.fastq.gz -d

5/15/13 { "metadata": { "name": "MG_bedtools" }, "nbformat": 3,

"metadata": {}, "source": "MG: I would like to know how many BiGO - Running Gill methratio through Galaxy 5/9/13 https://main.g2.bx.psu.edu/u/sroberts320/w/ methratio-processing-imported-from-uploaded-file

5/7/13 The Ensembl API. The final example I described above (converting between coordinate systems within a single genome assembly) can be accomplished with the Ensembl core API. Many

http://bio533.wikispaces.com/QPX+Genome+Annotation Min length

"nbformat_minor": 0, "worksheets": [{ "cells": [{ "cell_type": "raw"

-evernote -IPython

C10013	77	+	GTCCC	0.000	1.00	0	1
C10013	78	+	TCCCT	0.000	1.00	0	1
C10013	79	+	CCCTT	0.000	1.00	0	1
C10013	82	-	TTGAT	0.000	2.00	0	2
C10013	85	+	ATCCC	0.000	1.00	0	1
C10013	86	+	TCCCT	0.000	1.00	0	1
C10013	87	+	CCCTT	0.000	1.00	0	1
C10013	93	+	AACTG	0.000	1.00	0	1
C10013	97	-	CCCTT	0.000	1.00	0	1
C10013	100	+	TTCAT	0.000	1.00	0	1
C10013	103	-	ATGCA	NA	.00	0	1
C10013	111	-	ATCTC	0.0	0.0	0	1
C10013	113	-	CTCTA	0.00		0	1
C10013	116	-	TAGAT	0.000	2.0		2
C10013	120	+	TTCTC	0.000	1.00		1

open notebooks -wiki

-evernote -**IPython***

IP[y]: Notebook

BiGo_methratio Last

Last saved: Jul 30

File	Edi	t	View	In	sert	Cell		Kernel	Help
	ж	6	Û	Ť.	Ļ	Ŧ	±		Markdown 💠

DNA methylation of Oyster Sperm based on

methratio file in SQLShare https://sqlshare.escience.washington.edu/sqlshare#s=query/sr32

In [38]: from pandas import *

read data from data file into a pandas DataFrame
CDSmr = read_table("/Volumes/web/cnidarian/BiGo_methratio_boop_
#sep="\t", # what character separates each column?

```
#na_values=["", " "], # what values should be consi
header=None)
```

```
CDSmr[5].hist(bins=50);
```

```
#Axis limits are changed using the axis([xmin, xmax, ymin, ymax
plt.axis([0, 1, 0, 90000]);
plt.title('CDS');
```


	IF	P[y]: Notebook			TJGR_OysterGenome_IGV Last saved					31 5:34 AM	
	File	Ed	it Viev	v Inse	rt Cell	Kernel	Help				
		*	6 0) t	↓ T ±		Markdow	vn 🛊			
	In	[44]:	!sed 's	/mRNA/pr	comoter/g'	<td>/web/cnida</td> <td>rian/TJGR_Pr</td> <td>omoter_1k5p.</td> <td>gff> /Vo</td> <td>olumes/web</td>	/web/cnida	rian/TJGR_Pr	omoter_1k5p.	gff> /Vo	olumes/web
	In	[45]:	lhead /	Volumes	web/cnidar:	ian/TJGR_H	Promoter_1	k5p_b.gff			
			C16582	GLEAN	promoter	38	6 395	0.555898	в –		ID=C
			C17212	GLEAN	promoter	1	30	0.999572	2 +		ID=C
			C17316	GLEAN	promoter	1	29	0.555898	B +	•	ID=C
			C17476	GLEAN	promoter	25	8 491	0.998941	7 –	•	ID=C
			C17998	GLEAN	promoter	38	8 559	1		ID=	CGI_10000
			C18346	GLEAN	promoter	1	173	1	+ .	ID=	CGI_10000
			C18428	GLEAN	promoter	54	7 611	0.555898	в –	•	ID=C
I			C18964	GLEAN	promoter	65	9 714	0.999572	2 –	•	ID=C
In []:	#join	in SQLS1	hare							ID=C
In [45]: 1python /Users/sr320/sqlshare-pythonclient/tools/singleupload.py -d OA_enrich2 /											
		proces	sing chu	unk line	0 to 51 (0	.00206899	642944 s e	apsed)			
pushing /Volumes/web/cnidarian/mod_chart_B1049AF0BD891379525818063.txt Cr parsing C8BE2D77 finished OA_enrich2								rassostrea			
In [46	5] :	lpytho	on /Users	s/sr320/	sqlshare-py	thonclien	t/tools/fe	etchdata.py -	-s "SELECT *	FROM	
<pre>In [47]: !head /Volumes/web/cnidarian/OA_enrich2_join_SPID.csv</pre>											
Category,Term,Count,%,PValue,Genes,List Total,Pop Hits,Pop Total,Fold Enrichment ,evalue,Description GOTERM_BP_FAT,GO:0045449~regulation of transcription,8,8.98876404494382,0.092168 7272727,1,0.998517222392313,76.9925811614,CGI_10000058,Q2KJJ0,6E-16,Pre-mRNA-pro GOTERM_BP_FAT,GO:0045216~cell-cell junction organization,4,4.49438202247191,0.00											

fasta2slim / fasta2slim.ipynb /

Fasta2Slim

This IPython notebook is intended to serve as a structured means to annotate sequences using UniProt/SwissProt database. The notebook can be easily modified to personal preferences. As developed, the notebook requires the user has the following software installed ...

- IPython
- NCBI Blast
- SQLShare Python Client

Instructions for use.

In a working directory of your choosing place query fasta file, naming as query.fa. Edit the cell below, providing the path to said working directory.

Identify the location of the blast database you would like to use and indicate path in the cell below.

Identify the location of your sqlshare-pythonclient/tools and indicate path in the cell below.

Change the input to the usr variable to reflect your SQLShare user account.

In [2]: #Location Variables

```
wd="~/Desktop/test/"
```

db="/Volumes/Bay3/Software/ncbi-blast-2.2.29\+/db/uniprot_sprot_r2013_12"

sqls="~/sqlshare-pythonclient/tools/"

usr="sr320@washington.edu"

In [254]: !head {wd}query.fa

IP[y]: Notebook fasta2slim Last Checkpoint: Jan 05 15:31 (autosaved)

File Edit View Insert	Cell Kernel He	р				
	Run Run and Select Below		Cell Toolbar: None \$			
Fasta2Slim	Run All					
This IPython notebook is personal preferences. As	Run All Above Run All Below		uctured means to annotate sequences using UniProt/Sw equires the user has the following software installed			
IPythonNCBI Blast	Cell Type Current Output All Output					
 SQLShare Python Cli 						

Instructions for use.

In a working directory of your choosing place query fasta file, naming as query.fa. Edit the cell below, providing th

Identify the location of the blast database you would like to use and indicate path in the cell below.

Identify the location of your sqlshare-pythonclient/tools and indicate path in the cell below.

Change the input to the usr variable to reflect your SQLShare user account.

```
In [2]: #Location Variables
```

```
wd="~/Desktop/test/"
```

db="/Volumes/Bay3/Software/ncbi-blast-2.2.29\+/db/uniprot_sprot_r2013_12"

sqls="~/sqlshare-pythonclient/tools/"

```
usr="sr320@washington.edu"
```

In [2]: !head {wd}query.fa

>PiuraChilensis_v1_contig_1

In [3]: #number of sequences
 !fgrep -c ">" {wd}query.fa

282

Blast

```
In [4]: !blastx \
  -query {wd}query.fa \
  -db {db} \
  -max_target_seqs 1 \
  -max_hsps 1 \
  -outfmt 6 \
  -evalue 1E-05 \
  -num_threads 2 \
  -out {wd}blast sprot.tab
```

Number of matched sequences:

In [5]: !wc -l {wd}blast_sprot.tab

211 /Users/sr320/Desktop/test/blast_sprot.tab

```
In [6]: !tr ' ' '\t" <{wd}blast sprot.tab> {wd}blast sprot sql.tab
        !head -1 {wd}blast sprot.tab
        !echo SQLShare ready version has Pipes converted to Tabs ....
        !head -1 {wd}blast sprot sql.tab
        PiuraChilensis v1 contig 3
                                        sp|Q6P9A1|ZN530 HUMAN
                                                                 33.33
                                                                                 61
                                                                         105
                        1118
                825
                                414
                                        516
                                                1e-07
        3
                                                         57.4
        SQLShare ready version has Pipes converted to Tabs ....
        PiuraChilensis v1 contig 3
                                                                         33.33
                                                Q6P9A1 ZN530 HUMAN
                                                                                 105
                                        sp
                                                516
        61
                3
                        825
                                1118
                                        414
                                                         1e-07
                                                                 57.4
```

Joining in SQL Share

In [7]: !python {sqls}singleupload.py \
 -d _blast_sprot \
 {wd}blast_sprot_sql.tab

processing chunk line 0 to 211 (0.000264167785645 s elapsed)
pushing /Users/sr320/Desktop/test/blast_sprot_sql.tab...
parsing 983DD315...
finished _blast_sprot

```
In [8]: !python {sqls}fetchdata.py \\
    -s "SELECT Column1, term, GOSlim_bin, aspect, ProteinName FROM [{usr}].[_b
    last_sprot]md left join [samwhite@washington.edu].[UniprotProtNamesReviewe
    d_yes20130610]sp on md.Column3=sp.SPID left join [sr320@washington.edu].[S
    PID and GO Numbers]go on md.Column3=go.SPID left join [sr320@washington.ed
    u].[GO_to_GOslim]slim on go.GOID=slim.GO_id where aspect like 'P'" \
    -f tsv \
    -o {wd}GOdescriptions.txt
```

Plot GoSlim terms

In [10]: pylab inline

Populating the interactive namespace from numpy and matplotlib

In [11]: cd {wd}

/Users/sr320/Desktop/test

In [13]: gs.groupby('GOSlim_bin').Column1.count().plot(kind='barh', color=list('y')
)
savefig('GOSlim.png', bbox_inches='tight')

Plot GoSlim terms

In [10]: pylab inline Populating the interactive namespace from numpy and matplotlib In [11]: cd {wd} This repository Search /Users/sr320/Desktop/test che625 / olson-ms-nb In [12]: from pandas import * gs = read table('GOdescriptions.txt') github In [13]: gs.groupby('GOSlim_bin').Column1.count().plot(kind='barh' savefig('GOSlim.png', bbox inches='tight')

IPython Notebook for downloading and analyzing data the manusript: "Indication of family-specific DNA methylation patterns in developing oysters"

bioRix preprint - http://dx.doi.org/10.1101/012831

To execute the IPython Notebook in its entirety you will need:

- IPython install instructions
- BSMAP install instructions
- bedtools install instructions
- R install instructions
- rpy2 (interface to R from Python) install instructions

Plot GoSlim terms

In [10]: pylab inline

Populating the interactive namespace from numpy and matplotlib

In [11]: cd {wd}

/Users/sr320/Desktop/test

III README.md

IPython Notebooks and data supplemental to the manuscript: "Up in arms: Immune and nervous system response to sea star wasting disease"

The repository includes IPython notebooks (.ipynb file) that can be downloaded locally and interactively executed. The code in the IPython notebook eimd_analysis.ipynb will process data such that figures in the manuscript are reproduced (in theory).

Description of Files

- eimd_analysis.ipynb IPython notebok that can be interactively executed locally or viewed online designed so that user can replicate all analysis. Requires several dependancies (see below). nbviewer version
- eimd_data-only.ipynb IPython notebok that can be interactively executed locally or viewed online designed so that user can simply explore data files. Only requires IPython. noviewer version
- data/Phel_transcriptome.fasta P hel coelocytes transcriptome. Contains xxxx contigs from de novo assembly.
- data/Phe1 countdata.txt Tab-delimited text file with read count data from 6 P hel RNA-seq libraries, 3 treated and 3 control libraries.

Open Science Philosophy

Transparency with limited effort will try just about anything

Biology

Environment

Molecular

Data Analysis

eScience

iPlant Galaxy

Notebooks

Rationale

Platforms

Open Science

Data

everything else...

start them young

20,076

Acknowledgements

Mackenzie Gavery Claire Olson Sam White Brent Vadopalas Jake Heare Jay Dimond

Bill Howe Dan Halperin

slides, data & more @ github.com/sr320/talk-osu-2015