{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Calculating CpG ratio for the *Porites astreoides* transcriptome" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This workflow calculates CpG ratio, or CpG O/E, for contigs in the *Porites astreoides* [transcriptome](https://dl.dropboxusercontent.com/u/37523721/pastreoides_transcriptome_july2014.zip). CpG ratio is an estimate of germline DNA methylation.\n", "\n", "This workflow is an extension of another IPython notebook workflow, `Past_blast_anno.ipynb`, that generates an annotation of the same transcriptome. This workflow assumes that you have created the directories and files specified in the annotation workflow." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/Users/jd/Documents/Projects/Coral-CpG-ratio-MS/data/Past\n" ] } ], "source": [ "cd .data/Past" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ ">GCKDGN101CF7JK gene=GCKDGN101CF7JK\n", "GCAGTTCACATGACCCGAGGCTAGGAGATCCCATGAGATAGCACAGTGCAAGCGTGACTCATTGCACATGTGCTTGCAACGCGACTGGCGTCTTCTCGACGAGCTCCTGAGTATTTTCACAAGATTGGCCCCTATTTCTCAATGCCGTTGGGAAAATTATTGGGCCGTAGAAAACAGAATATCACACTAATGTAGTTGGTAGGTTAGCAAAACCAGTACCAGC\n", "\n", "number of seqs =\n", "30740\n" ] } ], "source": [ "#fasta file\n", "!head -2 Past.fasta\n", "!echo \n", "!echo number of seqs =\n", "!fgrep -c \">\" Past.fasta" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ ">GCKDGN101CF7JK\n", "GCAGTTCACATGACCCGAGGCTAGGAGATCCCATGAGATAGCACAGTGCAAGCGTGACTCATTGCACATGTGCTTGCAACGCGACTGGCGTCTTCTCGACGAGCTCCTGAGTATTTTCACAAGATTGGCCCCTATTTCTCAATGCCGTTGGGAAAATTATTGGGCCGTAGAAAACAGAATATCACACTAATGTAGTTGGTAGGTTAGCAAAACCAGTACCAGC\n", ">GCKDGN101CAZ1A\n", "GCAGTTGACTGTCATTTCCCAGGGGACGATACAGTGCCACCACAATGACGTACTTACCGCTGGGGCTTGGCGCTGCCCCCATGCCTAGCTGATTGGTGTCTCTCCATATCATCTGTGTGAAGTGCTTTACTTTGTCATTGAGAACTGGATAGGAGAAGCTGTACGCTTTCTTCTCGCCGTACCATATAGTCGTGGCCTTGAGAGGTGCTCTCTGCAGATCGTGCCATATCTGTGCAATGTTTTCACCCGCTGGCTCGCCTTGGAAAGTGGACGGGTCACTGGCTACAGACTCTGCTATATTCTGCGCTTGTTCTGCTAGAGTGGCATTCCATTGTAAAGGGNGGACGTGATGAAGTGATCTGA\n", ">GCKDGN101ANI4S\n", "TGTCCTGTCTTTCTTCGTTGTTCTTCTTGACCTGCTATACACATTAAACCACTCTGGGTGATGATCCATCTTCTCCGACATGAGAGCCACGCGGCTCATGAAACCAAATGCCTGGTTGAAATTCTTGAACTTAAACTCTTTGTAAATGGCATCACGGCCTTCGACATCAGTCCACCCTGAGGACTTCAGAGGCTGAACCTCTGTTTCCCTTTCC\n", ">GCKDGN101BV6U3\n", "GCAGTATAGTCGTAGTTGATAGCGCATGGGTAGCATGTCTGGTGCGCAGGGCGCCAGTGCATATCCCACATAAACTTATTTGGCGATGTGTCAATGTATGACGTAAATTCGTCAAACGTTGGCCCAGAACACTCAACGCAACTGTCTGTTTTTCCCGCAGAACGACGAACCTTATTGACTATATCTCTGCCTAGCTTATTATACAATTGAGTCGTTTTTCCGACGAACTTGTCCCTATAGGCTGATAACAGTCTTTCGAAAGGTTCCCAAACAAAGA\n", ">GCKDGN101BQG8Q\n", "GCAGTATAACAGTAAATTGTTTCTACTCTCCACTTACCAAAGGAAACCATCAATATGACTGCCGTTTCTTTCTTTCAGTTCCATGTCTCGGTTACATTGAGCGCAGATCAGCGGGTTTGCCAAAAGAGATCGTTGTTGAAGCCACTGAATCAAATTGAGGCGTGGGCCCCGTTGCAAATCAATACATTCGTAAAGATCCATCTCCTTTATCATACGATGGTGCAAACGTCACTTAAATCGACTACCAAAATAGGGAGTAAAAACAGACCAGCTTATTCGAGGGTGGAGAAGTCCTATTAATCAACAATTCTTATGTATATGCGTAAGAGAAGACCGACTCCAGTGAACTACGTTTTGATTGGTTGAGGGTGATGTGGTGAAATAATTCTCATGTGAGCTCGTTTTGTTATCA\n", ">isotig29249\n", "TAGGAAGTGCTTTGAAACAAGCTATAGCAGTGCCAATACAATACAGTCGAACCTGtATTAAGCGGACACCCTCTATTAAGCGGACAGTAGCCGAAGTCCCAAAATTaCTTGAAATGAAACCTTTATtAAGCGGACACCTCTACTAAGCGGACGCGGACACCTAAAAaGTACCTGAAATGGTCATTTCTATtGTTTCCAACCTGTATTAAACGGACACTTGTAATTAAATTCCACCACCCAACgTgctAG\n", ">isotig32730\n", "AaTGGaCACGcTtCTTGTTTAAGACAGGAATACTGtCaTAAAAGATGTCCATTAaCATGGTTTTTCCACTTCCcAcTCCTCCGTGGAGATAGaGTCCCTGAGgTGCTTCCTGTGGTTGTGAat\n", ">isotig30623\n", "AACAAAGCCCAGCCAAGAATCACCGTGTAGTAAATGTTGATATACTGCATTACAAGCACACCGGCATAGCCAATTCCTtGGAAAagTGGACAGATTTtCCAAGCCGTGaTTCcACcTTgaCTCGTATATTGCCCCAGACCaatctccatcactaaaacgggtacaccagccacaatcaaacaaagcaagtagggaatgagaaaacaacc\n", ">isotig30838\n", "ACAGTCTGACTGTTGGAAGTGTGAAaGTTGATTTaCTTTGTAGAACTTTGCACTTGTAAGcctGTTTGTCatgtcttatgtgagaatttaaaggggctgtgtcatggatgtcaagttcattttctcaacattgcaaattatgcttccttatgcgctacagaacttaacaatagcgaaaagaaattaccaaatgataaaaca\n", ">isotig32258\n", "GCAGTTTGAAGTGTAATTTTAATATCATTTTtGGCTAAACTCTAGCTCCAGGCTCCTCTCTGTGCAATACCTCGACAACAAAGTTACCTGCATGAACTGAAAACTCTATTATAGTAGAGTTCATGGTCAAACTCAGTTGGGAGCA\n" ] } ], "source": [ "#Just printing first line w/out comments and looking at contig names\n", "!awk '{print $1}' Past.fasta > Past2.fasta\n", "!head -10 Past2.fasta\n", "!tail -10 Past2.fasta" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r\n", "Converted 30740 FASTA records in 61480 lines to tabular format\r\n", "Total sequence length: 16907062\r\n", "\r\n" ] } ], "source": [ "#Converting FASTA to tabular format and placing output file in analyses directory\n", "!perl -e '$count=0; $len=0; while(<>) {s/\\r?\\n//; s/\\t/ /g; if (s/^>//) { if ($. != 1) {print \"\\n\"} s/ |$/\\t/; $count++; $_ .= \"\\t\";} else {s/ //g; $len += length($_)} print $_;} print \"\\n\"; warn \"\\nConverted $count FASTA records in $. lines to tabular format\\nTotal sequence length: $len\\n\\n\";' \\\n", "Past2.fasta > ../../analyses/Past/fasta2tab" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/Users/jd/Documents/Projects/Coral-CpG-ratio-MS/analyses/Past\n" ] } ], "source": [ "cd ../../analyses/Past" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "GCKDGN101CF7JK\t\tGCAGTTCACATGACCCGAGGCTAGGAGATCCCATGAGATAGCACAGTGCAAGCGTGACTCATTGCACATGTGCTTGCAACGCGACTGGCGTCTTCTCGACGAGCTCCTGAGTATTTTCACAAGATTGGCCCCTATTTCTCAATGCCGTTGGGAAAATTATTGGGCCGTAGAAAACAGAATATCACACTAATGTAGTTGGTAGGTTAGCAAAACCAGTACCAGC\r\n", "GCKDGN101CAZ1A\t\tGCAGTTGACTGTCATTTCCCAGGGGACGATACAGTGCCACCACAATGACGTACTTACCGCTGGGGCTTGGCGCTGCCCCCATGCCTAGCTGATTGGTGTCTCTCCATATCATCTGTGTGAAGTGCTTTACTTTGTCATTGAGAACTGGATAGGAGAAGCTGTACGCTTTCTTCTCGCCGTACCATATAGTCGTGGCCTTGAGAGGTGCTCTCTGCAGATCGTGCCATATCTGTGCAATGTTTTCACCCGCTGGCTCGCCTTGGAAAGTGGACGGGTCACTGGCTACAGACTCTGCTATATTCTGCGCTTGTTCTGCTAGAGTGGCATTCCATTGTAAAGGGNGGACGTGATGAAGTGATCTGA\r\n" ] } ], "source": [ "#Checking header on new tabular format file\n", "!head -2 fasta2tab" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r\n", "Added column with length of column 2 for 30740 lines.\r\n", "\r\n" ] } ], "source": [ "#Add column with length of sequence\n", "!perl -e '$col = 2;' -e 'while (<>) { s/\\r?\\n//; @F = split /\\t/, $_; $len = length($F[$col]); print \"$_\\t$len\\n\" } warn \"\\nAdded column with length of column $col for $. lines.\\n\\n\";' \\\n", "fasta2tab > tab_1" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 30740 92220 17482850 tab_1\r\n" ] } ], "source": [ "!wc tab_1" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#The file used to count Cs and Gs will only include the sequence\n", "!awk '{print $2}' tab_1 > tab_2" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#This counts CGs - both cases\n", "!echo \"CG\" | awk -F\\[Cc][Gg] '{print NF-1}' tab_2 > CG " ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#Counts Cs\n", "!echo \"C\" | awk -F\\[Cc] '{print NF-1}' tab_2 > C " ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#Counts Gs\n", "!echo \"G\" | awk -F\\[Gg] '{print NF-1}' tab_2 > G " ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "GCKDGN101CF7JK\t\tGCAGTTCACATGACCCGAGGCTAGGAGATCCCATGAGATAGCACAGTGCAAGCGTGACTCATTGCACATGTGCTTGCAACGCGACTGGCGTCTTCTCGACGAGCTCCTGAGTATTTTCACAAGATTGGCCCCTATTTCTCAATGCCGTTGGGAAAATTATTGGGCCGTAGAAAACAGAATATCACACTAATGTAGTTGGTAGGTTAGCAAAACCAGTACCAGC\t223\t9\t53\t54\r\n" ] } ], "source": [ "#Combining counts\n", "!paste tab_1 \\\n", "CG \\\n", "C \\\n", "G \\\n", "> comb\n", "!head -1 comb" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Calculating CpGo/e based on [Gavery and Roberts (2010)](http://www.biomedcentral.com/1471-2164/11/483)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\"BMC_Genomics___Full_text___DNA_methylation_patterns_provide_insight_into_epigenetic_regulation_in_the_Pacific_oyster__Crassostrea_gigas__1A0683A5.png\"/" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "!awk '{print $1, \"\\t\", (($4)/($5*$6))*(($3^2)/($3-1))}' comb > ID_CpG #use ^ instead of ** for exponent\n" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "GCKDGN101CF7JK \t 0.704417\n", "GCKDGN101CAZ1A \t 0.590914\n", "GCKDGN101ANI4S \t 0.542256\n", "GCKDGN101BV6U3 \t 1.15835\n", "GCKDGN101BQG8Q \t 0.926274\n", "GCKDGN101CG9W2 \t 0.802327\n", "GCKDGN101A7H4U \t 1.20891\n", "GCKDGN101ATRIP \t 0.256737\n", "GCKDGN101CINM3 \t 0.342108\n", "GCKDGN101BOM13 \t 0.69067\n", " 30740 61480 716743 ID_CpG\n" ] } ], "source": [ "!head ID_CpG\n", "!wc ID_CpG" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Now joining CpG to annotation, but first must sort files." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "GCKDGN101A00ZL\tsp\tQ23979\tMY61F_DROME\t70.97\t124\t35\t1\t371\t3\t322\t445\t3e-54\t 187\r\n", "GCKDGN101A02W5\tsp\tQ9PT84\tKCNH2_CHICK\t42.35\t85\t43\t2\t238\t2\t75\t159\t2e-09\t57.0\r\n", "GCKDGN101A03XE\tsp\tQ5RA96\tGUAA_PONAB\t76.15\t109\t26\t0\t338\t12\t28\t136\t1e-51\t 179\r\n", "GCKDGN101A06FB\tsp\tQ5PQ63\tIMP2L_XENLA\t65.45\t55\t19\t0\t7\t171\t105\t159\t2e-12\t63.9\r\n", "GCKDGN101A08CL\tsp\tQ09328\tMGT5A_HUMAN\t57.89\t57\t24\t0\t87\t257\t141\t197\t2e-16\t79.0\r\n", "GCKDGN101A097A\tsp\tQ3MHG6\tGTPBA_BOVIN\t43.42\t76\t42\t1\t17\t244\t81\t155\t6e-13\t66.6\r\n", "GCKDGN101A0KSC\tsp\tQ6P2K6\tP4R3A_MOUSE\t60.00\t90\t33\t1\t273\t4\t96\t182\t2e-25\t 105\r\n", "GCKDGN101A0M8H\tsp\tA2RUR9\tC144A_HUMAN\t29.31\t116\t75\t2\t386\t42\t1232\t1341\t3e-09\t58.5\r\n", "GCKDGN101A0NCL\tsp\tQ08AV6\tTBCC1_XENLA\t40.78\t103\t59\t2\t8\t310\t178\t280\t2e-17\t81.3\r\n", "GCKDGN101A0S0M\tsp\tO00763\tACACB_HUMAN\t67.20\t125\t41\t0\t381\t7\t326\t450\t8e-55\t 191\r\n" ] } ], "source": [ "#Sorting Past Uniprot/Swissprot annotation file. This file was the result of work done in another notebook: \n", "#Past_blast_anno.ipynb\n", "!sort Past_blastx_uniprot.sql.tab | tail -n +2 > Past_blastx_uniprot.sql.tab.sorted\n", "!head Past_blastx_uniprot.sql.tab.sorted" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "GCKDGN101A00AO\tother biological processes\r", "\r\n", "GCKDGN101A00ZL\tcell organization and biogenesis\r", "\r\n", "GCKDGN101A00ZL\tdevelopmental processes\r", "\r\n", "GCKDGN101A00ZL\tstress response\r", "\r\n", "GCKDGN101A028J\tRNA metabolism\r", "\r\n", "GCKDGN101A028J\tother biological processes\r", "\r\n", "GCKDGN101A02W5\ttransport\r", "\r\n", "GCKDGN101A03QE\tother metabolic processes\r", "\r\n", "GCKDGN101A03XE\tother metabolic processes\r", "\r\n", "GCKDGN101A0607\tprotein metabolism\r", "\r\n" ] } ], "source": [ "#Sorting GOSlim annotation file. This file was the result of work done in another notebook: Past_blast_anno.ipynb\n", "!sort Past_GOSlim.tab | tail -n +2 > Past_GOSlim.sorted\n", "!head Past_GOSlim.sorted" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "GCKDGN101A00AO \t 0.383276\r\n", "GCKDGN101A00ZL \t 0.335379\r\n", "GCKDGN101A028J \t 0.524246\r\n", "GCKDGN101A02W5 \t 0.559472\r\n", "GCKDGN101A03QE \t 0.177286\r\n", "GCKDGN101A03XE \t 0.618671\r\n", "GCKDGN101A0607 \t 1.03824\r\n", "GCKDGN101A06FB \t 0.207357\r\n", "GCKDGN101A0884 \t 0.876202\r\n", "GCKDGN101A08CL \t 0.342674\r\n" ] } ], "source": [ "#Sorting CpG file\n", "!sort ID_CpG > ID_CpG.sorted\n", "!head ID_CpG.sorted" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "!join ID_CpG.sorted Past_blastx_uniprot.sql.tab.sorted | awk '{print $1, \"\\t\", $2}' > Past_cpg_anno" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "GCKDGN101A00ZL \t 0.335379\r\n", "GCKDGN101A02W5 \t 0.559472\r\n", "GCKDGN101A03XE \t 0.618671\r\n", "GCKDGN101A06FB \t 0.207357\r\n", "GCKDGN101A08CL \t 0.342674\r\n", "GCKDGN101A097A \t 0.679228\r\n", "GCKDGN101A0KSC \t 1.03959\r\n", "GCKDGN101A0M8H \t 0.78113\r\n", "GCKDGN101A0NCL \t 0.404416\r\n", "GCKDGN101A0S0M \t 0.254499\r\n" ] } ], "source": [ "!head Past_cpg_anno" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "!join ID_CpG.sorted Past_GOSlim.sorted > Past_cpg_GOslim" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "GCKDGN101A00AO 0.383276 other biological processes\r", "\r\n", "GCKDGN101A00ZL 0.335379 cell organization and biogenesis\r", "\r\n", "GCKDGN101A00ZL 0.335379 developmental processes\r", "\r\n", "GCKDGN101A00ZL 0.335379 stress response\r", "\r\n", "GCKDGN101A028J 0.524246 RNA metabolism\r", "\r\n", "GCKDGN101A028J 0.524246 other biological processes\r", "\r\n", "GCKDGN101A02W5 0.559472 transport\r", "\r\n", "GCKDGN101A03QE 0.177286 other metabolic processes\r", "\r\n", "GCKDGN101A03XE 0.618671 other metabolic processes\r", "\r\n", "GCKDGN101A0607 1.03824 protein metabolism\r", "\r\n" ] } ], "source": [ "!head Past_cpg_GOslim" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "GCKDGN101A00AO \t 0.383276 \t other biological processes\r", " \r\n", "GCKDGN101A00ZL \t 0.335379 \t cell organization and biogenesis\r", "\r\n", "GCKDGN101A00ZL \t 0.335379 \t developmental processes\r", " \r\n", "GCKDGN101A00ZL \t 0.335379 \t stress response\r", " \r\n", "GCKDGN101A028J \t 0.524246 \t RNA metabolism\r", " \r\n", "GCKDGN101A028J \t 0.524246 \t other biological processes\r", " \r\n", "GCKDGN101A02W5 \t 0.559472 \t transport\r", " \r\n", "GCKDGN101A03QE \t 0.177286 \t other metabolic processes\r", " \r\n", "GCKDGN101A03XE \t 0.618671 \t other metabolic processes\r", " \r\n", "GCKDGN101A0607 \t 1.03824 \t protein metabolism\r", " \r\n" ] } ], "source": [ "#Putting tabs in between columns\n", "!awk '{print $1, \"\\t\", $2, \"\\t\", $3, $4, $5, $6}' Past_cpg_GOslim > Past_cpg_GOslim.tab\n", "!head Past_cpg_GOslim.tab" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Now time to plot data using pandas and matplot" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
012
0 GCKDGN101A00AO 0.383276 other biological processes
1 NaN NaN
2 GCKDGN101A00ZL 0.335379 cell organization and biogenesis
3 GCKDGN101A00ZL 0.335379 developmental processes
4 NaN NaN
5 GCKDGN101A00ZL 0.335379 stress response
6 NaN NaN
7 GCKDGN101A028J 0.524246 RNA metabolism
8 NaN NaN
9 GCKDGN101A028J 0.524246 other biological processes
10 NaN NaN
11 GCKDGN101A02W5 0.559472 transport
12 NaN NaN
13 GCKDGN101A03QE 0.177286 other metabolic processes
14 NaN NaN
15 GCKDGN101A03XE 0.618671 other metabolic processes
16 NaN NaN
17 GCKDGN101A0607 1.038240 protein metabolism
18 NaN NaN
19 GCKDGN101A06FB 0.207357 protein metabolism
20 NaN NaN
21 GCKDGN101A0884 0.876202 other biological processes
22 NaN NaN
23 GCKDGN101A08CL 0.342674 other metabolic processes
24 NaN NaN
25 GCKDGN101A08CL 0.342674 protein metabolism
26 NaN NaN
27 GCKDGN101A08WT 0.459782 other biological processes
28 NaN NaN
29 GCKDGN101A08WT 0.459782 transport
............
102278 isotig33103 0.952471 signal transduction
102279 NaN NaN
102280 isotig33105 0.000000 signal transduction
102281 NaN NaN
102282 isotig33121 0.891861 other biological processes
102283 NaN NaN
102284 isotig33125 0.604802 other biological processes
102285 NaN NaN
102286 isotig33125 0.604802 other metabolic processes
102287 NaN NaN
102288 isotig33125 0.604802 protein metabolism
102289 NaN NaN
102290 isotig33125 0.604802 signal transduction
102291 NaN NaN
102292 isotig33125 0.604802 stress response
102293 NaN NaN
102294 isotig33136 0.809603 other metabolic processes
102295 NaN NaN
102296 isotig33136 0.809603 transport
102297 NaN NaN
102298 isotig33137 0.834088 cell organization and biogenesis
102299 isotig33141 0.000000 other biological processes
102300 NaN NaN
102301 isotig33141 0.000000 protein metabolism
102302 NaN NaN
102303 isotig33152 0.316646 other biological processes
102304 NaN NaN
102305 isotig33159 1.262630 RNA metabolism
102306 NaN NaN
102307 isotig33159 1.262630 cell organization and biogenesis
\n", "

102308 rows × 3 columns

\n", "
" ], "text/plain": [ " 0 1 2\n", "0 GCKDGN101A00AO 0.383276 other biological processes\n", "1 NaN NaN\n", "2 GCKDGN101A00ZL 0.335379 cell organization and biogenesis\n", "3 GCKDGN101A00ZL 0.335379 developmental processes\n", "4 NaN NaN\n", "5 GCKDGN101A00ZL 0.335379 stress response\n", "6 NaN NaN\n", "7 GCKDGN101A028J 0.524246 RNA metabolism\n", "8 NaN NaN\n", "9 GCKDGN101A028J 0.524246 other biological processes\n", "10 NaN NaN\n", "11 GCKDGN101A02W5 0.559472 transport\n", "12 NaN NaN\n", "13 GCKDGN101A03QE 0.177286 other metabolic processes\n", "14 NaN NaN\n", "15 GCKDGN101A03XE 0.618671 other metabolic processes\n", "16 NaN NaN\n", "17 GCKDGN101A0607 1.038240 protein metabolism\n", "18 NaN NaN\n", "19 GCKDGN101A06FB 0.207357 protein metabolism\n", "20 NaN NaN\n", "21 GCKDGN101A0884 0.876202 other biological processes\n", "22 NaN NaN\n", "23 GCKDGN101A08CL 0.342674 other metabolic processes\n", "24 NaN NaN\n", "25 GCKDGN101A08CL 0.342674 protein metabolism\n", "26 NaN NaN\n", "27 GCKDGN101A08WT 0.459782 other biological processes\n", "28 NaN NaN\n", "29 GCKDGN101A08WT 0.459782 transport\n", "... ... ... ...\n", "102278 isotig33103 0.952471 signal transduction\n", "102279 NaN NaN\n", "102280 isotig33105 0.000000 signal transduction\n", "102281 NaN NaN\n", "102282 isotig33121 0.891861 other biological processes\n", "102283 NaN NaN\n", "102284 isotig33125 0.604802 other biological processes\n", "102285 NaN NaN\n", "102286 isotig33125 0.604802 other metabolic processes\n", "102287 NaN NaN\n", "102288 isotig33125 0.604802 protein metabolism\n", "102289 NaN NaN\n", "102290 isotig33125 0.604802 signal transduction\n", "102291 NaN NaN\n", "102292 isotig33125 0.604802 stress response\n", "102293 NaN NaN\n", "102294 isotig33136 0.809603 other metabolic processes\n", "102295 NaN NaN\n", "102296 isotig33136 0.809603 transport\n", "102297 NaN NaN\n", "102298 isotig33137 0.834088 cell organization and biogenesis\n", "102299 isotig33141 0.000000 other biological processes\n", "102300 NaN NaN\n", "102301 isotig33141 0.000000 protein metabolism\n", "102302 NaN NaN\n", "102303 isotig33152 0.316646 other biological processes\n", "102304 NaN NaN\n", "102305 isotig33159 1.262630 RNA metabolism\n", "102306 NaN NaN\n", "102307 isotig33159 1.262630 cell organization and biogenesis\n", "\n", "[102308 rows x 3 columns]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "jData = pd.read_table('Past_cpg_GOslim.tab', header=None)\n", "jData" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt " ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAD7CAYAAAD6m+dNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmYXEW9/j8vm0ACsogGvEogEWQfCCCyyIxR1KsgsoiC\nSJCLC7ssriBBUCPKIngBEUkQEdkCCFwQxAmyhDVMEhZRMOC9iD9QtoDsvL8/qpo56XTP9Eymp/sM\n38/z9NOn6tSpes9JZ06dqjrfV7YJgiAIgiBYrNUCgiAIgiBoD6JTEARBEAQBEJ2CIAiCIAgy0SkI\ngiAIggCITkEQBEEQBJnoFARBEARBAMASrRYQBINFUrxPGwRBMAhsq1Z+dAqCUlPvh92uSJpse3Kr\ndTRK2fRCaB4OyqYXQnNVvXUfqGL6IAiGl7GtFjBAxrZawCAY22oBg2BsqwUMkLGtFjAIxrZawCAY\nO9wNRqcgCIIgCAIgOgVBMNxMa7WAATKt1QIGwbRWCxgE01otYIBMa7WAQTCt1QIGwbThblDhfRCU\nFUku25qCIAiCVtPX384YKQiCYURSZ6s1DISy6YXQPByUTS+E5kaJTkEQBEEQBEBMHwQlJqYPgiAI\nBk5MHwRBEARB0C/RKXiTIulbrdbQCJIOkbRMq3UMFWWb1yybXgjNw0HZ9EJobpSIaPjm5ZvA96sz\nJQnAbTCvJGlx4GDgXOCFOmVarnOg5EtcGsqmF5qrOaasgpFMrCl4EyJpCnA4MBe4BzgSuBa4FZgA\n/CfwDWAzYBng4kqoTUkPk96d3R5YEtjV9gOStgVOzk0Y+ACwKfBd4FlgPNAN7Gfbkj5L6pgIuMr2\nN3L9zwFnAB8CLsnaHgCesD2x6jzc3T2EFyYI+qGrKzoFQfmJNQXBAuQb8Au2N7a9J+nGPB74b9vr\n2/4b8G3bmwEbAdtKWr9yOOkGPQE4ndS5ADiMdMPfGNia3if7zYADgHWBccBOklYDpgBdQAewmaRP\n5vLLArfa7rB9LPB3oLO6QxAEQRAMPTF9EFR4xPbthfRukvYl/UZWJd3U78n7pufvWcBOeftm4CRJ\n5wHTbT+ah3Bvt/0wgKTzSR2GV4AZtv+V888jjSxcDrxGGiFoiClTYMyYtD16NIwfDx0dKd3Tk77b\nKf3gg7DLLu2jZ6TprdDR0dz6oXe+1/aMRU0X546Hor5mp8umN6cPAXraSE8j6Q7bJy9qfXl7EomH\n6YOYPniTImm+7eXy9ljgCtsb5PQapOmETW0/I2kq0G37l5LmARNsPylpU+BHtrvycesBHwf2Az5C\n6kxMtt2Z938BWB+YAexse6+cvw+wju3Di7ryvjfaq3EOpZs+6OnpvcmUgbLpheZqbtb0gaTOyh/z\nMlA2vRCaq+qN6YNgIV6RVG+kaHngeeBZSe8APtZfZZLG2b7X9vHAHcDaedfmksZKWgz4NHAjcDtp\nSmLlvJjwM8ANdaqen/WMCMp2gy2bXiin5rLdrMqmF0Jzo0Sn4M3LmcAcSeeS1gm8MWRkezZwN/An\n4Dzgpj7qqRx3sKS5kmYDLwNX5/w7gJ8C9wF/tX2p7X+QFjJ2Az3AnbavqKqvqPMaSdcP7jSDIAiC\nRonpg6Bp5Hmsw2xv36T648cbDDsxfVA+vRCaq+qtO30QCw2DZrLACERTGijZ62Fl+8NUNr1QTs1B\n0C7ESEFQWsL7IAiCYODEQsMgCIIgCPolOgVBMIyULf562fRCaB4OyqYXQnOjRKcgCIIgCAIg1hQE\nJSbWFARBEAycWFNQEiTtJWnVVusIgiAI3pzEK4ntxSSSv8Bj1TskLWb79WY0KmkJ2682o+5mE7EK\ngpFGGUa/yvjaZ2hujOgUtIAc2vcXJJtiA2cD/0uyGj5P0r+BLUkRBX8DfBg4XtJTwGTgLcBDwN62\nn89WyNsDrwK/s/01SbsC3yEZDD1je9sqDZ3AscCTwNqS1gV+CGyb6/9v22fmkYsLgOVIv5cv2745\nWxyfCWwH/AP4jO1/SuogWR8vkzV+wfbTkmaQrJm7gBWAfWzflP0SzgaWIo1c7WT7IUmfAw7M+beR\nHBgX6hR1Uy7zgx566KA8cXjLphfKrbmLrlZLCd7kxJqCFiBpAvAD29vl9PK2n5XUTYoAOCvnzyPd\nnH8s6W0k98CP2n5B0tdJN8z/Bm6x/d6quuYAH7H9WCWvSkMncCWwnu1HJH0RWMX29yS9hRTaeFeS\nC+LStr+f/QuWtf2cpNeBPWyfL+ko4O22D8zt7m/7RknHAMvb/mo+tzttHyHpY8Chtj8s6VRgpu1f\nZy+GJYA1SB2UT9l+TdJpucy5VefgsnUKgqAvuugqxUhBUG4iomH78RCwpqRTgKtIjoQVqv+hLsjf\nW5Dsi29RsiReCrgFeAZ4UdIvSDf5K3P5m4FzJF1Ir9VxNbfbfiRvbwdsICkb5bI8MJ7kXXC2pCWB\ny7IvAsDrBW2/AqZLWh54q+0bc/45wEWF9oqWy2Pz9i3AtyX9B8ly+UFJE0mjKHfmc12GNBqxEFOY\nwhiSd/JoRjOe8W88JfaQvG4jHekypSu0iXVvpEdAWmGd3P5IWhb4KLAn8KTtfeqMFFRsij8B7G57\n9xp1LQVMBHYBxtqemPM3J1kZf54q++FqXwJJFwM/s31djfrHAJ8A9gdOtH2upFeBpWy/LmlN4GKg\nE5hre/V83DjgQtsTiueWRz3usL1GLrdGrv9A4EvAesBqtr/VzzUs3UhB2Ya2y6YXyq25LCMFMT8/\nPDRLc7x90GZIWhlYwvZ04Chg47yrL5vg24Ct8o0WSaMkvUfSKGAF21cDhwIb5f3jbN9u+2jgCeA/\n+pH1O2C/PISPpLUkLSvp3cATts8irYOoaF2MNL0AsDtwY56ieErS1jl/T2BGP9diTdvzbJ8KXA5s\nAFwP7CJplVxmpawjCIIgaCIxfdAa3glMzXP0kGyEAaYBZxQWGr6B7SckTQLOz3P+AN8mdSQul7Q0\naerhq3nf8ZLek/N+b3tOlYZqs6KzSEP6s5TG7B8HPkV6+j9C0iu5rc/n8s8Dm0s6Evh/wG45f698\nDsuSF0PWuQaVtj+dFxW+Qnrr4nt5YeKRwLX5Gr0C7Af8rU5dpaFsT7Bl0wuheTgo2xM3hOZGiemD\nYFBImm97uRZriB9vMOIow/RBUG5ioWHQDNrihly2P6Blm9csm14IzcNB2fRCaG6UWFMQDArb9dY+\nBEEQBCUlpg+C0tLXEFgQBEFQm3j7IAiCIAiCfolOQRAMI5WAImWhbHohNA8HZdMLoblRolMQBEEQ\nBAEQnYIhQ9IxOTzvUNf7sKSVauT3Ge2vGUiaJmnnQR77rar0zUOjqlyUbfVz2fRCaB4OyqYXQnOj\nxELDNqcY6rgqv2acgBx4CDfhH1bSVOCKHIlxoMcOeVyDiFMQBOUkFgi3llhoOIRIWjw/Mc+VNEfS\nwTn/jadoSf8p6X5Jd0o6RdIVOX+ypLMldUt6SNKBhXovzeXvkbRvPxqmAMtIulvSuZJWl/SApHOA\nucC7JJ0m6Y5c3+TCsQ9nHXdl/Wvn/G1zfXdLmpXDKEvSTyX9SdJ1wNur6lkpb2+avQ2QNFrS1Fz3\nbEk7SfpBUW8u91z+lqQfFa7np3N+p6QZki7K1/JXta+GS/bpbgMNI1lvaG5/va0h1hQ0RgQvGjgd\nJLOeDSBZFed8A87hhs8AtnGyJP41C/5PWAvoInkcPCDpNNuvAV+w/ZSkZYDbJV1s+6laAmx/Q9L+\ntjfOGsaSHA33tH17zvt2rm9x4PeS1rd9T9byRDYp+gpwOLAvcBiwn+2ZSiGKXyKFOV4LWAcYA9xH\n8j+onG8tjgKesr1h1rGC7emSDqjorTp+J5Jfw4bAKsAdkv5YuNbrksIf3yxpK9tvymmHIAiC4SA6\nBQOnP9vj9wJ/da8l8fnAF/O2gatsvwL8S9LjwDuAvwMHS9oxl3sX8B7g9gHoeqTSIcjslkcclgBW\nJd1c78n7ihbGO+Xtm4GTJJ1HsjB+VNI2wK/zVMRjkv7QgI6J9PogYPvpfspvXWjjcUk3AJsBz5Ks\nnf8OIKmH5M1Q1SmYRK8L8wqkfkRnTs/I3+2Wpp/97Zamn/2RXvR0Z5vp6S/duQjHJzTMVsKVvHaw\nMh5IeiiulwZgnYzt+AzwAyxLupleCvwi500FdiY99c4olN2BNA8PcDTJPriyby7wbtL/mhuBpXN+\nN/CBvD0PWKmGhvmF7bEky+JKeg3gL8BbC9o+X10fsCnQXThuPeBr+UezNnASsHdh/yXATnn7L8Db\n8vbWlXqAO4HxfektpoETq9r4JclGedvKdcv5pwJ7VdVhcHziE59SfXCr/4a/2T99/RvEmoIBovq2\nxwAGHiCNJKye83bL+ZBGEhaqkjSV8JTtFyW9F9iiASmvKNsc12B5kovhs5LeAXysv8qUrJbvtX08\ncAdpxOOPpBGHxSStSpr2qPAwqVMBqTNU4Tpg/0K9K/Sj98ZCG6sAHyCNkIzQhUgzWi1ggMxotYBB\nMKPVAgbBjFYLGCAzWi1gwMSagsaITsHAeSfQLelu4Fzgm8Wdtl8k2fxeI+lO0jD4M5XdsNBcvIFr\ngCUk3Qf8AJjZgI4zgTl54d4C9dqeDdwN/Ak4D7ipj3oqxx2cF/vNBl4G/sf2paQRgfuAc4BbCscd\nA/xE0h3Aq4V6jgNWzHX10Dt2WNT7Rru5jTnAbOB64Ajbj1efU5XWIAiCoAnEK4lNQNIo28/n7f8G\n/mz7Jy2WNeJQvJIYBKXE8UpiS1FYJw87+0raC1iKtJjvZy3WM2KJPy5BEARDR0wfNAHbJ9ve2PZ6\ntvfMUwpBULp5zbLphdA8HJRNL4TmRolOQRAEQRAEQKwpCEpMX/NiQRAEQW36+tsZIwVBEARBEADR\nKQiCYaVs85pl0wuheTgom14IzY0Sbx8MM5IOAX5m+4V+yv0cONH2/cOkay/gWtuP9VNuBikq410N\n1juJ5PJ4oKQvAf+2fW4/hzVMGV9LlMo141E2vVBfc0w3BUHfRKegCUha3MnkqBYHk4Ie9dkpsN2n\nU2ITmETyRuizU8DAAwgVgyoN+auZ3d1DXWMwUunq6r9Mq3AhPn8ZKJteCM2NEtMHA0TSc5JOVLIk\n/r2kt+X8GZJOyhH+DpY0UcmCeI6kX0haStJBwGqkiIjX5+O2k3SLkpXxhZJGFerbpNDmcZJ6JM2U\n9PYauiZLOkfSH5VsjXeS9OPc/tWVEMOSJuS675R0jaQxknYhhSw+L2teWtJ3JN2eIxNW38z3VLJB\nnitps1zvSpIuU7JLnilpgzoaD8vbB0m6N5f/9UDOIQiCIGgO0SkYOMsCd9heH7iBZHIE6Yl4Sdub\nAaeRTIg+7WQhvATwFdunkBwRO21PzB2KbwMTbU8A7gIOLdRXbHOm7Q6SH0G9UYQ1SP4EOwC/Aq7L\n7b8AfFzSkiRjoZ1tb5o1fs/2xSQjo91tb5LjKpxqe3Mni+hlJH0ityFgGScb5P2As3P+McBdtjcC\nvkUyNqqUr1AMXfx1oCOX/3Kj51DnvEtDT0+rFQyMsumFcmou23x32fRCaG6UePIaOK8DF+TtX9Fr\nQ0whf21gnu0Hc/ockklQdajjLUiWxrfkOdClWNBfoMLLtq/K23cBH65RxsDVtl+TdA+wmO3f5X1z\nSU6Ka5GcEH+f21uc1EmpULyBf1DSEaQOyUqkqYUrczvnA9i+UdLykt4KbEW2YbbdLWllScvV0Flh\nDvBrSZcBlw3gHBZgyhQYMyZtjx4N48dDR0dKV24O7ZR+8MH20jPS9Bap3g/ltM6N9JBZJ3dIahs9\nDaY7yO5Ti1KfBmCdHHEKBoikV4GlbL8uaU3gYtubSOomLcCbJWkj4BTb2+ZjJpJGCnaRNI+08O7J\n/PS9u+3da7RTrG++7eVy/i7Ax23vXVX+aOA52yfkdPGYo4HngN8BZ9resp/2lib9cCbYfjQfb9vf\nzeWOKfzwHgE2IP1wd7Y9L+f/jdTh2YXehYZvaJS0GMkRcXuSi+MGwJH9nUNlX85zrCkIGqWrKxYa\nBgFEnIKhZjFg17y9O8n6t0LlIj8AjJU0Lqf3JE01AMwnWRsD3AZsVSknaZSk9zRLeNa1iqQtcntL\nSlq3hq6l8/e/JI2m93whneNu+fitgadtP0u6Dnvk/E7gCdvPVbWvvF/Au3PH4hvAW4HRMFLtkoMg\nCMpBdAoGzvPA5pLmkmyBv1vYV7EDfhHYG7hI0hyStfAZucyZJFvl620/QRrSOV/JsvgW0tRDNa7a\nrje8U11ugX22XyE9uf9Qydb4buD9ef804AxJs4AXgZ+TpgyuIXVeivW+mMudBuyT8ycDE/J5fB/Y\nq4beyvbiwLn52swCfmL7mRrnNuKsk8s23102vVBOzWWb7y6bXgjNDbcZ0wcDozikHbQWlTBGQdBa\n2nX6oLjWoQyUTS+E5qp6604fRKdggEh61vby/ZcMmk1fP+wgCIKgNrGmYAiJDkEQBEEwUolOQRAM\nI2Wb1yybXgjNw0HZ9EJobpToFARBEARBAMSagqDExJqCIAiCgRNrCoIgCIIg6JdSdwokfauwPTbH\nDmgLJH1S0joNlJsmaecB1Nsp6Yq8vb2kry+KzrIjyfGJT7t/Gvgddw7Df5cho2x6ITQ3Stm9D75J\nCpSzyKhvu+PB8CngCuD+fsoNev7G9hW5jSGjCdehqXRTrjjHPfTQQUf/BduEsumF9tPcRRt7NgdB\nFaUYKZD0WSX73LmSpuS8KST3vrslnUuOlCfpTCVb498pxfBH0jgl6907lWx518750ySdIelW4IdV\nbU5SsgK+VtI8SQdIOlzJWnimpBXr1S1pS1JM/x/l8mtK2lfJirhH0sWSlik09yFJd0h6QNLHc71L\nS5qaz3tWrR5j1nhq3n6HpEtz/T2S3l+j/KBtn3O5zSTdnOu/TSks8+KSfpTPbbakL+ayq+brUbFY\n3krSYvmaz811H9LPv8+uuWyPpBuqz6eMtNPNqhHKphfKqblsQXXKphdCc6O0/UiBpNWAKcAmwNPA\ntZI+afsbkvbPFr5IGgu8B/iM7S9KugDYGTiPFFr4S7YflPQ+UnjeibmJ1YD3u/aKy/VILlXLAA8B\nR2TzoxOBz5NcDxeq28kW+bfAFbanZ31P2/553j6WFB74p6R4/6vb3kzSeKA7f+8PvGZ7w3yTvFbS\nWn1cqlOAbtufUjIbGl2jTMX2+VBJR5Fsnw+kYPucO1J/Bj6Yz+kc4CuSTgd+Q7KDvkvJE+HFfB5P\n295c0luAmyRdS3JMvMb29yUJGAVsDKzmZMeMpErMh3r/PkcB29l+rFA2CIIgaBJt3ykANiPd7P4F\nIOk8krve5TXKzrM9J2/fRTIlGgVsSfIhqJRbKn8buKhOh8C53eeB5yU9Te9Q/Vxgw37qhgUNfjaQ\ndBy95j/XFNq5ECDfFP8KvJdkRXxKzn9AyY2wr05BF/C5XP514NkaZRbF9vl64DHbd+U2ngOQtF0+\nt11y+eWB8cAdwNmSlgQusz1b0kPAmpJOAa4idXRGk/wXal3Dm4FzJF1YpfUNpjCFMSTv5NGMZjzj\n33hS7CEFwW+n9IM8yC7s0jZ6RpreCh10tJUeaMjalnr72y1dNr05fQjQ00Z6Gkl32D55UevTSLJO\nlrQDyZJ3r5zeB1jH9uFa0Fp3LOnJvPIUehjp6fQk4AHbq9Woeypwpe1LauzbC9jU9oE5XbQ83gvY\nFPhWP3UXRwrmATvYnpuP77S9dy53g+1pudwNpKf3ycCptrtz/h+B/YC3kSyOt5c0iV5b4seB/7D9\nch/XcrC2z/uRRhXOsL11VZ0XAz+zfV2N9sYAnyB1Kk60fW7uSH2E5Bz5JHBIvWuY69gc+DhpZGaC\n7ScL+xxrCppL2fRC+2nuoqtfzwWVLC5/2fRCaK6qt9SvJN4BbCtpZUmLA5+h14b4FUl9jXbI9nxg\nXuVJVokNG2i3r//EAuin7qIVMaTRgX/kJ+fP0bvAUMCu+dhxwJrAn1jQingt4N0k6+N6XA98JZdf\nvM5w+2Btn2fk/FUlbZrbWC7/e/wO2K/y7yBpLUnLSno3yT75LOAsYBNJKwOL547SUcDGfV1DSeNs\n3277aOAJ4D/6OP9S0E43q0Yom14op+ay3azKphdCc6O0fafA9mPAN4BuoAe402nVPaS56DnqXWhY\nz2p3D2AfJbvge4AdapRZqOmqffXsi+vV/RvgCEl35afyo0gWxDex4BsJBv4G3A78D2lu/WXSvPpi\nSvbCvwH2crI+rmVFDHAw0JXL3wnUeh1y0LbPue3dgFPzuf4OeAvphn8fMCvXezppWqoT6FGyWP40\ncDLwTtKaibuBc0lvj/R1DY9XXmAK3FyYGgqCIAiaQNtPHwRDh0aY7bMaeP87CNqBmD5oPaF5gXrr\nTh+UYaFhMHSMuJtof39s242y/WEqm14op+YgaBdipCAoLX31doMgCILalH2hYRAEQRAEw0B0CoJg\nGKm8O1wWyqYXQvNwUDa9EJobJToFQRAEQRAAI6BToCY6JargLVBj3839HLtIWiRdVSfWQH/H1dUc\ntJ6yLYArm14IzcNB2fRCaG6UkfD2QTOdEuuuwrS91VC02Uf9Hx/soYNtU9IStl8d7PGtIF5LDNqB\nWPAajBRKM1KgFjglZt4lqVvSnyV9p6CnEvtfSi6BFee/T9fQXtPxMEf+u1DSvZKmS7pV0iZ538OS\nVsrbn1dyIOxRMihC0va5/CxJ10l6ez/Xb7KkcyXdks/lv3J+p6QbJV0O3CPpLXW0Li7px/k8Z0s6\nIOdPUHJZvFPSNUqhjZF0UD6v2ZLOz3nb5n+ru3Pdo3L+Eep1WZyc80bl0ZKe3OZC1zXhkn2620DD\nSNbbCs2LTtnmu8umF0Jzo5RipECtc0oUsDnJLfEF4A5JV9qeRe9fg52AjYANgVVymWqb33qOh/sB\n/7K9nqT1YAEHFedzWg/4dtb3pLJlM3Cj7S1ymf8CvgYcTt/hmdcHtiCFXL5b0lU5f2NgPduPKHlG\n1NL6BVKo5Y2yd8KKSiGbTwW2t/0vSbsB3yM5J34dGGv7lcI0yGHAfrZnSloWeEnJUGm8k8viYsDl\nkrbJ1/LRyoiJwiUxCIKg6ZSiU0DrnBIBrrX9VG53OrANMKuwf2vg1/n4x3OHYHOSk2KFeo6HW5HC\n/2L7XqWwwkUEfBC4sGIEVNFCGsG4EBiTz+WvdfRXMHC57ZdIN+PurPNp4Hbbj/SjdSJwupMDI7af\nkrQ+qcP0+3xdFwf+nuuZA/xa0mXAZTnvZuCk/O833fajuVOwnVLoY0gmVuNJ4aBPUBoNutL2Tf2c\nX0nobLWAAdLZagGDoLPVAgZM2ea7y6YXQnOjlKVTYBZ8Ahb1x+1eKmy/BixNmiZ5qjKiUIN/99Fu\nEZHsh/vSVus4apTpL7+v+iE9of/Y9pWStiW5Kg6Uyrk836Cm6nwB99reskbZj5M6btsD35a0vu0f\nSroy77tZ0kdy2R/YPnOhxqSNc9njJF1v+9iFm5kEjM3bKwAd9N4UZuTvSEe6memEFsHaNtKRbmZa\nA7BOxnbbf4BV84msTHoavY40ZA3JfneJvD0WmFs47jDg6Lx9M7BL3hawYd6eSrJmrtXuJOBRYEVg\nGWA2sEneNz9/fwq4htTxWCXrfHtRC/BV4Ky8vVYusxRpuP+0nL8u8HKh/nnASjn/AWClnL9i/p5V\nKDuVNJJS0XxqjXOZDNxNMjFaGXiENMrQSbJ4pg+tSwJfAi4iuRySr8mSwF+ALXLeklmvSFMHlbxH\nSY6R4wrtXEQyPvowcCswKue/M1/HVYGlc94ngEtrnJPBJft0t4GGkay3FZrxEPyN62z139mRrDc0\nL1Sv6+0rxUiB7cckVZwSRRpOrnZKvAs4EhZ6Sq+k9wBOl3Qk6UZ1PmmImxrHFI+9HbiEZNt7rtN6\ngjeOsX2ppPeTOgwGjrD9eF7fUKn3tNx2xXVwL9svSzoNOEfSvSS75HuBZ6rO/T5J3wNukPQaqTPw\nBdJN/iJJTwF/AFYv6Kp1Ps7n2w28Dfiu7X/kdQPF8rW0viLpLFInYY6kV4AzbZ+mZHl8iqS3kkae\nTgL+DJyb8wT8xPazko6T1EUaobgHuDrXvQ4wM09BzCfZNY8HfiTpdVJn6Su1/4mCIAiCoSK8D1pI\nXli3pO2XJI0jjYCs5Sa8FijpaOA52ycMdd2tQpLr9+eCYLgQjlcSgxKhcElsW0YBf8ir+AV8pRkd\nggIj8A4af4uDIAiGihgpCEpLX73ddkUls/Utm14IzcNB2fRCaK6qt+7fztIELwqCIAiCoLnESEFQ\nWso4UhAEQdBqYqQgCIIgCIJ+iU5BEAwjlYAiZaFseiE0Dwdl0wuhuVFK3ylQE6yCm1HnoiJpdUmf\nbaDckNpHB0EQBG8e4pXE2rTjQos1gN1JQZeahqTFnP0NyoBKaJ1c8N8oBWXTC6EZaGrshLKt4ofQ\n3Cil7BRI2hv4BsnMZzbZ70DSKsDpJDc/gENIIXQfAjpsP5PL/YVkkER1edu3VLU1FjibFBr4CWBv\n2/8raRrwIjCBFML3UNtXSZoE7AgsS3JsPIHkv7B71vmfTmZC44CfkkL6/hvY18mAaBopquGmpDDE\nX7N9Cckl8r3ZOGgayWToXFKsA4ADbM/s45p1At8FniVFC+wmORZayQb6DOBDwP5KLpJ750PPsv2T\nXMfnSaGjDcyx/fla19z2LdmP4eScZ5KR1PLABcBypN/eV2zfpGSKNJkUgvmhfI2fVzJD2p4UWfFa\n20dUn1d3d70zDoI3L11drVYQlJXSTR9IWpV0A9mS5FC4Lr1P9j8BTrK9ObAL6Yb2OslN8VP5+PeR\nnBSfqFW+0kyhyVOBqbY3Ilkwn1LY927bm5FMe86Q9Jacv15ubzOSlfCztjcBZgKfz2XOBA60vSlw\nBCm8cIUxtrcixfyfkvO+TrJL3jjfpB8HPmx7AvCZKl312Aw4IF+zcSTbZ0gdmFttd5A6OpNIDopb\nAPtK6lCvhXNXLndQPrbeNazYJG9M+nd6EfgscE3O2wjokfS2XO/EfC53AYdKWgnY0fZ6+drXMEMq\nHz09/Zf274kJAAAgAElEQVRpJ8qmF0LzcBDz88NDKzSXcaTgfSxoo3wBKSY/pCfddQrDcMtJWpb0\ndPod0hP2Z3K6XvnKk3eFLUhP/gC/Ao7P2wYuBLD9oKS/Au/N+d22nweel/Q0UPFpmAtsqP6tnC/L\n9d4v6R05v3oocCngp5I2IrlBrkX/3G77YQBJ55Nu1pfk4y/JZbYm2Rq/kMtV7KLNghbOT+fy9a5h\nLZvkO4CzcwTHy2zPzj/6dYFbch1LAbeQRktelPQL4Mr8CYIgCJpIGTsFpr6NsoD32X65eICkW4Hx\n+an0k6Rh9L7KV89TNzo3VzmuaN/8eiH9Ouma92flXNRTr+2vAo/Z3lPS4qQn8Ub1VeqtrB140b0B\nK2pd37601LyGwEI2ybZvlLQNaQRkmqQTgaeA62zvvlDF0ubARNIIxAF5ewGmTIExY9L26NEwfjx0\ndKR05emr3dIV2kXPSNNbxnRHx9DX30wrXvfa8Tal/makK3ntoqfRdFH7YOvTAKyTSxe8KE8fzAQ2\nITnq/QG42/ZB+an0bts/zmU7bPfk7eNJdrwr2v5EzqtZPq8LmGD7QEmXAxfZ/lXO3972znnufxXS\nDW5Nkrn6ONLagQm2D8x1zsvpJ6vqvZk07H6x0iPyBrbnSJpKcoG8JB8/3/ZykiYAJ9juzPknAv9n\n+8S8xuIXthfLayCusL1B1XXrBP6H9FT+N+Bq4Awnl8f5tpfL5TYmjahsQeq83Ap8DngFuBR4fz6X\nFfPaiHrXcJzth3LeRaT1Dz3Ao7Zfk7R/vl7fJ00ZfND2Q3mUYTXg7yQ75ceV3BYfsv22qnNyrCkI\ngoXp6mruQsOg3GgkBS+y/RhpTcFM4CaS3XCFg4BNJc1WsiP+YmHfBST75AsaKF+0Hz4Q2FvS7Hz8\nwYUyfyNZK/8P8KX8tFxtXVy9XbRy3kdSD8lGeIc+joG0oPI1ST2SDiatQdgrH7828Fyd44t5d5AW\nN95HusleWl3edmUh4+2kDsHPbc+2fR9pfcQNuc2K22K9a3iwpLn5ur0MXAN0ktYRzAI+TbJU/iep\nB3t+LntLPp/lgCty3o2kkZHSU7a547LphdA8HMT8/PDQCs2lGyloF/IT/RW2p7daSyPkH9dhtrdv\ntZahosY0TxAEmWaOFBSH4ctCaF6g3rojBWVcUxAMjuoRjBFBDJEGwfBTtpsrhOZGiZGCoLT01dsN\ngiAIajOi1hQEQZkp27xm2fRCaB4OyqYXQnOjRKcgCIIgCAIgpg+CEhPTB0EQBAMnpg+CIAiCIOiX\n6BQEQ4YWwXJa0kaSPlZIT5Z02NCpaw/KNq9ZNr0QmoeDsumF0Nwo8Upi0C5sTHKcvDqnG5rXKmOs\nApXM1red9MZ0URA0l1hTECwSqmFjncM417NU3pxkqbw08ALJovlh4MGc9yjwA2CdfOya+ftk2wuM\nQkhyNxHn+M1CF13RKQiCISDWFARNQQO0sc759wPbOFlJHw18P4eHPgr4jZM19IUko6X3AtuRbJyP\nVjJ+CoIgCJpEdAqCReENG2vbr5B8JSq9zw+RrJ3vBi6n18Z6BeBiSXOBE0kdCfJxxZ6rScZQrzjZ\nZD8OvIOS00O5gtyXTS/E3PFwUDa9EJobJdYUBIvCYGysTwOut/0pSauT3CXrUTz2NWr8XqcwhTEk\n7+TRjGY84+kgecdWbmjtlH6QB9tKT5n0QmPWt8WytfZH+s2ZBjoktY2eBtMd5L+Ri1KfRrJ1ctA+\naGA21hvZni1pOvAr29MlTQb2sr2GpJ2AHWxPyuWPBp6zfUJOzwU+bvtvhfZjTcGbiFhTEARDQ6wp\nCJrCAG2sv5Tzjwd+kO2TF6d3ZKEbWFfS3ZI+XWmiyacQBEEQFIiRgqC0lPF1xGDRaGSkICxym0/Z\n9EJorqo3rJODkUnZhpPL9oepbHqDIFg0YqQgKC3hfRAEQTBwYk1BEARBEAT9Ep2CIBhGyvaudNn0\nQmgeDsqmF0Jzo0SnIAiCIAgCINYUBCUm1hQEQRAMnFhT0OZI6pR0Rd4etP3wUNQpaTVJFy1q+zXq\nfUODpC9J2nOo2wiCIAgWjXglsf1oxtBNw3Xa/juwazM12P7ZUFUasQqC4M3HYEYIy/h6bSs0x0hB\nk5D0UUl3SeqR9PucN0rS2ZJukzRL0g61Dh2uOiVtmyMI3p2PHSVpbA4pjKRlJV0o6V5J0yXdKmmT\nvO85ScdlLTMlvT3nb5/LzZJ0XSW/qt3Jkg7L2zMkTcn6H5C0dR9tT1j4LFyyT3cbaBjJekPzyNcb\nNJMYKWgCklYBziRZBD8iaYW869skM6Av5LzbKjf3VtQJHAbsZ3umkoPhS1X79wP+ZXs9SevBApZ5\nywIzbR8p6YfAvsD3gBttb5E1/xfwNeBwFnZAdGF7cdvvk/Qxkp3yh+u0PQL+InS2WsAA6Wy1gEHQ\n2WoBg6Cz1QIGSGerBQyYso0SQGs0R6egOWwB3GD7EQDbT+f87YDtJR2e028B3tXCOm8GTsrmRdNt\nPyotMKiwFXBybu9eSXMK+162fVXevot0Iwd4l6QLgTHAUsBfG9AxPX/PAsY20HYQBEHQBKJT0BxM\n/WmAnWz/pZih5DZIVd5ipJukgd8CdyxqnQuJtH8o6Urg48DNkj7CwqMF9dp8pbD9Or2/pVOBH9u+\nUtK2JMOk/qi0WW2P3MC84SR6+xErkJxGO3N6Rv5up3QPcEgb6RlpeinktYueRtKV7XbR01+6st2K\n9hMauJXwIUBPm1kj92udbPvkRa1PA7BOxnZ8hvgDrAL8DRib0yvl7+8BpxbKbZy/O4Er8vakYpkm\n1zmusH0RsAPpDjs35x0OnJa31wVeBjbJ6fmFY3cBpubtWYUyU4Huag2kjsJhebu7UP5twLz+2i60\na3DJPt1toGEk6w3NI18vHuTf5c5W3xvaRXNf1zAWGjYB208AXwSmS+oBzs+7jgWWlDRH0j3AMcXD\nCt+mimbUCRwsaa6k2aSb7tVVx50GrKJkfXwsyRr5maoy1fVPBi6SdCfwRB0N9fQ02naJ6Wy1gAHS\n2WoBg6Cz1QIGQWerBQyQzlYLGDCONQUNEcGLgrrkKYwlbb8kaRxwHbCW7Vfboe14HTEI3pw4gpYt\nEgrr5GCQjAL+IGlJ0vz+V4ajQzCQtsv2x6Fs70qXTS+E5uGgbHohNDdKdAqCutieD2z2Zms7CILg\nzUpMHwSlpa8hsCAIgqA2ff3tjIWGQRAEQRAA0SkIgmFFJfN0L5teCM3DQdn0QmhulOgUBEEQBEEA\nNLFToCbYAQ8FGqRtbzYPev+i1jPUFA2MqvLfuP419l0lafnmqxs4kn4uaZ1W62gWZVv9XDa9EJqH\ng7LphdDcKMP19sGgVzNKWmIoX4Pz4G17u4D5wMxFrKfl2P54qzXUw/a+AykfsQqCIrHwNAgWjQF1\nCiR9lBRWd3Hgn7Y/JGkUKd79esCSwGTbv60+tE59KwFnA2sA/wa+aHuupMnAuJz/iKSDSRH8ViXd\nlD9MCnn7pKRLSQZASwM/sf3zXPdzJEOdTwAvAJ+0/Xiuez7wa+B/CnI2yO11kJwHlwL+BexBcgT8\nEvCapM8BBwIfIoX6PUFSB3AGsAzwEPAF209LmgHcSupQrADsY/umqmswCrgcWDFfvyNt/1bSWFKE\nwRuBLYFH8zm8mC2EzyZ1tq6tdW3zvuWzt8F4Ujjh/Wxb0sOF63cosHc+5izbP8m6jsrn/gTwv8Bd\n+VzHAT8lhV3+N7Cv7QckTSNFHNyUZIb0NduX5LqOAHYlmTVdantyPu8LgXeSfk/ftX1RvmaHkoLu\nnw1MyOdytnMM8CLd3XXOvk3p6YGOjlaraJwy6e3qSt/xPnrzKZteCM2N0vD0QcG6dyfbHaR499Br\n3fs+4IPAj7INbyMcQ7rZbAR8C/hlYd97gYm29yCFzv297fWBi4F3F8p9wfampHfaD5K0Ys6vWPt2\nAH8kWftCHrWw/ZjtjW1vDJwFXGz7f8nWv7Y3AS4g3dweJt30T8zH3MSCoXp/CRyRz2Muyf630tbi\n+docUsgv8iLwKdsT8vU7obBvPPDTfN5PAzvn/KnA/vnc6iFgc+AAknfAOGCn4jXInYtJudwWwL6S\nOiRtlstuCHyMdKOvnOuZwIH5mh9BCkdcYYztrUgdsSm5je2A8bY3BzYGJkjaBvgI8KjtDtsbAL8r\nastlV7O9ge0N8zkHQRAETWQgIwXNsO7dinyjst0taWVJy5FuDL+1/VKh3I653O8kPVWo42BJO+bt\ndwHvAW6nvrXvAkjaCviv3Ab0bf270IhHnpt/q+0bc9Y5JHOhCrVsgYssBvwg3yhfB1aT9Pa8b57t\nimXwXcBYSW/N7VVGHM4l3bhrcXvu0CDpfGBr4JLCuWxNskx+IZeZDmyTNV1m+2Xg5cLakFGkUYuL\n1GuxvFT+NnAZgO37Jb0j528HbCfp7pweRers3AScIGkKcGX1CAppxGVNSacAV1FnRGTKFBgzJm2P\nHg3jx/c+2fb0pO92S1doFz0jRS8s+GTVJi53DaXd62TXFnpGml4yZfx9FLUPtj4NwCWx4eBFkj4B\nfMb256ry7wQ+64WteztJTnjbS5oETLB9YFWZWcDOtufl9N9I0xCHAs/ZPiHn3016mn44p/9Fuvlv\nSDLL+XAeVu8Gjrb9R0nzbS+Xy+8CfNz23pKOrtStZC/8B2B72w/msjOosv613VU8Lpc7mjQNcRbJ\nVXD1nD8OuND2hKznMNuzJL0NuMP2GlXXYBLwUWAP269JmgdsS7oxX5GfopF0GDCaNCUyp9DehsB5\nlXJV13+y7c6c/gKwnu3DchubkqYHVrZ9dC5zLPB4bntF25Nz/onA/wE/Bx6wvRpVSJpKurlXpgzm\n215O0o+BP9s+s8YxK5Bsm/cljTYdW3XNRpFGFPYEnrS9T9XxLtv0QdA8urpiTUEQNIKGKHjRbcAH\nlOa6K+sBIA37HlRobOMB1Hkj6cZUuYk94RTetlrszcCnc7ntSPPvAMsDT+UOwXtJoxn9oVzPEqQn\n+q9VOgSFOv+etycV8ucDy1XXZftZ4ClJW+e8Pak2/u6b5YHHc4egC1i9r8K2nwGeziMckK9fHTZX\nejthMWA30tP5G1WRrv+OkpbJN+AdSVMtN5NGf94iaTTpxl0JPTwvd7JQYsN+zu93wBdy/Uh6p6RV\ncofsRdvnAT8mTRdUkKSVSVMv04GjgE36aacUVD99tztl0wvxPvpwUDa9EJobpeHpA9tPSKpY9y4G\n/D/SU9yxwMmS5pA6GX8FdqgcVviuNSQxGThbybr3eWCvOuWPAc5XegVwJvAP0k36GuDLku4DHsj7\nKNRR3K7WsiVpEdt3JX037/tPeq1/nyKNIlRu0lcAF0vagd5OUKXOvYAzlNZSPETvwr1qal2D84Ar\n8vW7E7i/j/KV9N6k61ZZaFirXgN3kBYFjgf+YPvSYj2271ZaIHh7zv+57dkAkn4LzCH9O8+l17Z4\nD+B0SUeSFkaen8tV6620cZ3SK4YzlaYc5pM6TuNJ609eB14Bvlx17DuBqfm3BvCNGucYBEEQDCGl\n8D6QtBTwWn6afj/w304LAYMmIWmU7edzR+cG0lsGbfXcqHgdMagipg+CoH/6mj4oi0viu4EL81Pj\ny/S+SRA0jzMlrUt61XNau3UIKsRNIAiCYOgoxUhBENSir95uu1Jc/VwGyqYXQvNwUDa9EJqr6h2S\nhYZBEARBEIxgYqQgKC1lHCkIgiBoNTFSEARBEARBv0SnIAiGkbK9K102vRCah4Oy6YXQ3CgjqlOg\nYbJrljQ5RxgcFpp1LlXXa3tJX8/bq0i6TdJdhSBJi9LOJ1WwQ5Z0jKSJi1pvEARBMLSU5ZXEwdDM\nxRKlWYihBq2nbV9BCtAEMJEUSrnhVz8lLWb79Tq7P5Xrvj+3VcsYalCUMVaBVK5lEI3obae1HWVb\nYQ7l01w2vRCaG6XtOwUaervm0fnYiiXvMcBbgQ1tfzWX2RdYx/ahkj4PHJbLzra9V1V9Na2Eq8ps\nTvIsWJpk47y37T9n34MdSJbL40i2wpWn9b1JUfyeBmYDL1GFei2mxwFvA463fVYecjoWeBJYW9JG\nJJfHCcCrwKHVP7asZQLJy+GHwDJKLopbAh8gRXp8CzliYw5s9DDwG5LZ1PFKZlZfJJkkPUiKXLgx\nsD0pRPa3Se6a3yH5OlySRwx+RPot3gF8xfbLue5p+dglgV2rrytAN2F+0Gq66Gq1hCAIhoi2nj5Q\nc+yajyL5JWzoZHX8B+BCUqz/xXOZScAvJK2X2+rK7R9cqKcRK+EK9wPb5CiMRwPfL+zbiOTrsAGw\nW/YGWJV0E96S5GS4LvVHJ9YHuoD3A9/Jx0K6GR9k+70k++TXnCyIPwucI+kttSrLYY6/A/wm6x2d\nr8FEJ3vnu0iGVZVr8E/bE2xfQHJc3Dxfq/uBfWzfAvwWONz2Jrb/mo+zpKVJlsifztqWAL5SqPuJ\n3ObpQMWFs9T00JYxoOpSNr0Qc8fDQdn0QmhulHYfKWiGXfNEkjkQxTol/SHX+SdgSdv3SjqQ5Hj4\nZFX75GP6shIusgLwS0njSTe74nW/PhsNkT0cxpJGHWbY/lfOvwBYq0a9Bi53sph+SclhcHPS6MLt\nletGsoU+JZ/DA5IeqVPfG6dG70jLFqROyS35HJcCbimUvaCwvYGk40gjL6NJ3hTFOqvbWJtkD10x\npDoH2B/4SU4Xbad3qiV0ClMYQ/JOHs1oxjOeDpKXbuWG1k7pB3mwrfQMhd4KlT9gHgFWs5EeeWmg\nQ1Lb6Gkw3UE22FuU+tQM6+RWoObYNd+Z63ywKn9z0hPx/cDDts+QdAAwxvaRVWUrtsl1rYSryk8D\n7rT9U0mrk274a1RrVFr092NSJ2KnylSFpIOA99Q4l6NJ/4aTc/oc4GLgWdKT+fY5fzpwqu3unP4j\nsB9pymGh61W1/Qlgd9u71zivebnck4X0DrbnStoL6HSyq55Kmi6YnstNBa4E/pJ1bZvzJ5KmD3Yp\n1i1pU+BHtruq2ndMH7SeLrraak1BEAR9oxLHKWiGXfN1pKfRyrErANi+HfgPYHeS8x+kqYVdK+1K\nWrFQj9y4lXDRjrmeg2IFk857W0krSVoS2LVOWQGfVLI4XhnoJM3LV/9jFy2q1yJ5SSw0P1+H24Ct\nlNZOIGmUpPfUKTsa+EfW/Dl6pzzmk65BEWcNYyt1k9Yg3NCgriAIgmCIaetOge0nSAvXpkvqofdm\nfSywpKQ5ku4hLRZ847DCd61hkOOAFSXNzXV2FvZdCNxk+5nc/n2kRY435LIn1GhnD2CfvP8eem2j\nixwP/EDSLNKCyT412v4HaU3BTOAm4N4652KSbXF3LvvdfGx1vacBiynZM/8G2Mv2K1Xlam7nf4NJ\nJOvq2aSpg7VraIG0XuO2rLloAf0b4AilVxzXLJznS6RO0kVZ26ukBZEVDcXzbN8hrQFQtjn6sumF\nmDseDsqmF0Jzw2228/TBcJOH70+sDLO3O3n64DnbJ/RbeASiEr6OOFJpp+kDhfFN0ymbXgjNVfXW\nnT6ITgFvTCHcBvTY3q2/8u1CZW2D7RNbraUV9PXDDoIgCGoTnYJgRBKdgiAIgoFT5oWGQTCiKNu8\nZtn0QmgeDsqmF0Jzo0SnIAiCIAgCIKYPghIT0wdBEAQDJ6YPgiAIgiDol3YPcxwMkkaiOw6grhkk\nE6VZkp6zPXoRta0G/MR2vaBMA6krhrqCIFgk2nXEsRWvUcZIwZuDRb1xVgcSWrTK7L8PRYcg11ay\nT3cbaBjJekNz6B2o5qBIdApKhKSP5qiAPZJ+n/NGSTpb0m2SZkmqFVGxno305pJuycfdnEMgI2kZ\nSb+RdF/2TVim6rjjsoaZkt6e81aRdLGk2/Nny5y/raS782dW1jtW0ty8f2lJU3N0ylmV1baSJkma\nLulqSX+W9MMhuowtprPVAgZIZ6sFDILOVgsYBJ2tFjBAOlstYBB0tlrAgGlFsKWYPigJ6rWR3sb2\nIxXPBnptpL9QCcJU6TA0QMXS+TVJHyJZOu9Csi9+zva6kjYguRRWGAXMtH1kvlHvSwoF/RPgJNs3\nS3o3ySFxXeAwYD/bM5XsrV+q0rA/2dZZ0trAtZXOCclWugN4GXhA0im2H23w3IIgCIIBEp2C8tAM\nG+l6ls7bkO2Ls+PhnMIxL9u+Km/fBXw4b38IWEe9FtLLKVlL3wycJOk8YLrtRwtloL6ts6ltK13V\nKZiUsyun00HvE8GM/N1O6R7gkDbSM9L0UshrFz2NpCvb7aKnv3Rlu130NJI+mdp/HxJqjvXxIlsn\n2z55UevTAKyTsR2fEnyATwC/qpF/J8lWuTq/k2RXTP4xnFqjzDTggLw9FpiXty8Fugrl7gI2ydvz\nC/m7AFPz9hPAUnW0rwd8Lf8Y185tzc37ple19UdgA2CvombgCuADVfUaXLJPdxtoGMl6Q3PoHahm\n3Oq/73383e9sUr11zznWFJSHZthIFy2dJxXy/0iykEbS+kAtO+hqrq3S0ZG/x9m+1/bxJFvnaofF\nWrbOf6L2Ooi2XCE8MDpbLWCAdLZawCDobLWAQdDZagEDpLPVAgZBZ6sFDBi3YE1BdApKgptjI13P\n0vl0YHQesj+GNBpRXWd1vQcBm0qaLenerBXgYCWb6tmktQFXV9XTiK1zrbaDIAiCISYiGgalJWIU\nBEEwFPhNFqegr4iGsdAwKDXt+p+5HmXzdC+bXgjNw0HZ9EI5NbeCGCkISkt4HwRBEAyc8D4IgiAI\ngqBfolMQBMNI2Tzdy6YXQvNwUDa9EJobJToFQRAEQRAAsaYgKDGxpiAIgmDgxNsHbYCkh4FngdeB\nfwKft/33vO914ETbh+f04cAo28cUju8B7rf92SbpOwT4me0XGjiPTWw/2WC9k0lREE+QdAzwR9vX\nL6reQv3Rqw36JDqOQdA40SkYPkwKWflkvlF+Ezgw73sZ+JSkH9j+F1VBeiStA7wIvE/Ssrb/3QR9\nBwPnAn12CrK2gfyRfeNcbB89CF190t091DU2l54e6OhotYrGKZteWFBzV1drtTRK2V6XK5teCM2N\nEmsKWsOtwLhC+hWSA+JX65T/LCmC4bXAJ2sVkDRN0mnZzvghSZ2Szsn2x1ML5bZTsku+S9KF2cr4\nIGA1oFvS9bnc6ZLukHRP7sQU+VqOoHibpHG5/FhJf8gRDX8vaSFTpqxx57w9RdK9ufzxAzmHIAiC\noDlEp2B4qTxhfxS4p2rfacAekpavcdyngQvzp970gYEVbL+f1Ln4LSmM8XrABpI2kvQ2ktXyRNsT\nSEZHh9o+heSB0Gl7Yq7vW7Y3I9kXb5s9ECo8bXtD4Kck6zGAU0nmSBsB55GdD2totKSVgR1tr5fL\nH9foOdQ599JQtqfusumFcmou2xNs2fRCaG6UmD4YXrqzkdGrQPEmi+35kn5J8hB4Ywhf0qbAE7Yf\nk/Q4ME3SirafqlH/Ffn7HuAftu/NddxLciZ8F7AucEu2L14KuKWO1t0k7Uv6jayaj6t0ZCq+C78B\nTsrbWwA75u1fkW7m9XgaeFHSL4Ar86fRc5hdrGjKFBgzJm2PHg3jx/feFHp60nek39zpCm1ihRvp\nSA97WgOwTo63D4YJSfOACcAzpCfp22yflPfNt72cpBWBWcBU0r/NMZJOINkIz89VrQgcbvusqvqn\nAlfavkTJSfEK2xsU9wEvAbvb3r2evrzmYQ3SVMWmtp/Jx3fb/mUu12X7YUlLAn+3vYqkJ4BVbb9a\nlX80aaHhiVUalwImkuyXx9qe2Mg52L6koNmxpqC5lE0vLLymoAwLDVWy+e6y6YXQXFVvRDRsF2y/\nBhwCHCZpdNW+p0hTBPuQhtkXA3YF1re9hu01SE/jg3kDwaS1DFsV1gGMkvSevH8+yUqZ/P088Kyk\ndwAfK9QjYLe8vRu9Iw23AJ/J23uQ7Jcr5Rf48UkaRZomuBo4lDRFEQRBELSYmD4YPoqr8P8haTqw\nP/DD4j7gBOCAvL018H+2/1HYfyOwrqR32P5/9dqo2q60+09Jk4DzJb0lZ38b+AtpoeM1kh7NT+13\nA38C/he4qareFZWskF+kt4NyIDBV0hHA48DehfLVupYDLpe0NKnD8NWq/fXOofTDWmV76i6bXiin\n5rI9wZZNL4TmRonpg6C0KGIUBA1QhumDIBhO+po+iJGCoNSU7Q9+2eY1y6YXQvNwUDa9EJobJdYU\nBEEQBEEAxPRBUGL6GgILgiAIahNvHwRBEARB0C/RKQiCYaQSUKQslE0vhObhoGx6ITQ3SnQKgiAI\ngiAAYk3BsKBe22SAxYHpwHG2X8qR+/4KHGT7p7n8T4E7bJ+T00sAjwFn2f5mkzR+y/b3Gyj3nO3R\n/ZUrlJ9Gikx4iaSfkyyi718EqcW648fbImItRxCUl3glsfUUbZNHkQIF/YzeWNSPAwdJ+pntV1g4\nSM+HSeZFO5Msl5vBN4F+OwUMPIDQG8GLbO87UFH90U3J4hyPALooiR9xEAQDJqYPhhnbzwNfBnaU\ntELOfgK4nuRxUIvPAKcDf5X0/loFJM2QdKKS3fH9kjaTdKmkP0s6tlDuc0qWx3dLOkPSYpKmAMvk\nvHNzucsk3alknbxvVVsn5vzfKzkvIqlD0q1KVsjTC+dWrXGT3OY0SXOVLJgPHsg5lJkeevov1EaU\nTS/E3PFwUDa9EJobJToFLcD2fGAe8J5C9vHA4dnv4A1yKOAPAlfTv3XyS052x6cDl5M6H+sDkySt\nKGkdkg3zlrY3Bl4H9rD9DeAF2xvb3jPXt7ftTYHNSKMYK+b8UaSpjfWBG4Cjc/4vgSOcrJDnFvKr\nNQJsDKxmewMnC+apjZ5DnXMPgiAIhoCYPmgdC8zn2J4n6Tag2sHwE8AM2y9LugyYLOlg114M8tv8\nfQ9wT8UbQdJfgXcD25CcGu9Usk5eBvhHjXoADpZUsUJ+F6kDczupI3FBzv8VMF3S8sBbbd+Y888B\nLhULPGIAAAa8SURBVOrj3B8C1pR0CnAVyZGx0XNYwDJ6ClMYQ/JOHs1oxjOeDlLw+8pTbrulK7SL\nnoHqraAWWsGOtHTB3rYt9Iw0vWRUiBDYaj2NpovaB1ufwjq5vVDBljinlyMZDa1OskK+wvYGktYG\nLiY9gd9h+xxJlwBbAS/k6lYBdrT9+6o2uoHDbM/KP4DDbG9f2Hc48H7SE/q3amicb3u5vN0JHAt8\n2PaL+fijbf9R0qvAUrZfl7Rm1tsJzLW9ej5+HHCh7QlKlsdX2J5epXEU8BFgT+BJ2/s0cA6H2Z5V\n0OxYUzD8dNEVCw2DoMQoghe1BQJQsks+DbjU9jPFArYfAO4DtidZJy9Pckp8l3utkw9g8NbJ1wO7\nSFola1lJ0rvz/leU3nKAZJ38VO4QvBfYolBPxc4Z0qjGjbafBZ6StHXO3xOYUUeHJK0MLG57OnAU\naTrhTUHZ5ujLphdi7ng4KJteCM2NEtMHw0e30pj9YqRXEosL54rDNd8DKk/DOwLX5zcSKvwW+KGk\nJavyi1TbFadM+35JRwLX5rULrwD7AX8jvRExR9JdwD7Al/X/27uXUKuqOI7j319eNS+SEg0iFU6D\nnoMyBxJWFDQoxB6zwh5ikwbagyjSSTRtEDas7IGSPUgjcqIgFCJZKF7xLVpEXqOHhkbhQPHfYK8r\nh+tVzzn77H3Wht8HNpyz91r7/u7mrnP/Z6+9z5EOAIeB7W27+Q+Yn/bzB/BEWr8EeFfSMMX0wFIm\nFsAsiq9ZHitKV3T6O5iZWXU8fWCNJX9OwcB4+sCsuS43feAzBdZo/udkZtY/vqbArEZNm9dsWl5w\n5jo0LS84c6dcFJiZmRngawqswS43L2ZmZhPzLYlmZmZ2RS4KzGrUtHnNpuUFZ65D0/KCM3fKRYFZ\nveYOOkCXmpYXnLkOTcsLztwRFwVm9bro2yMz17S84Mx1aFpecOaOuCgwMzMzwEWBWd1agw7Qpdag\nA/SgNegAPWgNOkCXWoMO0IPWoAP0oFX3D/QtidZY/phjM7PeXOqWRBcFZmZmBnj6wMzMzBIXBWZm\nZga4KLBMSXpY0iFJRyS9fok2D0gakbRP0nfd9M0lr6Q5kr6VtD+tf7GOvGUyt22blLZtzD2vpJmS\n1ks6KOmApLsbkHll+rvYK+lTSVNzyCzp1ZR3JGU7J2lmJ31zyzyo8VfmGKft1Y29iPDiJasFmAQc\npbjydjKwG7htXJuZwH5gdnp+Xad9M8t7PTA3PZ4OHK46b9nMbdtfAdYB3+SeF1gDPJceDwEzcs6c\n+vwMTE3PvwCW5JB5XPtFwJZe+maSufbxVyZv27rKxp7PFFiO5gNHI+KXiDgLfA48Nq7NYmBDRIwC\nRMSJLvpmkzcifo+I3enxv8BB4IaK85bKDCBpNrAQ+ACo40upes4raQZwX0R8lNafi4jTOWcG/gHO\nAsOShoBh4HgmmdstBj7rsW+/9Jx5QOOvzDGufOy5KLAczQKOtT0fTeva3QRcm0797ZT0TBd9+61M\n3gsktYC7gB8rytmubOZVwGvA+WpjXlAm743AX5I+lrRL0mpJwzlnjoi/gbeBX4HfgFMRsSWTzACk\nY/gQsKHbvn1WJnP7thb1jL+yeSsde0NV7NSspE7uk50MzAMepHgXtV3SDx327bee80bEEQBJ04H1\nwEvpHUvVyhzjW4A/I2JE9X1hS5m8Q2n98ojYIekdYAXwRlVhkzKZzwMvU5xiPg18KempiFhXUdYx\n3YyfR4BtEXGqh779VCYzUPv46zmvpEVUPPZcFFiOjgNz2p7Poaim2x0DTkTEGeCMpK3Anandlfr2\nW5m8RyRNpngn8ElEfF1x1jFlMs8DHpW0ELgauEbS2oh4NsO8dwDbgNGI2JHaracoCqpW5hhfBXwf\nEScBJH0FLKCYRx505jFP0nZau8u+/VQmMwMYf2XyLqDqsVflBRVevPSyUBSrP1G8S5rCxBdo3Qps\nobhoZxjYC9zeSd/M8gpYC6xqyjEe1+Z+YGPueYGtwM3p8ZvAWzlnpigM9gHT0t/IGmBZDplTuxnA\nSWBat30zy1z7+CuTd9z2SsaezxRYdiLinKTlwGaKF8sPI+KgpOfT9vci4pCkTcAeilOtqyPiAMBE\nfXPNK+le4Glgj6SRtMuVEbEp18wT7a7KrH3K+wKwTtIUihfkpblnlrQW2JnW7wLezyFzavo4sDmK\nMxyX7ZtzZuAeah5/JfNetLt+5/PHHJuZmRnguw/MzMwscVFgZmZmgIsCMzMzS1wUmJmZGeCiwMzM\nzBIXBWZmZga4KDAzM7PERYGZmZkB8D9MmZqBctiy/wAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "jData.groupby(2)[1].mean().plot(kind='barh', color=list('myb'))\n", "plt.axis([0.6, 0.75, -1, 14])\n", "plt.xlabel('')\n", "plt.ylabel('')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
01
0 GCKDGN101A00ZL 0.335379
1 GCKDGN101A02W5 0.559472
2 GCKDGN101A03XE 0.618671
3 GCKDGN101A06FB 0.207357
4 GCKDGN101A08CL 0.342674
5 GCKDGN101A097A 0.679228
6 GCKDGN101A0KSC 1.039590
7 GCKDGN101A0M8H 0.781130
8 GCKDGN101A0NCL 0.404416
9 GCKDGN101A0S0M 0.254499
10 GCKDGN101A12VJ 0.184560
11 GCKDGN101A13V9 0.147354
12 GCKDGN101A15QU 0.712784
13 GCKDGN101A17ZT 0.472153
14 GCKDGN101A19EE 0.850999
15 GCKDGN101A1O0W 0.802256
16 GCKDGN101A1T4S 0.076902
17 GCKDGN101A1TLT 0.380306
18 GCKDGN101A20KS 0.922365
19 GCKDGN101A23YI 0.698875
20 GCKDGN101A28J5 0.698418
21 GCKDGN101A2DZK 0.751943
22 GCKDGN101A2LIL 0.605440
23 GCKDGN101A2NZY 0.445518
24 GCKDGN101A2R04 0.694789
25 GCKDGN101A2WY5 0.628895
26 GCKDGN101A35AI 0.170293
27 GCKDGN101A38VU 0.886832
28 GCKDGN101A39U8 0.491907
29 GCKDGN101A3AVK 0.524441
.........
13758 isotig32619 1.032320
13759 isotig32645 0.984676
13760 isotig32665 0.230087
13761 isotig32717 0.733053
13762 isotig32730 0.340215
13763 isotig32740 0.593341
13764 isotig32767 0.970656
13765 isotig32781 0.861883
13766 isotig32795 1.010170
13767 isotig32805 0.468420
13768 isotig32821 0.207627
13769 isotig32829 0.756356
13770 isotig32836 1.457250
13771 isotig32872 0.960073
13772 isotig32873 0.753304
13773 isotig32875 0.691457
13774 isotig32909 0.000000
13775 isotig32914 0.000000
13776 isotig32936 1.585850
13777 isotig32941 0.261595
13778 isotig32968 0.707426
13779 isotig33023 0.698778
13780 isotig33042 0.963724
13781 isotig33055 0.307721
13782 isotig33063 0.875935
13783 isotig33069 0.000000
13784 isotig33082 0.218770
13785 isotig33093 0.429516
13786 isotig33136 0.809603
13787 isotig33159 1.262630
\n", "

13788 rows × 2 columns

\n", "
" ], "text/plain": [ " 0 1\n", "0 GCKDGN101A00ZL 0.335379\n", "1 GCKDGN101A02W5 0.559472\n", "2 GCKDGN101A03XE 0.618671\n", "3 GCKDGN101A06FB 0.207357\n", "4 GCKDGN101A08CL 0.342674\n", "5 GCKDGN101A097A 0.679228\n", "6 GCKDGN101A0KSC 1.039590\n", "7 GCKDGN101A0M8H 0.781130\n", "8 GCKDGN101A0NCL 0.404416\n", "9 GCKDGN101A0S0M 0.254499\n", "10 GCKDGN101A12VJ 0.184560\n", "11 GCKDGN101A13V9 0.147354\n", "12 GCKDGN101A15QU 0.712784\n", "13 GCKDGN101A17ZT 0.472153\n", "14 GCKDGN101A19EE 0.850999\n", "15 GCKDGN101A1O0W 0.802256\n", "16 GCKDGN101A1T4S 0.076902\n", "17 GCKDGN101A1TLT 0.380306\n", "18 GCKDGN101A20KS 0.922365\n", "19 GCKDGN101A23YI 0.698875\n", "20 GCKDGN101A28J5 0.698418\n", "21 GCKDGN101A2DZK 0.751943\n", "22 GCKDGN101A2LIL 0.605440\n", "23 GCKDGN101A2NZY 0.445518\n", "24 GCKDGN101A2R04 0.694789\n", "25 GCKDGN101A2WY5 0.628895\n", "26 GCKDGN101A35AI 0.170293\n", "27 GCKDGN101A38VU 0.886832\n", "28 GCKDGN101A39U8 0.491907\n", "29 GCKDGN101A3AVK 0.524441\n", "... ... ...\n", "13758 isotig32619 1.032320\n", "13759 isotig32645 0.984676\n", "13760 isotig32665 0.230087\n", "13761 isotig32717 0.733053\n", "13762 isotig32730 0.340215\n", "13763 isotig32740 0.593341\n", "13764 isotig32767 0.970656\n", "13765 isotig32781 0.861883\n", "13766 isotig32795 1.010170\n", "13767 isotig32805 0.468420\n", "13768 isotig32821 0.207627\n", "13769 isotig32829 0.756356\n", "13770 isotig32836 1.457250\n", "13771 isotig32872 0.960073\n", "13772 isotig32873 0.753304\n", "13773 isotig32875 0.691457\n", "13774 isotig32909 0.000000\n", "13775 isotig32914 0.000000\n", "13776 isotig32936 1.585850\n", "13777 isotig32941 0.261595\n", "13778 isotig32968 0.707426\n", "13779 isotig33023 0.698778\n", "13780 isotig33042 0.963724\n", "13781 isotig33055 0.307721\n", "13782 isotig33063 0.875935\n", "13783 isotig33069 0.000000\n", "13784 isotig33082 0.218770\n", "13785 isotig33093 0.429516\n", "13786 isotig33136 0.809603\n", "13787 isotig33159 1.262630\n", "\n", "[13788 rows x 2 columns]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#To plot density curve, must use CpG data with original annotation\n", "CpG = pd.read_table('Past_cpg_anno', header=None, )\n", "CpG" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "ename": "TypeError", "evalue": "Empty 'Series': no numeric data to plot", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# pandas density plot\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mCpG\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'kde'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlinewidth\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m0.3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1.7\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1.7\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/jd/anaconda/lib/python2.7/site-packages/pandas/tools/plotting.pyc\u001b[0m in \u001b[0;36mplot_series\u001b[0;34m(series, label, kind, use_index, rot, xticks, yticks, xlim, ylim, ax, style, grid, legend, logx, logy, secondary_y, **kwds)\u001b[0m\n\u001b[1;32m 2258\u001b[0m secondary_y=secondary_y, **kwds)\n\u001b[1;32m 2259\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2260\u001b[0;31m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2261\u001b[0m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2262\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/jd/anaconda/lib/python2.7/site-packages/pandas/tools/plotting.pyc\u001b[0m in \u001b[0;36mgenerate\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 898\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 899\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_args_adjust\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 900\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compute_plot_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 901\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_setup_subplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 902\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_plot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/jd/anaconda/lib/python2.7/site-packages/pandas/tools/plotting.pyc\u001b[0m in \u001b[0;36m_compute_plot_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 968\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_empty\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 969\u001b[0m raise TypeError('Empty {0!r}: no numeric data to '\n\u001b[0;32m--> 970\u001b[0;31m 'plot'.format(numeric_data.__class__.__name__))\n\u001b[0m\u001b[1;32m 971\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 972\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnumeric_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mTypeError\u001b[0m: Empty 'Series': no numeric data to plot" ] } ], "source": [ "# pandas density plot\n", "CpG[0].plot(kind='kde', linewidth=3);\n", "plt.axis([-0.3, 1.7, 0, 1.7])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }