{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Calculating CpG ratio for the *Acropora hyacinthus* transcriptome" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This workflow calculates CpG ratio, or CpG O/E, for contigs in the *Acropora hyacinthus* [transcriptome](http://palumbi.stanford.edu/data/33496_Ahyacinthus_CoralContigs.fasta.zip). CpG ratio is an estimate of germline DNA methylation.\n", "\n", "This workflow is an extension of another IPython notebook workflow, `Ahya_blast_anno.ipynb`, that generates an annotation of the same transcriptome. This workflow assumes that you have created the directories and files specified in the annotation workflow." ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/Users/jd/Documents/Projects/Coral-CpG-ratio-MS/data/Ahya\n" ] } ], "source": [ "cd .data/Ahya" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ ">contig27\n", "CAAAATTCCAGCACTCCGTTTTGCATGGTAAACTTGTCTTAGTAGGACACTGTGGAAGATGTACAGCGCAAGACATCACAGTTGCAAGCGCCGACGAACAGCTGTTAAACTCTCCTCTCATATTCTCGAACAAACCAAATATTTCTTCCTCTCTGTTGTTGCTAACCTTTGAATATATGAAGCTGGCATTAGCACAGGACTCAAAGTTTCCGCCGAGCAGTTT\n", "\n", "number of seqs =\n", "33496\n" ] } ], "source": [ "#fasta file\n", "!head -2 33496_Ahyacinthus_CoralContigs.fasta\n", "!echo \n", "!echo number of seqs =\n", "!fgrep -c \">\" 33496_Ahyacinthus_CoralContigs.fasta" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r\n", "Converted 33496 FASTA records in 66992 lines to tabular format\r\n", "Total sequence length: 17056543\r\n", "\r\n" ] } ], "source": [ "#Converting FASTA to tabular format and placing output file in analyses directory\n", "!perl -e '$count=0; $len=0; while(<>) {s/\\r?\\n//; s/\\t/ /g; if (s/^>//) { if ($. != 1) {print \"\\n\"} s/ |$/\\t/; $count++; $_ .= \"\\t\";} else {s/ //g; $len += length($_)} print $_;} print \"\\n\"; warn \"\\nConverted $count FASTA records in $. lines to tabular format\\nTotal sequence length: $len\\n\\n\";' \\\n", "33496_Ahyacinthus_CoralContigs.fasta > ../../analyses/Ahya/fasta2tab" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/Users/jd/Documents/Projects/Coral-CpG-ratio-MS/analyses/Ahya\n" ] } ], "source": [ "cd ../../analyses/Ahya" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "contig27\t\tCAAAATTCCAGCACTCCGTTTTGCATGGTAAACTTGTCTTAGTAGGACACTGTGGAAGATGTACAGCGCAAGACATCACAGTTGCAAGCGCCGACGAACAGCTGTTAAACTCTCCTCTCATATTCTCGAACAAACCAAATATTTCTTCCTCTCTGTTGTTGCTAACCTTTGAATATATGAAGCTGGCATTAGCACAGGACTCAAAGTTTCCGCCGAGCAGTTT\r\n", "contig88\t\tTGTCCTGTGTTAGAGGCCAGCTTCAACCTCTTGCTTTCCCTGTCAGCCGAGTTTTCTTCTCCTTCAATAAGCTGGGATTTTCGATCTCTACTCAATGTTTCCATCAAACACCTGAGAGTTAAATCTGCCAGATAACGAAGAAATCCTCTTGCTAGAATACTTTTCAAAAGCCCTTCTTCATACATTGATCTTATCCCATTGCAAATTGCGTTGG\r\n" ] } ], "source": [ "#Checking header on new tabular format file\n", "!head -2 fasta2tab" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r\n", "Added column with length of column 2 for 33496 lines.\r\n", "\r\n" ] } ], "source": [ "#Add column with length of sequence\n", "!perl -e '$col = 2;' -e 'while (<>) { s/\\r?\\n//; @F = split /\\t/, $_; $len = length($F[$col]); print \"$_\\t$len\\n\" } warn \"\\nAdded column with length of column $col for $. lines.\\n\\n\";' \\\n", "fasta2tab > tab_1" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 33496 100488 17731523 tab_1\r\n" ] } ], "source": [ "!wc tab_1" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#The file used to count Cs and Gs will only include the sequence\n", "!awk '{print $2}' tab_1 > tab_2" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#This counts CGs - both cases\n", "!echo \"CG\" | awk -F\\[Cc][Gg] '{print NF-1}' tab_2 > CG " ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#Counts Cs\n", "!echo \"C\" | awk -F\\[Cc] '{print NF-1}' tab_2 > C " ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#Counts Gs\n", "!echo \"G\" | awk -F\\[Gg] '{print NF-1}' tab_2 > G " ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "contig27\t\tCAAAATTCCAGCACTCCGTTTTGCATGGTAAACTTGTCTTAGTAGGACACTGTGGAAGATGTACAGCGCAAGACATCACAGTTGCAAGCGCCGACGAACAGCTGTTAAACTCTCCTCTCATATTCTCGAACAAACCAAATATTTCTTCCTCTCTGTTGTTGCTAACCTTTGAATATATGAAGCTGGCATTAGCACAGGACTCAAAGTTTCCGCCGAGCAGTTT\t223\t8\t55\t42\r\n" ] } ], "source": [ "#Combining counts\n", "!paste tab_1 \\\n", "CG \\\n", "C \\\n", "G \\\n", "> comb\n", "!head -1 comb" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Calculating CpGo/e based on [Gavery and Roberts (2010)](http://www.biomedcentral.com/1471-2164/11/483)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\"BMC_Genomics___Full_text___DNA_methylation_patterns_provide_insight_into_epigenetic_regulation_in_the_Pacific_oyster__Crassostrea_gigas__1A0683A5.png\"/" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#Calculation of CpG o/e\n", "!awk '{print $1, \"\\t\", (($4)/($5*$6))*(($3^2)/($3-1))}' comb > ID_CpG #use ^ instead of ** for exponent" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "contig27 \t 0.775773\r\n", "contig88 \t 0.459903\r\n", "contig100 \t 0.254614\r\n", "contig211 \t 0.885658\r\n", "contig405 \t 0.689373\r\n", "contig443 \t 1.34126\r\n", "contig470 \t 0.323368\r\n", "contig503 \t 0.941889\r\n", "contig583 \t 0.625727\r\n", "contig590 \t 1.21135\r\n" ] } ], "source": [ "!head ID_CpG" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Now joining CpG to annotation, but first must sort files." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "contig100010\tsp\tQ08174\tPCDH1_HUMAN\t45.12\t82\t42\t1\t4\t240\t536\t617\t2e-14\t72.4\r\n", "contig100021_110093_105915\tsp\tP10978\tPOLX_TOBAC\t44.34\t106\t54\t3\t1932\t2243\t774\t876\t4e-14\t81.3\r\n", "contig100025\tsp\tQ69ZS8\tKAZRN_MOUSE\t61.76\t68\t26\t0\t2\t205\t450\t517\t5e-21\t90.5\r\n", "contig100026\tsp\tQ6ZMW3\tEMAL6_HUMAN\t68.07\t119\t38\t0\t9\t365\t1805\t1923\t2e-49\t 174\r\n", "contig100031\tsp\tB0BNG0\tEMC2_RAT\t54.35\t92\t37\t3\t334\t71\t204\t294\t3e-23\t95.5\r\n", "contig100040\tsp\tQ9P215\tPOGK_HUMAN\t30.00\t100\t70\t0\t4\t303\t490\t589\t3e-11\t63.5\r\n", "contig100055\tsp\tQ32M45\tANO4_HUMAN\t52.33\t86\t41\t0\t259\t2\t291\t376\t7e-19\t85.5\r\n", "contig100067\tsp\tQ58EN8\tVP33B_DANRE\t52.50\t40\t17\t1\t138\t257\t94\t131\t4e-07\t50.4\r\n", "contig100105\tsp\tA4Q9F1\tTTLL8_MOUSE\t54.79\t146\t61\t1\t20\t442\t525\t670\t2e-47\t 169\r\n", "contig100110_36597\tsp\tQ6PDJ1\tCAHD1_MOUSE\t39.02\t164\t93\t3\t24\t503\t675\t835\t1e-33\t 131\r\n" ] } ], "source": [ "#Sorting Ahya Uniprot/Swissprot annotation file. This file was the result of work done in another notebook: Ahya_blast_anno.ipynb\n", "!sort Ahya_blastx_uniprot_sql.tab | tail -n +2 > Ahya_blastx_uniprot_sql.tab.sorted\n", "!head Ahya_blastx_uniprot_sql.tab.sorted" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "contig100010\tcell adhesion\r", "\r\n", "contig100010\tcell-cell signaling\r", "\r\n", "contig100010\tdevelopmental processes\r", "\r\n", "contig100021_110093_105915\tDNA metabolism\r", "\r\n", "contig100021_110093_105915\tprotein metabolism\r", "\r\n", "contig100025\tdevelopmental processes\r", "\r\n", "contig100040\tRNA metabolism\r", "\r\n", "contig100040\tdevelopmental processes\r", "\r\n", "contig100055\ttransport\r", "\r\n", "contig100067\tdevelopmental processes\r", "\r\n" ] } ], "source": [ "#Sorting Ahya GOSlim annotation file. This file was the result of work done in another notebook: Ahya_blast_anno.ipynb\n", "!sort Ahya_GOSlim.tab | tail -n +2 > Ahya_GOSlim.sorted\n", "!head Ahya_GOSlim.sorted" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "contig100 \t 0.254614\r\n", "contig100001 \t 0.431531\r\n", "contig100008 \t 0.276093\r\n", "contig100010 \t 0.476931\r\n", "contig100021_110093_105915 \t 2.0758\r\n", "contig100025 \t 0.299187\r\n", "contig100026 \t 1.0599\r\n", "contig100030 \t 0.854552\r\n", "contig100031 \t 0.64616\r\n", "contig100038_111047 \t 1.60515\r\n" ] } ], "source": [ "#Sorting Ahya CpG file\n", "!sort ID_CpG > ID_CpG.sorted\n", "!head ID_CpG.sorted" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "!join ID_CpG.sorted Ahya_blastx_uniprot_sql.tab.sorted | awk '{print $1, \"\\t\", $2}' > Ahya_cpg_anno" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "contig100010 \t 0.476931\r\n", "contig100021_110093_105915 \t 2.0758\r\n", "contig100025 \t 0.299187\r\n", "contig100026 \t 1.0599\r\n", "contig100031 \t 0.64616\r\n", "contig100040 \t 0.558145\r\n", "contig100055 \t 0.161543\r\n", "contig100067 \t 0.139249\r\n", "contig100105 \t 0.582234\r\n", "contig100110_36597 \t 0.762749\r\n" ] } ], "source": [ "!head Ahya_cpg_anno" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [], "source": [ "!join ID_CpG.sorted Ahya_GOSlim.sorted > Ahya_cpg_GOslim" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "contig100010 0.476931 cell adhesion\r", "\r\n", "contig100010 0.476931 cell-cell signaling\r", "\r\n", "contig100010 0.476931 developmental processes\r", "\r\n", "contig100021_110093_105915 2.0758 DNA metabolism\r", "\r\n", "contig100021_110093_105915 2.0758 protein metabolism\r", "\r\n", "contig100025 0.299187 developmental processes\r", "\r\n", "contig100040 0.558145 RNA metabolism\r", "\r\n", "contig100040 0.558145 developmental processes\r", "\r\n", "contig100055 0.161543 transport\r", "\r\n", "contig100067 0.139249 developmental processes\r", "\r\n" ] } ], "source": [ "!head Ahya_cpg_GOslim" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "contig100010 \t 0.476931 \t cell adhesion\r", " \r\n", "contig100010 \t 0.476931 \t cell-cell signaling\r", " \r\n", "contig100010 \t 0.476931 \t developmental processes\r", " \r\n", "contig100021_110093_105915 \t 2.0758 \t DNA metabolism\r", " \r\n", "contig100021_110093_105915 \t 2.0758 \t protein metabolism\r", " \r\n", "contig100025 \t 0.299187 \t developmental processes\r", " \r\n", "contig100040 \t 0.558145 \t RNA metabolism\r", " \r\n", "contig100040 \t 0.558145 \t developmental processes\r", " \r\n", "contig100055 \t 0.161543 \t transport\r", " \r\n", "contig100067 \t 0.139249 \t developmental processes\r", " \r\n" ] } ], "source": [ "#Putting tabs in between columns\n", "!awk '{print $1, \"\\t\", $2, \"\\t\", $3, $4, $5, $6}' Ahya_cpg_GOslim > Ahya_cpg_GOslim.tab\n", "!head Ahya_cpg_GOslim.tab" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Now time to plot data using pandas and matplot" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
012
0 contig100010 0.476931 cell adhesion
1 NaN NaN
2 contig100010 0.476931 cell-cell signaling
3 NaN NaN
4 contig100010 0.476931 developmental processes
5 NaN NaN
6 contig100021_110093_105915 2.075800 DNA metabolism
7 NaN NaN
8 contig100021_110093_105915 2.075800 protein metabolism
9 NaN NaN
10 contig100025 0.299187 developmental processes
11 NaN NaN
12 contig100040 0.558145 RNA metabolism
13 NaN NaN
14 contig100040 0.558145 developmental processes
15 NaN NaN
16 contig100055 0.161543 transport
17 NaN NaN
18 contig100067 0.139249 developmental processes
19 NaN NaN
20 contig100067 0.139249 transport
21 NaN NaN
22 contig100105 0.582234 protein metabolism
23 NaN NaN
24 contig100110_36597 0.762749 other biological processes
25 NaN NaN
26 contig100110_36597 0.762749 transport
27 NaN NaN
28 contig100128 0.526529 other metabolic processes
29 NaN NaN
............
47245 NaN NaN
47246 contig99828 0.698013 signal transduction
47247 NaN NaN
47248 contig99828 0.698013 stress response
47249 NaN NaN
47250 contig99828 0.698013 transport
47251 NaN NaN
47252 contig99856 0.311595 other metabolic processes
47253 NaN NaN
47254 contig99903 0.579263 other metabolic processes
47255 NaN NaN
47256 contig99913_9827 0.601522 other metabolic processes
47257 NaN NaN
47258 contig99913_9827 0.601522 transport
47259 NaN NaN
47260 contig99921_218449_5860_158351_79662 0.849566 other metabolic processes
47261 NaN NaN
47262 contig99925 0.658814 signal transduction
47263 NaN NaN
47264 contig99970 1.020940 RNA metabolism
47265 NaN NaN
47266 contig99970 1.020940 cell cycle and proliferation
47267 contig99970 1.020940 developmental processes
47268 NaN NaN
47269 contig99970 1.020940 other biological processes
47270 NaN NaN
47271 contig99996_15114 0.692021 RNA metabolism
47272 NaN NaN
47273 contig99996_15114 0.692021 other biological processes
47274 NaN NaN
\n", "

47275 rows × 3 columns

\n", "
" ], "text/plain": [ " 0 1 \\\n", "0 contig100010 0.476931 \n", "1 NaN \n", "2 contig100010 0.476931 \n", "3 NaN \n", "4 contig100010 0.476931 \n", "5 NaN \n", "6 contig100021_110093_105915 2.075800 \n", "7 NaN \n", "8 contig100021_110093_105915 2.075800 \n", "9 NaN \n", "10 contig100025 0.299187 \n", "11 NaN \n", "12 contig100040 0.558145 \n", "13 NaN \n", "14 contig100040 0.558145 \n", "15 NaN \n", "16 contig100055 0.161543 \n", "17 NaN \n", "18 contig100067 0.139249 \n", "19 NaN \n", "20 contig100067 0.139249 \n", "21 NaN \n", "22 contig100105 0.582234 \n", "23 NaN \n", "24 contig100110_36597 0.762749 \n", "25 NaN \n", "26 contig100110_36597 0.762749 \n", "27 NaN \n", "28 contig100128 0.526529 \n", "29 NaN \n", "... ... ... \n", "47245 NaN \n", "47246 contig99828 0.698013 \n", "47247 NaN \n", "47248 contig99828 0.698013 \n", "47249 NaN \n", "47250 contig99828 0.698013 \n", "47251 NaN \n", "47252 contig99856 0.311595 \n", "47253 NaN \n", "47254 contig99903 0.579263 \n", "47255 NaN \n", "47256 contig99913_9827 0.601522 \n", "47257 NaN \n", "47258 contig99913_9827 0.601522 \n", "47259 NaN \n", "47260 contig99921_218449_5860_158351_79662 0.849566 \n", "47261 NaN \n", "47262 contig99925 0.658814 \n", "47263 NaN \n", "47264 contig99970 1.020940 \n", "47265 NaN \n", "47266 contig99970 1.020940 \n", "47267 contig99970 1.020940 \n", "47268 NaN \n", "47269 contig99970 1.020940 \n", "47270 NaN \n", "47271 contig99996_15114 0.692021 \n", "47272 NaN \n", "47273 contig99996_15114 0.692021 \n", "47274 NaN \n", "\n", " 2 \n", "0 cell adhesion \n", "1 NaN \n", "2 cell-cell signaling \n", "3 NaN \n", "4 developmental processes \n", "5 NaN \n", "6 DNA metabolism \n", "7 NaN \n", "8 protein metabolism \n", "9 NaN \n", "10 developmental processes \n", "11 NaN \n", "12 RNA metabolism \n", "13 NaN \n", "14 developmental processes \n", "15 NaN \n", "16 transport \n", "17 NaN \n", "18 developmental processes \n", "19 NaN \n", "20 transport \n", "21 NaN \n", "22 protein metabolism \n", "23 NaN \n", "24 other biological processes \n", "25 NaN \n", "26 transport \n", "27 NaN \n", "28 other metabolic processes \n", "29 NaN \n", "... ... \n", "47245 NaN \n", "47246 signal transduction \n", "47247 NaN \n", "47248 stress response \n", "47249 NaN \n", "47250 transport \n", "47251 NaN \n", "47252 other metabolic processes \n", "47253 NaN \n", "47254 other metabolic processes \n", "47255 NaN \n", "47256 other metabolic processes \n", "47257 NaN \n", "47258 transport \n", "47259 NaN \n", "47260 other metabolic processes \n", "47261 NaN \n", "47262 signal transduction \n", "47263 NaN \n", "47264 RNA metabolism \n", "47265 NaN \n", "47266 cell cycle and proliferation \n", "47267 developmental processes \n", "47268 NaN \n", "47269 other biological processes \n", "47270 NaN \n", "47271 RNA metabolism \n", "47272 NaN \n", "47273 other biological processes \n", "47274 NaN \n", "\n", "[47275 rows x 3 columns]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "jData = pd.read_table('Ahya_cpg_GOslim.tab', header=None)\n", "jData" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt " ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAD7CAYAAADtuXeEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmYHUW5/z/fhD0BWTWgQiARZA8EIgLKxCjqFRBZFUSC\nXFyQRQl4vQImCGpEAQEvICIJIiJbQAIXZHGC7AHCJGERBQP6Q7kga0CBAN/fH1WH6Zyc2TI9c86Z\neT/P08/pqq6uevudM6ffrqqur2wTBEEQBEHQXYbU24AgCIIgCJqLCB6CIAiCIOgRETwEQRAEQdAj\nIngIgiAIgqBHRPAQBEEQBEGPiOAhCIIgCIIesUy9DQiCpUVSvGccBEGwFNhWb86P4CFoanr7DxC0\nI2mK7Sn1tmMgEL4sl/BnuZTx4BXDFkEQVBhZbwMGECPrbcAAY2S9DQgWJ4KHIAiCIAh6RAQPQRBU\nmF5vAwYQ0+ttwABjer0NCBZHoW0RNCuSHHMegiAIekYZv53R8xAEAQCSWuptw0AhfFku4c/GI4KH\nIAiCIAh6RAxbBE1LDFsEQRD0nBi2CIIgCIKg34ngYZAi6dv1tqE7SPq6pBXrbcdgIMaVyyN8WS7h\nz8YjVpgcvPw38P3qTEkCcAOMZ0kaChwJXAj8u4MydbezP4jhmSAIGomY8zAIkTQVOBqYDzwAHAfc\nANwFjAX+A/gWsC2wInB5ZWlYSY+T3rneFVgW2Nv2I5J2An6SmzDwYWAb4LvAS8BooBU41LYlfY4U\nwAi41va3cv0vA+cAHwWuyLY9Ajxje0LVdbi1tUTHNCjjx0fwEARBecSch2CpyDfqf9veyvYBpBv4\naOB/bG9m+6/Asba3BbYEdpK0WeV00o18LHA2KQgBmEQKDLYCdqS9p2Bb4DBgE2AUsIekdYCpwHhg\nDLCtpE/n8isBd9keY/tE4O9AS3XgEARBENSPGLYIKjxhe3Yhva+kQ0jfkbVJN/8H8rEZ+XMOsEfe\nvx04TdJFwAzbT+YRkNm2HweQdDEpsFgEzLL9bM6/iNRT8VvgTVKPQ7eYOhVGjEj7w4fD6NEwZkxK\nt7Wlz2ZPV6iM+9qe1UfprwNtfVj/oEkXx+gbwZ5mT4c/S/HfxOzCxymBGLYYpEhaaHvlvD8SmGl7\n85xenzSMsY3tFyVNA1pt/1LSAmCs7eckbQP8yPb4fN6mwKeAQ4GPk4KOKbZb8vEvApsBs4A9bR+Y\n8w8GNrZ9dNGufOzt9mpcQwxblIiklsoPT9A7wpflEv4slxi2CHrDIkkd9TytArwCvCTpXcAnu6pM\n0ijbD9o+GbgH2CgfGidppKQhwD7ArcBs0lDIGnlS5GeBWzqoemG2J+hj4se5PMKX5RL+bDwieBi8\nnAvMk3QhaR7D211QtucC9wN/BC4Cbuuknsp5R0qaL2ku8DpwXc6/B/gp8BDwF9tX2n6KNCGzFWgD\n7rU9s6q+op3XS7p56S4zCIIgKJsYtgj6jDzONsn2rn1U/6D58sawRXMRviyX8Ge5lDFsERMmg75k\nsR6NPmkgXmEMgiDod6LnIWhayoiegyAIBhsxYTIIgiAIgn4ngocgCIDQDyiT8GW5hD8bjwgegiAI\ngiDoETHnIWhaYs5DEARBz4k5DwMMSQdKWrvedgRBEARBZ0Tw0FhMBNapdSCv0NgndLLSZMMjyQN9\n60dftvRXWwOd8GW5hD8bj6a9aTQzeUnmX5Dkrw2cD/yNJGF9kaR/AduTVnj8DfAx4GRJzwNTgOWB\nx4CDbL+iJLG9K/AG8Dvb35S0N/AdktDUi7Z3qrKhBTgReA7YSNImwA+BnXL9/2P73NwTcgmwMun7\n8hXbtytJZ58L7Aw8BXzW9j8ljSFJaq+Ybfyi7RckzSJJfo8HVgUOtn1b1sM4H1iOFMzuYfsxSZ8H\nDs/5d5MUO9+q9mUrA1vcYjzj621CEATBEkTPQ30YA6xje3PbWwDn274CuBfYz/bWtl8lBRb/dJK/\nvhk4FpiQ0/cBR0laHdjd9qa2twROym0cD+xsewwpsKjFVsARtt8P/Cfwgu1xwDjgkCyY9Tngeiep\n7S2BufnclYB7bG9G0qWYnPN/CRyTbZlfyDcw1PYHgK8X8r8CnJ7rHws8KWljkg7G9jn/LWD/7rs3\nWBpiBb/yCF+WS/iz8Yieh/rwGLCBpDOAa0kKlhWqJ7Fckj+3I8li36Ekdb0ccAfwIvCqpF8A1+QN\nkkT2BZIupV1Cu5rZtp/I+zsDm0vaK6dXAUaTtCnOl7QscFXWvYB0Q6/Y9itghqRVgHfYvjXnXwBc\nVmivKOU9Mu/fARwr6T0kKe9HJU0gBRL35mtdkdS7sQRTmcoIkib3cIYzmtGMIWlat5E0rZs9XUEN\nJPEb6UhHunnSCknugYOklYBPAAcAz9k+WFIrSQtiTi5TlL/ehdQrsV+NupYDJgB7ASNtT8j540gS\n2V+gStZaVboTki4Hfmb7xhr1jwB2Ab4GnGr7QklvAMvZfkvSBsDlQAsw3/Z6+bxRwKW2xxavTdKa\npF6L9XO59XP9hwNfBjYl9cx8uwsfejAMW/TXGyUK/YDSCF+WS/izXBRvWzQnktYAlrE9gzS8sFU+\n1Jn89N3ADvmGjKRhkt4naRiwqu3rgKNIQwsViezZticDzwDv6cKs3wGHKk+elLShpJUkrQs8Y/s8\n0jyNiq1DgL3z/n7ArbZfAp6XtGPOPwCY1YUvNrC9wPaZwG+BzUlDNHtJWiuXWT3bEQRBEDQAMWxR\nH94NTFP7GxTfyp/TgXPUPmHybWw/I2kicLGk5XP2saSA47eSViANeXwjHztZ0vty3k2251XZUC1a\ndR5pKGGO0ljB08BnSL0Jx0halNv6Qi7/CjBO0nHA/wH75vwD8zWsRJ7U2YEPKm3vozQ5chHwD+B7\nThMsjwNuyD5aBBwK/LWDuoISiCe78ghflkv4s/GIYYtgqZC00PbKdbZhUHx5+2vYIgiCwUEZwxbR\n8xAsLQ1x444ba3nEuHJ5hC/LJfzZeMSch2CpsN3R3IwgCIJggBPDFkHTUkbXWxAEwWAj3rYIgiAI\ngqDfieAhCAIg9APKJHxZLuHPxiOChyAIgiAIekQEDyUh6QSlZZXLrvdxJf2K6vxOV1/sCyRNl7Tn\nUp777ar07eVYFZRFzGYvj/BluYQ/G4+YMNngFJeorsqvuc5CXuAJ98EfVtI0YGZeGbOn55a+LsRg\nWech6B9i8m0wWIgJk3VA0tD8BD5f0jxJR+b8t5/KJf2HpIcl3SvpDEkzc/4USedLapX0mKTDC/Ve\nmcs/IOmQLmyYCqwo6X5JF0paT9Ijki4gKVm+V9JZku7J9U0pnPt4tuO+bP9GOX+nXN/9kubk5a8l\n6aeS/ijpRuCdVfWsnve3ydoVSBouaVque66kPST9oGhvLvdy/pSkHxX8uU/Ob5E0S9Jl2Ze/qu0N\nx1ba1toANtRrK5cYoy+X8GfjEYtE9Zy35bQBlJQkIf8K5WWizwE+ZPsJSb9m8V+nDYHxJA2LRySd\nZftN4Iu2n5e0IjBb0uW2n69lgO1vSfqak1w1StLZo4EDbM/Oecfm+oYCN0nazPYD2ZZnsljVV4Gj\ngUOAScChtu/MS0u/RlqeekNgY2AE8BBJ36JyvbU4HnjeSWocSavaniHpsIq9VefvQdLj2AJYC7hH\n0h8Kvt6EtGz17ZJ2sB3DHUEQBHUmeh56ztty2pI+TtJ7qCDg/cBf3C51fXHOh3TDvNb2ItvPkvQj\n3pWPHSmpDbgTeC/wvh7a9UQlcMjsK+k+kvz1pqSbcIVa0ti3A6fl3pDVckDzIeDXTvwD+H037JgA\n/E8lYfuFLsrvWGjjaeAWYFuSr2bb/nsegmkr2FpgIjAlbz9hcR2uWZHuUZoujg/sdO7taikjXZFB\nLqu+wZ4Of/Yunfen520KZWA7th5uwEqkJ+YrgV/kvGnAnqSn6FmFsruR5gkATCbJUleOzQfWJYlP\n3QqskPNbgQ/n/QXA6jVsWFjYH0mSwq6k1wf+DLyjYNsXqusDtgFaC+dtCnyTpPe+EXAacFDh+BXA\nHnn/z8CaeX/HSj3AvcDozuwtpoFTq9r4JUmee6eK33L+mcCBVXUYHFtsJWy43r8rscXWX1sZ3/fo\neegh6lhOG8DAI6SeifVy3r45H9p7IBarkjSE8bztVyW9H9iuG6YsUpbPrsEqJNXLlyS9C/hkV5Up\nSXg/aPtk4B5SD8ofSD0YQyStTRpuqfA4KfiAFDRVuBH4WqHeVbuw99ZCG2sBHwZmU9tXQZ8yq94G\nDBiKT4BB7wl/Nh4RPPScdwOtku4HLgT+u3jQ9qsk+ejrJd0LvAS8WDkMS8wVMHA9sIykh4AfkIYu\nuuJcYJ7SBMTF6rU9F7gf+CNwEXBbJ/VUzjtSadLiXOB14H9tX0nqYXgIuAC4o3DeCcDpku4B3ijU\ncxKwWq6rjdSrUm3v2+3mNuYBc4GbgWOchi868lUQBEFQZ+JVzT5A0jDbr+T9/wH+ZPv0Ops14FC8\nqhmUiONVzWCQoJDkblgOkXQgsBxpUuLP6mzPgCV+8IMgCPqf6HkImpYyouegHUktjpX8SiF8WS7h\nz3Ip47cz5jwEQRAEQdAjouchaFqi5yEIgqDnRM9DEARBEAT9TgQPQRAA8S59mYQvyyX82XhE8NDP\nSPq6kn5FV+V+Lmnj/rApt3dgXgiqq3KzJI3tQb0TJZ2Z978s6YDe2FmjfjfjVqYPgiAI+pt4VbMP\nkDTUSRuiFkeSFpf6d2d12O5UWbMPmAg8QBKh6oye3viKi1eV/spqa2vZNfY948d3XaYexGz28ghf\nlkv4s/GInoceIullSacqSV3fJGnNnD9L0ml5xcUjJU1QkraeJ+kXkpaTdASwDmmFypvzeTtLukNJ\nIvtSScMK9W1daPMkSW2S7pT0zhp2TZF0gaQ/KMll7yHpx7n96ypLQ0sam+u+V9L1kkZI2ou01PRF\n2eYVJH1H0uy8UmT1Tf8AJXnt+ZK2zfWuLukqJRnuOyVt3oGNk/L+EZIezOV/3ZNrCIIgCOpLBA89\nZyXgHtubkRQgJ+d8A8va3hY4iyRGtY+TNPUywFdtnwH8HWixPSEHHscCE2yPBe4DjirUV2zzTttj\nSHoTHfVKrE/Sn9gN+BVwY27/38CnJC1LEpja0/Y22cbv2b6cJGi1n+2t8xLbZ9oe5yQ9vqKkXXIb\nAlZ0ktc+FDg/558A3Gd7S+DbJIGrSvkKxSWn/wsYk8t/pbvX0MF1ByWgGFcujfBluYQ/G494kus5\nbwGX5P1f0S5vTSF/I2CB7Udz+gKSWFT1EtXbkaSy75AEaUXKO1iS121fm/fvAz5Wo4yB62y/KekB\nYIjt3+Vj80nKmxuSlDNvyu0NJQUzFYo3+o9IOoYUuKxOGtK4JrdzMYDtWyWtIukdwA4kpVFst0pa\nQ9LKNeysMA/4taSrgKt6cA2LMXUqjBiR9ocPh9GjYcyYlG5rS5+Nlq5Q+UGsdMnWOw2MkdQw9kQ6\n0pEuJ533J5J4nBKIdR56iKQ3gOVsvyVpA+By21tLaiXJbc+RtCVwhu2d8jkTSD0Pe0laAIy1/Vx+\nmt/P9n412inWt9D2yjl/L+BTtg+qKj8ZeNn2KTldPGcy8DLwO+Bc29t30d4KpC/YWNtP5vNt+7u5\n3AmFL+gTwOYkScY9bS/I+X8lBUZ75XoOL9ooaQhJQXNXkurn5sBxXV1D5VjOc7POeXCsTxEEQZ1Q\nrPNQF4YAe+f9/UiS0hUqf4xHgJGSRuX0AaQhDoCFJMlsgLuBHSrlJA2T9L6+MjzbtZak7XJ7y0ra\npIZdK+TPZyUNp/16IV3jvvn8HYEXbL9E8sP+Ob8FeMb2y1XtKx8XsG4OQL4FvAMYDiHDHQRB0AzE\nsEXPeQUYJ+k44P/IN9JMRWb6VUkHAZflSX6zgXNymXNJct1P5nkPE4GLJS2fjx9LksGmut7Cfkfd\nRdXlFjtme1HuuTgjDzUsA5xGktyeDpwj6V/A9sDPSUMVT5GCnGK9r0qak8//Ys6fApyvJOn9CnBg\nDXsr+0OBC7MNAk63/aLSK4ydXkMH1x2UgEI/oDTCl+US/mw8YtiihxS70oP6oiZeL6ERhy3iB7o8\nwpflEv4slzKGLSJ46CGSXrK9Stclg76mjH+AIAiCwUbMeagDETgEQRAEg50IHoIgAOJd+jIJX5ZL\n+LPxiOAhCIIgCIIeEXMegqYl5jwEQRD0nJjzEARBEARBv9PUwYOkbxf2R0qaX097ikj6tLohqS1p\nuqQ9e1Bvi6SZeX9XSf/VGzubHYWMdmnEuHJ5hC/LJfzZeDT7IlH/DXy/jIrUuYz20vAZYCbwcBfl\nlvqmZHtmbqM0+sAPfUor/bM+9XgaVEc7CIKgDjRFz4OkzynJMs+XNDXnTSWpPd4v6ULyyoWSzlWS\ny/5d1mhA0iglSed7leSeN8r50yWdI+ku4IdVbU5Ukpi+QdICSYdJOlpJsvpOSat1VLek7UmaDT/K\n5TeQdIiSxHWbpMslrVho7qOS7pH0iKRP5XpXkDQtX/ecWpF3tvHMvP8uSVfm+tskfbBG+aWWE8/l\ntpV0e67/bqXltIdK+lG+trmSvpTLrp39UZHu3kHSkOzz+bnur3fx99k7l22TdEv19QTlEovwlEf4\nslzCn41Hw/c8SFoHmApsDbwA3CDp07a/JelrTtLQSBoJvA/4rO0vSboE2BO4iLQk9JdtPyrpAyTJ\n7Am5iXWAD7r2zNFNgTHAisBjwDFZBOtU4Asklcwl6s7LTl8NzLQ9I9v3gu2f5/0TgYOBn5KWZ17P\n9raSRgOt+fNrwJu2t8g30xskbdiJq84AWm1/Rkl0aniNMhU58aMkHU+SEz+cgpx4Drj+BHwkX9MF\nwFclnQ38hiQzfp+S5sWr+TpesD1OaYnt2yTdQFLYvN729yUJGAZsBazjJPONpMqaGR39fY4Hdrb9\nj0LZIAiCoM40fPAAbEu6KT4LIOkikhrjb2uUXWB7Xt6/jyRONYyk1XBZuocBSfoa0k3zsg4CB+d2\nXwFekfQC7UME84EtuqgbFhd62lzSSbSLQF1faOdSgHzz/AvwfpLE9Rk5/xEl9crOgofxwOdz+beA\nl2qU6Y2c+M3AP2zfl9t4GUDSzvna9srlVwFGA/eQtC6WBa6yPVfSY8AGks4AriUFRMOBD1Lbh7cD\nF0i6tMrWt5nKVEaQNLmHM5zRjGYMSQO7jaSBXVZaDSSx20fprwNtDWRP06Yr+41iT7Onw5+l+G9i\nduHjlEDDv6opaTeS1POBOX0wsLHto7W4ZPNI0pN+5al2Eulp9zTgEdvr1Kh7GnCN7StqHDsQ2Mb2\n4TldlNI+ENgG+HYXdRd7HhYAu9men89vsX1QLneL7em53C2k3oApwJm2W3P+H4BDgTVJ0tm7Kolq\nVeSunwbeY/v1Tny5tHLih5J6Kc6xvWNVnZcDP7N9Y432RgC7kIKPU21fmAOuj5OURp8Dvt6RD3Md\n44BPkXp6xtp+rnDM/TnnwQP8tVCFfkBphC/LJfxZLhokr2reA+wkaQ1JQ4HP0i5vvUhJtbIjZHsh\nsKDyZKzEFt1otzPHCqCLuosS15B6G55SehL/PO0TJQXsnc8dBWwA/JHFJa43BNYlSWp3xM3AV3P5\noardzb+0cuKzcv7akrbJbayc/x6/Aw6t/B0kbShpJUnrkmS5zwPOA7aWtAYwNAdUxwNbdeZDSaNs\nz7Y9GXgGeE8n1x/0kvhxLo/wZbmEPxuPhg8ebP8D+BbQCrQB9zq9ZQBprHye2idMdiThvD9wsKQ2\nksz0bjXKLNF01bGOZLE7qvs3wDGS7stP+ceTpK1vY/E3MAz8lSTb/b+ksf/XSeP+QyTNy3UdaHtR\nVdvF/SOB8bn8vUCt10QrcuLzgRbgu9XXZ/tVoCInPg94g9TjsIgkP35mvtbfAcuTAoOHgDm53rNJ\nw2EtQJuSdPc+wE+Ad5PmdNwPXEh6W6YzH56sPFEWuN3tQ1JBEARBHWn4YYugPDTA5MTVz2svxLBF\n0F3Cl+US/iyXMoYtmmHCZFAeAy5SHOg39CAIgkYkeh6CpqWM6DkIgmCwMVgmTAZBEARB0EBE8BAE\nAdD+XnjQe8KX5RL+bDwieAiCIAiCoEc0ffCgPlTWVEE7osax27s4t1e2SLq2g7UaujqvQ5uDoDNi\nNnt5hC/LJfzZeAyEty36Ulmzw9mktncoo81O6v/U0p66tG1KWsb2G0t7fj3o79c1m4WYSBoEQV/S\nND0PqoOyZua9klol/UnSdwr2VLQdpKQqWVGK3KeG7TUVMvNKjJdKelDSDEl3Sdo6H3tc0up5/wtK\nipVtSkJVSNo1l58j6UZJ7+zCf1MkXSjpjnwt/5nzWyTdKum3wAOSlu/A1qGSfpyvc66kw3L+WCVV\nznslXa+0JDWSjsjXNVfSxTlvp/y3uj/XPSznH6N2Vc4pOW9Y7n1py20u4deEY1tiWzpiXLk8wpfl\nEv5sQGw3/EZSvnwCWAMYSlqK+dP52MJCuZHAImCLnL4E2D/v3wyMzvsfAG7O+9OBq8mvrVa1OxH4\nO7AasAJJEGvrYrsk5c4bSMs7vzPb+a5sy/xcZhJwXt7fKJdZHjgaODvnb5ptr9S/AFg95z8CrJ7z\nV8ufqxbs/E/gxwWbz6xxLVOA+3O7a5BWtVybtBLkyyRlz85s/SpJwGtIxQ5gWeAOYI2cty/wi7z/\nJEmpE2CV/Hk1ScEUksLnUGBnkjYGpGB2JvAhkirnuQX7V6lxTQbHtsSGl/L/rKXe/+sDZQtfhj8b\neVva34ji1izDFvVS1gS4wfbzud0ZpBvbnMLxHYFf5/OfVhK2GkcKNCp0pJC5A2nZZmw/qLQcdBEB\nHwEudRaEqthC6hG5FBiRr+UvHdhfwcBvbb8GvKYkhjWOJHM+2/YTXdg6gRTovFWxQ9JmpODmpuzX\noaRgC2Ae8GtJVwFX5bzbgdPy32+G7SeVVDl3VlqyGpKY2WjSMt6n5N6la2zf1sX1Bb3EMa5cGuHL\ncgl/Nh7NEjyYxYWqRMf9s68V9t8k9RgMAZ63vVUH5/yrk3aLiCRr3Zlttc6jRpmu8jurH+BMUm/D\nNZJ2IvUs9JTKtbzSTZuq8wU8aHv7GmU/RQrwdgWOlbSZ7R9KuiYfu13Sx3PZH9g+d4nGpK1y2ZMk\n3Wz7xCWbmUjq5AFYFRhD6kyBpOfFIEwn1ECSwJGOdKQHliR33btPurORutcfp33Y4kZg13zsOWCZ\nvD+SPFSQ05OAyXn/dmCvvC/ahzamkSS/a7U7kdT9vhqwIjCXJYctPgNcTwpQ1sp2vpPFhy2+QftQ\nwIa5zHKkYYuzcv4mwOssOWyxCbWHLeYUyk4j9cxUbO7OsMUTpF6LFpJ0OJ3YuizwZeAykiomtA9b\n/BnYLuctm+0VMLKQ9yRJYXRUoZ3LSAJYHwPuAobl/HdnP64NrJDzdgGurHFNDTBE0IgbXsr/s5Z6\n/68PlC18Gf5s5G1pfyOKW1P0PNj+h6SKsqZI3djVypr3AcdBp8qaZ0s6jnRDu5jUtU6Nc4rnzgau\nIMlBX2h7TvEc21dK+iApsDBwjO2nJY0s1HtWbruiUnmg7dclnQVcIOlBkgz3g8CLVdf+kKTvAbdI\nepMUNHyRFAxcJul54PfAegW7al2P8/W2AmsC37X9lNLE0WL5WrYuknQeKZiYJ2kRaT7CWUpS2mdI\negepJ+s04E/AhTlPwOm2X5J0kqTxpB6PB4Drct0bA3fmoY+FJBnw0cCPJL1FCqq+WvtPFARBEPQ3\noW1RRyQNIU0qfE3SKFKPyobug9clJU0GXrZ9Stl11wtJ7jjuG8wIx6uaQRB0gEJVs+kZBvxe0rKk\nJ/Sv9kXgUGAA3mnjHhkEQdDfRM9D0LSUET0H7UhqccxqL4XwZbmEP8uljN/OplkkKgiCIAiCxiB6\nHoKmJXoegiAIek70PARBEARB0O9E8BAEARD6AWUSviyX8Gfj0fTBg/pAgrov6uwtktaT9LlulOuV\nFHgQBEEQdEW8qlmbRpwIsj6wH2lxqz5D0hBn/YpmQCHJXSrSwJ1C0p/zY+LNgHIJfzYeTRk8SDoI\n+BZJ1GkuWc9C0lrA2cC6uejXSUsfPwaMsf1iLvdnklAW1eVt31HV1kjgfNKSzs8AB9n+m6TpwKvA\nWNLSy0fZvlbSRGB3kmrk+4BTSPoa+2U7/8NJVGoU8FPSUsz/Ag5xEqKaTlplchvS8tHftH0FMBV4\nv5KA1HSS2NSFpLUiAA6zfWcnPmsBvgu8RFq9sRU41LaV5MXPAT4KfE3SB4CD8qnn2T491/EF0pLf\nBubZ/kItn9u+Q0lv4yc5zyRBsVVISqcrk757X7V9m5I41hTS0tmPZR+/oiSKtStppcsbbB9TfV2t\nrR1dcRC0M358vS0IgoFF0w1bSFqbdKPZnqRouQntPQWnA6fZHgfsRbrxvUVS3/xMPv8DJOXNZ2qV\nrzRTaPJMYJrtLYGLyIqTmXVtb0sSbzpH0vI5f9Pc3rbA94CXbG8N3Al8IZc5Fzjc9jbAMaRloSuM\nsL0DSdNhas77L+BW21vlm/nTwMdsjwU+W2VXR2wLHJZ9Nookew0p0LnL9hhSQDSRpLi5HXCIpDGS\nNgWOBcbnckfkczvy4SRScLIV6e/0KvA54PqctyXQJmnNXO+EfC33AUdJWh3Y3fam2fc1RLGCMmlr\nq7cFA4cYoy+X8Gfj0Yw9Dx9gcXnuS0iaC5CenDcudL2uLGkl0tPud0hP7J/N6Y7KV57kK2xH6kkA\n+BVwct43cCmA7Ucl/QV4f85vtf0K8IqkF4CKDsd8YAt1LRF+Va73YUnvyvnVXa7LAT+VtCVJPXRD\numa27ccBJF1Muqlfkc+/IpfZkSSX/e9criJDbhaXBn8hl+/Ih7Xkt+8Bzs8ral5le27+UdgEuCPX\nsRxwB6n35VVJvwCuyVsQBEHQADRj8GA6lucW8AHbrxdPkHQXMDo/5X6a1H3fWfnqcfTujpVWzivK\ngr9VSL9F8nlXEuFFezpq+xvAP2wfIGko6cm+u/ZV6q3MbXjV7Qt+1PJvZ7bU9CGwhPy27VslfYjU\nozJd0qm0KAiLAAAgAElEQVTA88CNtvdbomJpHDCB1KNxWN5fjKlTYcSItD98OIweDWPGpHTlSTrS\n3UtX8hrFnrLT/SmB7HYZ5H5pb6Cnw5+NJ8nddItE5WGLO4GtSQqMvwfut31Efsq93/aPc9kxttvy\n/skkmefVbO+S82qWz/MWxto+XNJvgcts/yrn72p7zzw3YS3SjXADYBZpKGC/yrm5zgU5/VxVvbeT\nuvsvV3rk3tz2PEnTSKqhV+TzF9peWdJY4BTbLTn/VOD/2T41zwH5he0heY7GTNubV/mtBfhf0lP+\nX4HrgHOcVEEX2l45l9uK1EOzHSnIuQv4PLAIuBL4YL6W1ZzmbnTkw1G2H8t5l5HmZ7QBT9p+U9LX\nsr++Txqq+Ijtx3KvxTrA30ky3U8rqXM+ZnvNqmtyzHkIusP48f07YTIIGhkNxkWibP+DNOfhTuA2\nkox1hSOAbSTNVZK5/lLh2CUkWe5LulG+KGt9OHCQpLn5/CMLZf5Kkuz+X+DL+em7WhK7er8oEX6w\npDaSPPVunZwDaWLom5LaJB1JmiNxYD5/I+DlDs4v5t1DmqT5EOlmfGV1eduVCZmzSYHDz23Ptf0Q\naf7GLbnNijpnRz48UtL87LfXgeuBFtI8hznAPiSp7n+SIuKLc9k78vWsDMzMebeSelqCPiTmPJRH\n5akvKIfwZ+PRdD0PjULuIZhpe0a9bekO+Z9vku1d621LWdQYXgqCDunPngeFkFOphD/LpYyeh2ac\n8xAsHdU9IgOC6IoOGpG40ZVL+LPxiJ6HoGkpI3oOgiAYbAzKOQ9BEPQNMa5cHuHLcgl/Nh4RPARB\nEARB0CNi2CJoWmLYIgiCoOfEsEUQBEEQBP1OBA9BaagXUuaStpT0yUJ6iqRJ5VkXdEWMK5dH+LJc\nwp+NR7yqGTQKW5EUSq/L6W6Np8VaD+WiEiW5Y0gpCAYuMech6BWqIY+el9/uSKp7HEmqewXg3yTp\n78eBR3Pek8APgI3zuRvkz5/YXqxXQ5JbifWpG5HxjI/gIQgalJjzENQV9VAePec/DHzISaJ8MvD9\nvKz38cBvnCTHLyUJbr0f2JkkDz5ZSQAsCIIgqDMxbBH0hqWRR18V+KWk0aRAo/IdFIurdpokELYI\neFbS08C7SIJZQR/QRhtjGNN1waBLYjnlcgl/Nh4RPAS9YWnk0c8Cbrb9GUnrkdRIO6J47pvU+L5O\nZSojSJrcwxnOaEa/fQNsIyk9Rbp76Ud5tNT6GkmSONKRHsxphSR30EioZ/LoW9qeK2kG8CvbMyRN\nAQ60vb6kPYDdbE/M5ScDL9s+JafnA5+y/ddC+zHnoUGJOQ9B0LjEnIegrvRQHv3LOf9k4AdZlnso\n7T0VrcAmku6XtE+liT6+hCAIgmApiJ6HoGmJ1zQbm8Hc8xBj9OUS/iyXkOQOBj2D+QZVNvEDHQRB\nd4meh6BpCW2LIAiCnhNzHoIgCIIg6HcieAiCAAj9gDIJX5ZL+LPxiOAhCIIgCIIeEXMegqYl5jwE\nQRD0nJjzMECQ1CJpZt5falnrMuqUtI6ky3rbfo1637ZB0pclHVB2G0EQBEH/EK9qNh590RXU7Tpt\n/x3Yuy9tsP2zsiqNtR6CIOhvosczeh76DEmfkHSfpDZJN+W8YZLOl3S3pDmSdqt1an/VKWmnvKLj\n/fncYZJG5qWgkbSSpEslPShphqS7JG2dj70s6aRsy52S3pnzd83l5ki6sZJf1e4USZPy/ixJU7P9\nj0jasZO2xy55FY6ttK21AWwYKFv4cuD6M4DoeegTJK0FnEuSnn5C0qr50LEkUagv5ry7K0FAPeoE\nJgGH2r5TSfHytarjhwLP2t5U0qaQlY8SKwF32j5O0g+BQ4DvAbfa3i7b/J/AN4GjWVIx04X9obY/\nIOmTJJnuj3XQdvzn9ikt9TZgANFSbwMGGC31NiCoIoKHvmE74BbbTwDYfiHn7wzsKunonF4eeG8d\n67wdOC2LWM2w/aS0WCfFDsBPcnsPSppXOPa67Wvz/n2kGz7AeyVdCowAlgP+0g07ZuTPOcDIbrQd\nBEEQ1JEIHvoG0/Hwwx62/1zMyOqUVOUNId1MDVwN3NPbOpcw0v6hpGuATwG3S/o4S/Y+dNTmosL+\nW7R/l84Efmz7Gkk7kYSzuqLSZrXsdjfGFSfSHm+sCoyh/SllVv6MdPfSPyH8V1a6st8o9jR7urLf\nCPYk1ECS212l1QeS3NiOreQNWAv4KzAyp1fPn98DziyU2yp/tgAz8/7EYpk+rnNUYf8yYDfSnXh+\nzjsaOCvvbwK8Dmyd0wsL5+4FTMv7cwplpgGt1TaQAopJeb+1UH5NYEFXbRfaNTi20rbWBrBhoGzh\ny4HrT1zve0wJ96heX0NMmOwDbD8DfAmYIakNuDgfOhFYVtI8SQ8AJxRPK3yaKvqiTuBISfMlzSXd\nnK+rOu8sYC0lSe0TSZLbL1aVqa5/CnCZpHuBZzqwoSN7utt20Ce01NuAAURLvQ0YYLTU24Cgilgk\nKuiQPHSyrO3XJI0CbgQ2tP1GI7Qdr2kGQVAP3OSvapaxSFTMeQg6Yxjwe0nLkuYffLU/AoeetN3s\n/8SNhEKSuzTCl+US/mw8IngIOsT2QmDbwdZ2EARB0DkxbBE0LWV0vQVBEAw2yvjtjAmTQRAEQRD0\niAgegiAA2t8LD3pP+LJcwp+NRwQPQRAEQRD0iD4LHtQHMtNloKWUg84iUh/sbT1lUxSyqsp/2/81\njl0raZW+t67nSPq5pI3rbcdgJGazl0f4slzCn41Hf71tsdSzMiUtU+brgV56OejxwELgzl7WU3ds\nf6reNnSE7UN6Un4wr/UQk0WDIKgXPQoeJH2CtBzyUOCftj8qaRhJz2BTYFlgiu2rq0/toL7VgfOB\n9YF/AV+yPV/SFGBUzn9C0pGkFRXXJt28P0Zaqvg5SVeShKBWAE63/fNc98ukxfp3Af4NfNr207nu\nhcCvgf8tmLN5bm8MSalyOeBZYH+SguSXgTclfR44HPgoaYnmUySNAc4BVgQeA75o+wVJs4C7SIHH\nqsDBtm+r8sEw4LfAatl/x9m+WtJI0oqPtwLbA0/ma3g1S1OfTwrKbqjl23xslaxdMZq0DPShti3p\n8YL/jgIOyuecZ/v0bNfx+dqfAf4G3JevdRTwU9Jy2f8CDrH9iKTppBUgtyGJYn3T9hW5rmOAvUmi\nXVfanpKv+1Lg3aTv03dtX5Z9dhRJRfN8YGy+lvNt/6T6IltbO7j6Ac748eXXGe/Sl0f4slzCn41H\nt4ctCpLQe9geQ9IzgHZJ6A8AHwF+lOWdu8MJpJvSlsC3gV8Wjr0fmGB7f9KSxzfZ3gy4HFi3UO6L\ntrchrQlwhKTVcn5FMnoM8AeSZDTkXhDb/7C9le2tgPOAy23/jSwpbXtr4BLSTfBxUnBwaj7nNhZf\nYvmXwDH5OuaTZKUrbQ3Nvvl6Ib/Iq8BnbI/N/julcGw08NN83S8Ae+b8acDX8rV1hIBxwGEkbYhR\nwB5FH+QgZGIutx1wiKQxkrbNZbcAPkkKCCrXei5wePb5MaRlpCuMsL0DKWCbmtvYGRhtexywFTBW\n0oeAjwNP2h5je3Pgd0Xbctl1bG9ue4t8zUEQBEED0JOeh76QhN6BfEOz3SppDUkrk24gV9t+rVBu\n91zud5KeL9RxpKTd8/57gfcBs+lYMnoxJO0A/GduAzqXlF6iByXPHXiH7Vtz1gUkkakKteSmiwwB\nfpBvqG8B60h6Zz62wHZFivo+YKSkd+T2Kj0YF5Ju8LWYnQMfJF0M7AhcUbiWHUlS3P/OZWYAH8o2\nXWX7deD1wtyVYaRekMsK0t3L5U8DVwHYfljSu3L+zsDOku7P6WGkoOg24BRJU4FrqntkSD04G0g6\nA7iWDnpYpk6FESPS/vDhMHo0jMkhVVtb+hyo6bJV+Cp5ZdU3mNNuVzJsCHuaPR3+bDxVzW4vEiVp\nF+Cztj9flX8v8DkvKQndQlJO3FXSRGCs7cOryswB9rS9IKf/Shr+OAp42fYpOf9+0tP54zn9LClI\n2IIkmvQxp+78VmCy7T9IWmh75Vx+L+BTtg+SNLlSt5Js9e+BXW0/msvOokpS2vb44nm53GTS8Md5\nJBXK9XL+KOBS22OzPZNsz5G0JnCP7fWrfDAR+ASwv+03JS0AdiLdwGfmp3IkTQKGk4Zi5hXa2wK4\nqFKuyv9TbLfk9BeBTW1Pym1sQxqWWMP25FzmRODp3PZqtqfk/FOB/wf8HHjE9jpUIWkaKQioDFUs\ntL2ypB8Df7J9bo1zViXJgR9C6r06scpnw0g9FAcAz9k+uOp8D+ZhC8echyAIlgL18yJRdwMfVhqL\nr8xXgNTdfETBqK16UOetpBtY5Wb3jNOyxNUXdTuwTy63M2l+AMAqwPM5cHg/qXekK5TrWYbUQ/DN\nSuBQqPPveX9iIX8hsHJ1XbZfAp6XtGPOO4Bq4ffOWQV4OgcO44H1Oits+0XgBaUeE8j+64BxSm9j\nDAH2JT3tv10Vyf+7S1ox36h3Jw3x3E7qTVpe0nDSDb6yZPSCHIyhxBZdXN/vgC/m+pH0bklr5cDt\nVdsXAT8mDVNUkKQ1SEM+M4Djga27aCfoJZUnlaD3hC/LJfzZeHR72ML2M5IqktBDgP8jPRWeCPxE\n0jxSMPIXYLfKaYXPWl0cU4DzlSShXwEO7KD8CcDFSq9G3gk8RbqZXw98RdJDwCP5GIU6ivvVtmxP\nmoz3XUnfzcf+g3ZJ6edJvRKVm/lM4HJJu9EeLFXqPBA4R2mux2O0T0CsppYPLgJmZv/dCzzcSflK\n+iCS3yoTJmvVa+Ae0uTG0cDvbV9ZrMf2/UoTHWfn/J/bngsg6WpgHunvPJ92Oez9gbMlHUea4Hlx\nLldtb6WNG5VevbxTaahjISnAGk2aH/MWsAj4StW57wam5e8awLdqXGMQBEFQB5pC20LScsCb+en8\ng8D/OE1oDPoIScNsv5IDoltIb1W01duuIhrEr2lCDFsEQbB0lDFs0SyqmusCl+an0Ndpf3Mi6DvO\nlbQJ6RXY6Y0WOFSIG2gQBEH/0xQ9D0FQizKi56Adxbv0pRG+LJfwZ7n094TJIAiCIAiC6HkImpfo\neQiCIOg50fMQBEEQBEG/E8FDEARAvEtfJuHLcgl/Nh4DKnhQP8mAS5qSV3zsF/rqWqr8tauk/8r7\na0m6W9J9hcWoetPOp1WQ2ZZ0gqQJva03CIIgqA/N8qrm0tCXkzmaZqKIuilpbnsmaSEsgAmkJbC7\n/UqspCG23+rg8Gdy3Q/ntmoJhC0Vg32th95QPeYZs9nLI3xZLuHPxqPhgweVLwM+PJ9bkXo+AXgH\nsIXtb+QyhwAb2z5K0heASbnsXNsHVtVXU6K6qsw4kibFCiR58INs/ynrWuxGkvIeRZKrrjz9H0Ra\nVfEFYC7wGlWoXbp8FLAmcLLt83IX34nAc8BGkrYkqYKOBd4Ajqr+Z8y2jCVpdfwQWFFJdXN74MOk\nlTeXJ6+gmReQehz4DUl07GQlUbMvkcSyHiWtJLkVsCtpafNjSWqs3yHpdlyReyB+RPou3gN81fbr\nue7p+dxlgb2r/QrQyiAVt+gl4+kDTe8gCAYNDT1sob6RAT+epIexhZOE9u+BS0laDkNzmYnALyRt\nmtsan9s/slBPdySqKzwMfCivijkZ+H7h2JYk3Y7NgX2z9sPapJv19iTly03ouLdjM2A88EHgO/lc\nSDftI2y/nyTL/aaTtPXngAskLV+rsrw89XeA32R7h2cfTHCSDb+PJFxW8cE/bY+1fQlJoXNc9tXD\nwMG27wCuBo62vbXtv+TzLGkFktT2Ptm2ZYCvFup+Jrd5NlBRbQ36iBhXLo/wZbmEPxuPRu956AsZ\n8AkkkSiKdUr6fa7zj8Cyth+UdDhJIfO5qvbJ53QmUV1kVeCXkkaTbopFv9+cBafIGh0jSb0Ys2w/\nm/MvATasUa+B3zpJl7+mpEg5jtRbMbviN5Lc+Bn5Gh6R9EQH9b19abT33GxHCl7uyNe4HHBHoewl\nhf3NJZ1E6skZTtIeKdZZ3cZGJNnxijDZBcDXgNNzuihnvkctQ6cylREkTe7hDGc0oxlD0qxuIy2K\nGenaaVVJ+AJjJDWEhHCkIx3pASLJXQ/UNzLg9+Y6H63KH0d6wn4YeNz2OZIOA0bYPq6qbEWOu0OJ\n6qry04F7bf9U0nqkwGD9ahuVJi/+mBRs7FEZIpF0BPC+GtcymfQ3nJLTFwCXAy+RnvR3zfkzgDNt\nt+b0H4BDSUMdS/iran8XYD/b+9W4rgW53HOF9G6250s6EGhxkkGfRhqmmJHLTQOuAf6c7dop508g\nDVvsVaxb0jbAj2yPr2rfMWyxdIxnfCztHQSDFA2CdR76Qgb8RtLTbeXcVQFszwbeA+xHUoqENKSx\nd6VdSasV6pG7L1FdlPnuSHGzgknXvZOk1SUtC+zdQVkBn1aSzl4DaCHNG6j+UhSlzzckaYUsMX+g\nA+4GdlCa24GkYZLe10HZ4cBT2ebP0z7UspDkgyLONoys1E2aI3FLN+0KgiAI6kRDBw+2nyFNwJsh\nqY32m/qJwLKS5kl6gDTp8e3TCp+1ulVOAlaTND/X2VI4dilwm+0Xc/sPkSZr3pLLnlKjnf2Bg/Px\nB2iXIy9yMvADSXNIEz87tdH2U6Q5D3cCtwEPdnAtJslht+ay383nVtd7FjBESfb7N8CBthdVlau5\nn/8GE0mS6HNJQxYb1bAF0nySu7PNRWnx3wDHKL36uUHhOl8jBVOXZdveIE3srNhQvM7G7SIbIFS6\nOYPeE74sl/Bn49HQwxb9TR42OLXSvd/o5GGLl22f0mXhAYjiNc1eUd1tqRAfKo3wZbmEP8uljGGL\nRp8w2S/koYu7gbZmCRwKDOobaIzbl0f8OJdH+LJcwp+NR/Q8BE1LGdFzEATBYGMwTJgMgqCfiHHl\n8ghflkv4s/GI4CEIgiAIgh4RwxZB0xLDFkEQBD0nhi2CIAiCIOh34m2LAUp3VtvsQV2zSGJacyS9\nbHt4L21bBzjddkeLX/Wkrug6CxqS6BUrj3hVs/GI4GFw0NsbbPWCTb2rzP47Ha+a2dPayqkmAGax\n+JppwdITcUMwsIlhiyZC0ifyKo1tkm7KecMknS/pbklzJNVa4bIjefJxku7I592el65G0oqSfiPp\noayLsWLVeSdlG+6U9M6ct5akyyXNztv2OX8nSffnbU62d6Sk+fn4CpKm5dVC51RmVUuaKGmGpOsk\n/UnSD0tyY9AhLfU2IAhqEr0OjUf0PDQJapcn/5DtJyqaHLTLk3+xsthVJbDoBhWp8DclfZQkFb4X\nSRb7ZdubSNqcpGpZYRhwp+3j8g39ENIS3qcDp9m+XdK6JEXNTYBJwKG271SSTX+tyoavkeXCJW0E\n3FAJYkhy5WOA14FHJJ1h+8luXlsQBEHQR0Tw0Dz0hTx5R1LhHyLLYmeFzHmFc163fW3evw/4WN7/\nKLCx2qXJV1aSLL8dOE3SRcAM208WykDHcuGmtlx5VfAwMWdXLmcM7U/Qs/JnpLuX/gnhv/LSaiBJ\n5mZPF9d5aAR7mi2tPpDkxnZsTbABuwC/qpF/L0muuzq/hSSDTf7SnFmjzHTgsLw/EliQ968ExhfK\n3QdsnfcXFvL3Aqbl/WeA5TqwfVPgm/lLu1Fua34+NqOqrT8AmwMHFm0GZgIfrqrX4NhK21obwIaB\nsuF6/2YMpA1oqbcNA2kr4/sZcx6ah76QJy9KhU8s5P+BJE2OpM2AWjLj1dxQZceY/DnK9oO2TybJ\nhVcrctaSC/8jtedpxCy0PqWl3gYEQU0ccx4ajggemgT3jTx5R1LhZwPD81DBCaTejeo6q+s9AthG\n0lxJD2ZbAY5Ukj+fS5q7cF1VPd2RC6/VdhAEQVAnYoXJoGmJNR6CRsaxzkNpxDoP5aKQ5A4GO/ED\nXR7xA10exQl+QTAQiZ6HoGkpI3oOgiAYbJTx2xlzHoIgCIIg6BERPARBAERXe5mEL8sl/Nl4RPAQ\nBEEQBEGPiDkPQdMScx6CIAh6Tsx5aCIkPZ7XYmiTdJOSLHXl2FuSflxIHy1pctX5bZIupo+Q9HVJ\nK3aj3OOFBaq6U+8USZPy/gmSJvTGzhr1ux5bmdcQBEHQbMSrmv2HSUusPidpCvDfwOH52OvAZyT9\nwPazVC2GJGlj4FXgA5JWsv2vPrDvSOBC4N9dlDM9W+nx7WuxPbmzgktDa2vZNXbN+PH932Z/EK9q\nlkf4slzCn41H9DzUh7uAUYX0IpJi5jc6KP850oqSNwCfrlVA0nRJZynJZD8mqUXSBUqy2tMK5XZW\nkuG+T9KlShLZRwDrAK2Sbs7lzpZ0j6QHcrBT5Ju5F+VuSaNy+ZGSfp9XmLxJ0hLiXNnGPfP+VEkP\n5vIn9+QagiAIgvoSwUP/Unli/wTwQNWxs4D9Ja1S47x9gEvz9rkO6jawqu0PkoKQq0nLT28KbC5p\nS0lrkiS8J9geSxK8Osr2GSSNixbblWGFb9veliSLvZOSxkWFF2xvAfyUJMUIcCZJJGtL4CKyUmYN\nGy1pDWB325vm8id19xo6uPagBOLJrjzCl+US/mw8Ytiif2nN8wXeAIo3Y2wvlPRLkkbE20MHkrYB\nnrH9D0lPA9MlrWb7+Rr1z8yfDwBP2X4w1/EgScnyvcAmwB1KstjLAXd0YOu+kg4hfUfWzudVAp7K\n3IvfAKfl/e2A3fP+r0g3/Y54AXhV0i+Aa/LW3WuYW6xo6lQYMSLtDx8Oo0fDmDEp3daWPstOV1AD\nSe5GOtKRjnRHafWBJHe8bdFPSFoAjAVeJD2Z3237tHxsoe2VJa0GzAGmkf42J0g6hSRPvTBXtRpw\ntO3zquqfBlxj+wol5c2ZtjcvHgNeA/azvV9H9uU5GeuThki2sf1iPr/V9i9zufG2H5e0LPB322tJ\negZY2/YbVfmTSTLep1bZuBwwgSTrPdL2hO5cg+0rCja7XnMeBuJbHopx5dIIX5ZL+LNcFG9bNB+2\n3wS+DkySNLzq2POkoYmDSd37Q4C9gc1sr297fdLTfUdDF502TZprsYPa5ykMk/S+fHwhSaKb/PkK\n8JKkdwGfLNQjYN+8vy/tPRd3AJ/N+/uTZL0r5Rf7kkoaRhqeuA44ijQ0EgRBEDQJMWzRfxTfOnhK\n0gzga8APi8eAU4DD8v6OwP+z/VTh+K3AJpLeZfv/Omqjar/S7j8lTQQulrR8zj4W+DNpwub1kp7M\nvQD3A38E/gbcVlXvakoS26/SHsgcDkyTdAzwNHBQoXy1XSsDv5W0Aimw+EbV8Y6uIbrJ+pB4siuP\n8GW5hD8bjxi2CJoW1XG9hYE4bBEEweAghi2CQY9t1WOr93X3BZUJVkHvCV+WS/iz8YjgIQiCIAiC\nHhHDFkHTUkbXWxAEwWAjhi2CIAiCIOh3IngIggCIceUyCV+WS/iz8YjgIQiCIAiCHhHBQz+gdjnu\neUpiUCdW1llQEpR6S9JhhfI/lXRgIb2MpGck/aAPbfx2N8u93MN6i2JYP1dSCC0N1UmSu6utzGvs\nL+Jd+vIIX5ZL+LPxiEWi+oeiHPcw0oJMP6N9rfGngSMk/cz2IpZcDOljJBGrPUlS3n3BfwPf70a5\nnt4Y314kyvYhPTWqK1qpw/rUXTCeAarZHQRBkImeh37G9ivAV4DdJa2as58BbiZpWNTis8DZwF8k\nfbBWAUmzJJ2qJKP9sKRtJV0p6U+STiyU+7ySlPb9ks6RNETSVGDFnHdhLneVpHuVJLkPqWrr1Jx/\nk5JSJ5LGSLpLSWJ7RuHaqm3cOrc5XdL83BtzZE+uIegbYly5PMKX5RL+bDwieKgDthcCC4D3FbJP\nBo5W0rN4m7yE80eA6+hakvs1Jxnts4HfkoKUzYCJklbLQwb7ANvb3gp4C9jf9reAf9veyvYBub6D\nbG8DbEvqFVkt5w8D7rG9GXALMDnn/xI4xklie34hv9pGgK2AdWxv7iTtPa2719DBtQdBEAT9SAxb\n1I/F3rG1vUDS3UC14uUuwCzbr0u6Cpgi6UjXXqDj6vz5APBARftC0l+AdYEPkZQ971WS5F4ReKpG\nPQBHSqpIbL+XFOjMJgUcl+T8XwEzJK0CvMP2rTn/AuCyTq79MWADSWcA15IUPLt7DYtJkU9lKiNI\nmtzDGc5oRjOGpKHdRtLQ7u90BTWQJG930pW8RrGnmdNul0FuCHuaPR3+DEnuQYkKctc5vTJJcGo9\nksT2TNubS9oIuJz0RH+P7QskXQHsAPw7V7cWsLvtm6raaAUm2Z6TvyiTbO9aOHY08EHSE/8SkyOV\nZcHzfgtwIvAx26/m8yfb/oOkN4DlbL8laYNsbwsw3/Z6+fxRwKW2xypJac+0PaPKxmHAx4EDgOds\nH9yNa5hke07BZjfqnIdYvCoIgkZFsUhUUyEAJRnus4Arbb9YLGD7EeAhYFeSJPcqJGXN97pdkvsw\nll6S+2ZgL0lrZVtWl7RuPr5IUqUnahXg+Rw4vB/YrlBPRSYcUi/JrbZfAp6XtGPOPwCY1YEdkrQG\nMNT2DOB40jBGUGdiXLk8wpflEv5sPGLYov9oVRorGALMID3ZVyh2/3wPqDxd7w7cnN/AqHA18ENJ\ny1blF6mWwU6Z9sOSjgNuyHMrFgGHAn8lvQEyT9J9wMHAVyQ9BDwC3Fmo5hVgXK7n/4B9c/6BwDmS\nViINSxxEbQy8myTfXQlev9XdawiCIAjqTwxbBE2LGng9hRi2CIKgUSlj2CJ6HoKmJm7SQRAE/U/M\neQiCAIhx5TIJX5ZL+LPxiOAhCIIgCIIeEXMegqaljHG7IAiCwUa8qhkEQRAEQb8TwUMQBECMK5dJ\n+LJcwp+NRwQPQRBUGFNvAwYQ4ctyCX82GBE8BEFQYQkl1GCpCV+WS/izwYjgIQiCIAiCHhHBQxAE\nFUbW24ABxMh6GzDAGFlvA4LFiVc1g6alkZenDoIgaGR6+6pmBA9BEARBEPSIGLYIgiAIgqBHRPAQ\nBPIlYCwAAAMzSURBVEEQBEGPiOAhaEgkfULSHyX9WdJ/1Th+tKT78zZf0huSVu3OuYONXvrycUnz\n8rHZ/W9949ENf64p6XpJbZIekDSxu+cORnrpz/h+FuiGL1eTdKWkuZLulrRpd89dAtuxxdZQGzAU\neJQ0w3pZoA3YuJPyuwA3Lc25A33rjS9zegGwer2vo1G27vgTmAL8IO+vCTwLLBPfzXL9mdPx/eyZ\nL38EHJ/3N+rN72b0PASNyDjgUduP214E/Ab4dCfl9wMuXspzBzq98WWFEB9rpzv+/AewSt5fBXjW\n9hvdPHew0Rt/VojvZ6I7vtwYaAWw/QgwUtI7u3nuYkTwEDQi7wb+Vkj/v5y3BJJWAj4OXNHTcwcJ\nvfElgIGbJN0r6ZA+s7J56I4/fw5sKunvwFzgyB6cO9jojT8hvp9FuuPLucAeAJLGAesB7/n/7dyx\naxRBHMXx7wOxUCRVSBUQRQQbsVUQC7ET7LSy0MLG2sI/QGwtLUQbK8GgXbQSLYUoCqaJnaQQRIhg\nozyL2SJ7SjJza8KFfZ/m7tj9sXOP4e63O3dbWduzb+BgI3ZCy/+HLwJvbH+fonYMhmQJcMb2uqR5\n4KWkVduv/+8Q95SaPG8D72yfk3SUktvJHR7XXjV1nrY3yPzcrCbLu8A9SSvAB2AF+F1Z25MrDzGL\nvgCLm14vUjrhf7lC/zJ7S+0YDMkS2+vd41dgiXJ5c8xq8jwNPAGwvUZZlz/e7Ze52Tckz8zPvm2z\ntL1h+5rtU7avAvPAWk3tpDQPMYveAsckHZa0H7gMPJ/cSdIccBZ41lo7IlNnKemApEPd84PABcrZ\nypjV5LkKnAeQtED5ovtcWTs2U+eZ+fmXbbOUNNdto1vmeWX7R03tpCxbxMyx/UvSTWCZ8ivgB7Y/\nSbrRbb/f7XoJWLb9c7va3X0Hs2NIlsACsCQJymfFY9svdm/0s6cyzzvAQ0nvKSdot2x/A8jc7BuS\np6QjwNPMz6IyyxPAI5Vb+38Erm9Vu9XxcnvqiIiIaJJli4iIiGiS5iEiIiKapHmIiIiIJmkeIiIi\nokmah4iIiGiS5iEiIiKapHmIiIiIJmkeIiIioskfpdPZdEIVhJ4AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "jData.groupby(2)[1].mean().plot(kind='barh', color=list('myb'))\n", "plt.axis([0.7, 0.9, -1, 14])\n", "plt.xlabel('')\n", "plt.ylabel('')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
01
0 contig100010 0.476931
1 contig100021_110093_105915 2.075800
2 contig100025 0.299187
3 contig100026 1.059900
4 contig100031 0.646160
5 contig100040 0.558145
6 contig100055 0.161543
7 contig100067 0.139249
8 contig100105 0.582234
9 contig100110_36597 0.762749
10 contig100118 0.245657
11 contig100128 0.526529
12 contig100132 0.710240
13 contig10014 0.398674
14 contig10017 0.297622
15 contig100183 0.533699
16 contig100194_45147 0.689714
17 contig100209 0.686760
18 contig100227 0.205884
19 contig100237 0.125373
20 contig100251 0.980997
21 contig100252 0.268736
22 contig100259 0.785491
23 contig100308_100284 0.869684
24 contig100321 0.747259
25 contig100328 0.761890
26 contig100330 0.585245
27 contig100341 0.625205
28 contig100347_112826 0.843350
29 contig100349 0.524223
.........
11563 contig99614 0.516533
11564 contig99638 0.244230
11565 contig99649 0.291315
11566 contig99670 0.511823
11567 contig99674 0.552142
11568 contig99689_83153 1.043430
11569 contig99694 0.368911
11570 contig99698 0.584653
11571 contig99714 0.914334
11572 contig99748 0.861369
11573 contig99754 0.967096
11574 contig99766 0.238253
11575 contig99771 0.586749
11576 contig99778 0.822174
11577 contig99780 0.754110
11578 contig99784 0.368969
11579 contig99804 1.013420
11580 contig99808_211682_218627_80123 0.852763
11581 contig99810 0.599800
11582 contig99816_208470_81450 0.905370
11583 contig99826_145307 0.670821
11584 contig99828 0.698013
11585 contig99851 0.252815
11586 contig99856 0.311595
11587 contig99903 0.579263
11588 contig99913_9827 0.601522
11589 contig99921_218449_5860_158351_79662 0.849566
11590 contig99925 0.658814
11591 contig99970 1.020940
11592 contig99996_15114 0.692021
\n", "

11593 rows × 2 columns

\n", "
" ], "text/plain": [ " 0 1\n", "0 contig100010 0.476931\n", "1 contig100021_110093_105915 2.075800\n", "2 contig100025 0.299187\n", "3 contig100026 1.059900\n", "4 contig100031 0.646160\n", "5 contig100040 0.558145\n", "6 contig100055 0.161543\n", "7 contig100067 0.139249\n", "8 contig100105 0.582234\n", "9 contig100110_36597 0.762749\n", "10 contig100118 0.245657\n", "11 contig100128 0.526529\n", "12 contig100132 0.710240\n", "13 contig10014 0.398674\n", "14 contig10017 0.297622\n", "15 contig100183 0.533699\n", "16 contig100194_45147 0.689714\n", "17 contig100209 0.686760\n", "18 contig100227 0.205884\n", "19 contig100237 0.125373\n", "20 contig100251 0.980997\n", "21 contig100252 0.268736\n", "22 contig100259 0.785491\n", "23 contig100308_100284 0.869684\n", "24 contig100321 0.747259\n", "25 contig100328 0.761890\n", "26 contig100330 0.585245\n", "27 contig100341 0.625205\n", "28 contig100347_112826 0.843350\n", "29 contig100349 0.524223\n", "... ... ...\n", "11563 contig99614 0.516533\n", "11564 contig99638 0.244230\n", "11565 contig99649 0.291315\n", "11566 contig99670 0.511823\n", "11567 contig99674 0.552142\n", "11568 contig99689_83153 1.043430\n", "11569 contig99694 0.368911\n", "11570 contig99698 0.584653\n", "11571 contig99714 0.914334\n", "11572 contig99748 0.861369\n", "11573 contig99754 0.967096\n", "11574 contig99766 0.238253\n", "11575 contig99771 0.586749\n", "11576 contig99778 0.822174\n", "11577 contig99780 0.754110\n", "11578 contig99784 0.368969\n", "11579 contig99804 1.013420\n", "11580 contig99808_211682_218627_80123 0.852763\n", "11581 contig99810 0.599800\n", "11582 contig99816_208470_81450 0.905370\n", "11583 contig99826_145307 0.670821\n", "11584 contig99828 0.698013\n", "11585 contig99851 0.252815\n", "11586 contig99856 0.311595\n", "11587 contig99903 0.579263\n", "11588 contig99913_9827 0.601522\n", "11589 contig99921_218449_5860_158351_79662 0.849566\n", "11590 contig99925 0.658814\n", "11591 contig99970 1.020940\n", "11592 contig99996_15114 0.692021\n", "\n", "[11593 rows x 2 columns]" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#To plot density curve, must use CpG with original annotation\n", "CpG = pd.read_table('Ahya_cpg_anno', header=None)\n", "CpG" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[-0.3, 1.7, 0, 1.7]" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD7CAYAAABt0P8jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXFWZx/HvLwkgKA7BCCpbXEBBQdbAsEizDASUTWaE\ngAhuRBgIoMOwORJBwWVUQBgGWRIRBRFwWAdUoDECsgyENSgBgwSQgBIEQUjIO3+cU923O13d1d33\n1j331vt5nnqoe+pW1cvh8vat9557jswM55xznWNM2QE455xrL0/8zjnXYTzxO+dch/HE75xzHcYT\nv3POdRhP/M4512HGlR1AKyT5mFPnnBsBM1P/tkokfhg4+KqRNN3MppcdR114f+bL+zM/qfRls5Nm\nL/W018SyA6iZiWUHUDMTyw6gRiaWHcBgPPE751yH8cTfXjPLDqBmZpYdQM3MLDuAGplZdgCDURXm\n6pFkdajxO+dcOzXLnX7G30aSusqOoU68P/Pl/Zmf1PvSE79zznWYQks9ki4APgosMLP1m+zTBXwP\nWAZ43sy6BtjHSz3OOTdMzXJn0Yl/G+Bl4MKBEr+klYBbgZ3NbL6kCWb2/AD7eeJ3zrlhKqXGb2az\ngBcG2WU/4HIzmx/3Xyrp10nqdb+q8f7Ml/dnflLvy7Jr/GsDK0u6WdLdkg4oOR7nnKu9sqdsWAbY\nGNgBWAG4XdJvzezRcsMqhpl1lx1DnXh/5sv7Mz+p92XZif9JwgXdV4FXJf0a+DCwVOKXNBOYFzcX\nArMbndv4WeXbvu3bvt3J2/H5QQTzaKLwG7gkTQSubnJx9wPAmcDOwHLAHcA+ZvZwv/1qcXFXUlfq\nZwJV4v2ZL+/P/KTSl81yZ6Fn/JIuBrYFJkh6EjiRUN7BzM4xs0ckXQ/cDywBzu2f9J1zzuXLp2xw\nzrma8ikbnHPOAZ742yr1sb1V4/2ZL+/P/KTel574nXOuw3iN3znnaspr/M455wBP/G2Vet2varw/\n8+X9mZ/U+9ITv3POdRiv8TvnXE15jd855xzgib+tUq/7VY33Z768P/OTel964nfOuQ7jNX7nnKsp\nr/E755wDPPG3Vep1v6rx/syX92d+Uu9LT/zOOddhvMbvnHM15TV+55xzgCf+tkq97lc13p/58v7M\nT+p9WWjil3SBpGclPTDEfptJWizp40XG45xzruAav6RtgJeBC81s/Sb7jAV+CbwCzDCzywfYx2v8\nzjk3TKXU+M1sFvDCELsdDlwGPFdkLM4554JSa/ySVgP2AM6OTekPMRqF1Ot+VeP9mS/vz/yk3pfj\nSv7+04BjzcwkCWhazpE0E5gXNxcCs82sO77WBZD6dubfJYl4qr7dkEo8Vd9uSCWeim9vCLT9++Pz\ngwjm0UTh4/glTQSuHqjGL+lxepP9BEKd//NmdlW//bzG75xzw9Qsd5Z6xm9m72k8lzSD8AfiqkHe\n4pxzbpSKHs55MXAb8H5JT0r6jKSpkqYW+b2pSr3uVzXen/ny/sxP6n1Z6Bm/mU0Zxr6fLjIW55xz\ngc/V45xzNeVz9TjnnAM88bdV6nW/qvH+zJf3Z35S70tP/M4512G8xu+cczXlNX7nnHOAJ/62Sr3u\nVzXen/ny/sxP6n3pid855zqM1/idc66mkpyrx7m6k1gVeFPcNGChGX8tMSTnvNTTTqnX/aom1f6U\nWEviWIkHgD8RpsedBzwBvCBxtcTHJMaWGOZSUu3PKkq9Lz3xO5cTiQ9J3EhI8qcCHxpgtzHAx4Cr\ngXkSR0j+/6FrL6/xOzdKEssCx8fHMv1e/juwgLDuxBhgtQE+4nLgQDP+VmScrvP4OH7nCiCxCXAP\ncCK9Sf8N4HrgAGAVM9YyY00zVgfWAb5F3zWm9wZulVirfZG7TuaJv41Sr/tVTdn9KbEHMAv4YKb5\ndmB9M3Yx4yIzXsq+x4xHzTgGWAM4I/PSh4G7JbYoOu5myu7POkm9Lz3xOzcCEv8KXAEsH5teAY4A\ntjFjzlDvN+M1M44APgssis0TgGsk3l1AyM718Bq/c8MQL8SeAhyTaX4M2NWM34/wM7cEriQkfoAH\ngC3NeHk0sTpXSo1f0gWSnpX0QJPX95d0n6T7Jd0qaYMi43FuNCQEnEbfpH8nIUmPKOkDmHEbsDvw\nemxaH7jQR/u4ohR9YM0AJg/y+uPAR8xsA+Bk4AcFx1Oq1Ot+VVNCf54MHJ7ZvhrY3owFo/1gM24H\nvpBp2otwwbht/PjMT+p9WWjiN7NZwAuDvH67mb0YN+8AVi8yHudGSuJo4IRM06XAx/McgmnGDOB7\nmaavSPxTXp/vXEPhNX5JE4GrzWz9Ifb7N2AdMzt4gNe8xu9KIzEV+O9M07WEpP96k7eM5rvGxc/f\nKTY9Thgl9Ere3+Xqr2nuNLNCH8BE4IEh9tkOeBgY3+R1A2YC0+PjSKAr83qXb/t2Edtgu8JNb8DN\nBmZgN8M7dir2+yftBb/8a/w+g/MvTqU/fDvt7fh8Jr350hr7ZR+ln/HHC7pXAJPNbG6TfcxqcMYv\nqcvMusuOoy6K7k+JDwG3ASvGpruAHazf2PyCvvszwPlx8w1gMzPuLfY7/fjMSyp9meSdu5LWJCT9\nTzZL+s6VQWIV4Bp6k/4TwMfakfSjGUB3fD4WOC+WgZwbtULP+CVdDGxLGJ/8LJnb2s3sHEnnEUYv\n/DG+ZZGZTRrgc2pxxu+qQeJNwI3AlrHpZcKQzQGHJRcYx9qEMf3LxaZ/M+M77YzBVVuz3Ok3cDmX\nEcfqnw98OjYZsLsZ15QUz/HA1+PmS8B7zfrM8+NcU0mWejpN6mN7q6ag/vw8vUkfwll2KUk/+jb0\nTAGxIn2HlObKj8/8pN6XnvidiyQmAd/PNP2IvuPq286MRcBxmaZDfS4fN1pe6nEOkHg7YXrlxk2E\n9xHq+qWPn4/lp1nAVrHpx2Z8ssSQXEV4jd+5JuISiDcAO8SmhcCmZjxWXlR9SWwF/CbTtHHRwztd\n9XmNPwGp1/2qJsf+nE5v0jdg/5SSPoAZtxJm8Gw4Ne/v8OMzP6n3pSd+19EkJgNfzjSdZMZ1ZcUz\nhOOBJfH5zhLblxmMqy4v9biOJbE6MBt4W2z6FTDZjDfKi2pwEucRFm8BuMWMrhLDcYnzGr9zGRLL\nADfTe8H0GWBDy2GK5SLFdXnnQs9dvB8xY1aJIbmEeY0/AanX/apmlP35dXqT/hJg39STPoAZTwAX\nZpq+3Gzf4fLjMz+p96UnftdxJHYDjs40nWDGr8uKZwROpbfWv1O8/8C5lnmpx3WUWCq5Fxgfm/6X\nMPnakubvSo/ERcD+cfNqM3YvMx6XJq/xu44nsSzhRqjGGfKTwEZm/Lm8qEZGYj3goUzTRmbMLise\nlyav8Scg9bpf1YygP79Fb9JfDOxTxaQPYMbDwOWZplHX+v34zE/qfemJ33UEib2BIzJNx1hY4LzK\nvpZ5/nGJdUqLxFWKl3pc7Ul8gLB61lti05XAXmakf/APQeJaYNe4+QMzppYZj0uL1/hdR5J4C3An\nsG5seowwD8/C8qLKj0QX4X4EgNeAtcx4tryIXEq8xp+A1Ot+VTNUf2YWVWkk/VeBveuS9KNbgLvj\n8+WAw0b6QX585if1viw08Uu6QNKzkpouWSfpDEmPSrpP0kZFxuM6zpHAJzLbXzDjvrKCKUIsV307\n03SoxJvLisdVQ9Fr7m5DWK/0QjNbf4DXdwUOM7NdJW0OnG5mWwywn5d63LBI7EQYo984uTnbjENL\nDKkwcRH23wHviU3TzPosKOM6VCmlHjObBbwwyC67Az+M+94BrCRp1SJjcvUn8X7gUnqP7zuAo8qL\nqFhmLAa+m2n6Yvxj4NyAyq7xr0a4iaZhPr0rINVO6nW/qhmoPyVWBq4G/iE2zQf2NOO1NoZWhhnQ\nc0/CRGDv4X6AH5/5Sb0vy078AP1/hqQ/zMglKZ7l/hRYOza9Cuxhxp/Ki6o94hKRZ2WavhQvbju3\nlLJ/Dj4FrJHZXj22LUXSTGBe3FwIzDaz7vhaF4Bvd/L2GOCNTwE7QjdB14Fm3JNGfMVvg50FHAPd\nywGbQdeWwK2pxNdp2w3t/P74/KD41fNoovBx/JImAle3cHF3C+A0v7jrRkLiFOC4TNN0M75aVjxl\n6bdQyxVmwy/5uPoY8cVdSVdI+qikYZeFJF0M3Aa8X9KTkj4jaaqkqQBmdh3wuKS5wDlQz1EXDanX\n/aqm0Z8S0+ib9GcAJ5URUwK+l3m+p9Qz0mdIfnzmJ/W+bKXUczbwaeD7ki4FZpjZ71r5cDOb0sI+\nI77hxDmJfYHTMk3XAAfXYTqGkTDjIYlfADsRTuymEe5ncK5Hy6UeSSsB+xJmAfwjcC5wkZktKi68\nnu/2Uo9bisS/ABcDY2PT7cCO8UJnx5LYGbg+br4MrG7GiyWG5EoyqnH8kt5GuGDwOeAe4AxgE+CX\nOcboXMsk9qFv0p9DWFClo5N+9Avg4fj8LYT/b53r0UqN/+fAb4AVgN3MbHczuySWaFYsOsA6Sb3u\nVxUS+wE/ge5G0n8E2MGMv5QYVjJimStb65/Wyg1dfnzmJ/W+bOWM/1wzW9fMTjGzZwAkLQdgZpsU\nGp1z/Uh8DvgRvcfuw0CXGc+UF1WSfgw8F5+vCexZYiwuMUPW+CXda2Yb9Wu7x8w2LjSyvt/nNf4O\nF29G+irwH5nmh4DtzVhQTlRpkziJ3v661Yyty4zHtV+z3Nn055+kdwLvApaXtDHhDlsD3koo+zjX\nFhLLEAYTHJhpvhfY2aznrNYt7WzgWGAZYCuJTc16pnB2HWywUs/OwH8S5tP5Tnz+HeCLwPHFh1Y/\nqdf9UhTn3rmOvkn/emBb0AfLiaoaYvnrp5mmI5rtC3585in1vmx6xm9mM4GZkvY2s8ub7edcUSTW\nB/4H+tyEdAFhXv1F8uJfK04HPhmf7yPx7349xDWt8Us6wMx+JOlL9J04TYCZ2XcHfGMBvMbfeeIY\n/Zn0LStOB07q1JuzRkriN8BWcfNkM75SZjyufUYyjr/xP9yKTR7O5U5inMS3CPPpN47BlwlLJn7V\nk/6InJ55/gWJN5UWiUuCL7beRpK6GjPquaVJvJNQk94m0zyXMJ/+Q0vv7/3ZijiG/3F6Z8L9rBkX\nLL2f92deUunL0UzS9i1Jb5W0jKQbJT0v6YBiwnSdSmI7wkidbNK/Dpg0UNJ3rYsrdJ2ZaZrmc/V3\ntlbG8d9nZh+WtBfwMcKonllmtkE7Aowx1OKM3y0tJqCjgVPpPRFZQhh//g0zlpQVW51IjCesdbF8\nbNrWjF+XGJJrg9HM1dMY+fMx4DIzexFfJcvlQOKtwGXAN+k9FhcQJlo7xZN+fsx4Abgw0zStrFhc\n+VpJ/FdLeoQwKduNklYB/l5sWPWU+tjedpJYF7gT+Him+VZgIzNubu0zvD+H6fuZ53tJrJl90fsz\nP6n35ZCJ38yOJQwF28TMXgf+BuxRdGCuviR2JEyh/P5M8xnAdmY8XU5U9RevldwYN8cA/1piOK5E\nLY3qkbQVsBbh1m8I4/gvHOQtufIaf33ESdbOpreE+ArweTN+Ul5UnUNid+DKuPkCYa5+n8q6pkYz\nquci4NvA1sCm8bFZi186WdIjkh6VdMwAr0+QdL2k2ZIelHRQK5/rqkdijMQ3CHPuNJL+08DWnvTb\n6lrgD/H5eGD/EmNxJWllVM8cYD0b5oB/SWOB3wE7EkYT3AVMMbM5mX2mA8uZ2XGSJsT9VzWzxf0+\nqxZn/KmM7W03iTGENZWzC4LcC+xmxlMj/9zO7M/RkjgKaNx5/yCwgRnm/ZmfVPpyNKN6HgTeOYLv\nnATMNbN5cXnGS1j62sAzhNk+if/8c/+k76ot3jw0k75J/2rgI6NJ+m5UZhCu1QF8COgqLxRXhlYW\nW3878LCkO4HXYpuZ2e5DvG814MnM9nxg8377nAvcJOlpwjQQn2ghnspK4QygneJ0yj8C9sk0Xwh8\nxow3Rvv5ndafeTFjocSFwCGx6XDgZu/P/KTel60k/unxnwY9d/u1UvZpZZ/jgdlm1iXpvcAvJX3Y\nzF5q4b0uYRJjCatA/Uum+VzCzJo+Pr98Z9Kb+PeQWMuMJ8oMyLXPkInfzLolTQTeZ2a/krRCK+8j\n1PXXyGyvQTjrz9oS+Hr8nsck/YEwxG+pxSIkzQTmxc2FhD8Y3fG1rkasKW832lKJp7jtsV0w4wj4\nVFzurxt44go4cGqjluz9Wf422I3ADtA9Bh47Rfrcud6fuW1vaGantfv74/ODCObRjJkN+gAOJlyY\nfSxurwPc2ML7xgGPAROBZYHZwLr99vkucGJ8virhD8PKA3yWDfV9VXgAXWXH0J5/TzsOzDKP08Hk\n/ZnWA2yPzH+j5+EdO5UdU10eqRybzXJnS3P1EC7U/tbi2ruSHjCz9Qd9Y9hvF+A0YCxwvpmdKmlq\njOacOJJnBmEx6DHAqWa21NC+uozq6QQSBxH+mzZcAuxvXt5JTizHzSWcnEG49jKj+Ttc1TTLna0k\n/jvNbJLiouuSxgH3mE/S5vqJd+ReT/hDD3ATsKtZz6AAlxiJo4Fvxc17gU3MfC6uuhjNcM5bJJ0A\nrCDpn4CfEYbjuWFKff6O0ZBYi3B230j69wF7FZn069yfbXQ+8Gp42r0R4bqbG6XUj81WEv+xwHPA\nA8BUwhzpXy4yKFctEssDVwBvi03PEM70/1peVK4VZvyFMPqq4fCyYnHt0+pcPasAmNmCwiMa+Pu9\n1JOoOJ/+BfSOJFgEdJlxW2lBuWGR2IDwCw1gMbCm+YLstTDsUo+C6ZKeJ0yl8DuF1bdOlORJ2DVM\npTfpAxzpSb9azLgfmBU3xxFG8rkaG6zUcxRhOubNzGy8mY0njO7ZKr7mhin1ut9wxTPF7ELePyTM\nvNmm769Xf5bsrHC/BQBT413XboRSPzYHS/yfAvYzs8ZMfpjZ44TZ/D5VdGAubRJvItSGl41Ns4FD\nfERIZf0cXv9zfP5OYK8yg3HFGizxjzOz5/o3xrZW7tx1/Vji83cM0ymECb4gjAqZYtYYHdIeNevP\nUpnxOuyUXZDdF2kZhdSPzcES/6IRvuZqLo7Xz5b7vmTGI2XF43LzA8LFXYCPSAx5k6arpsES/waS\nXhroAX5AjETqdb9WSKxMqOU3XAf8dzmxVL8/06J1CMNyG/ysf4RSPzabJn4zG2tmKzZ5eKmnc50O\nvCs+f45wm7/X9esjW+45QGKl0iJxhWlpHH/ZfBx/GiR2JkzJ0LCnWc/6ra4G4n0Z99H7q/4oM04r\nMSQ3CqOZssE5JN5M35LOxZ706yf+ejsr03RoXDrT1Yj/B22j1Ot+QziJ3lkc/wIcWV4oQcX7MzmZ\n/vwx9Ey3sTZh3Ww3DKkfm5743ZAkNqVvov+iGaVM3+GKZ8bL9J1a2y/y1ozX+N2g4mLpdwEbxqZf\nATv5Bd16k1iHMFULwBLgPeZLM1aO1/jdSH2B3qT/KmHNXE/6NWfG74Ffxs0xhOPA1YQn/jZKve7X\nn8QE4ORM08lmPFZWPP1VrT9TN0B/Zi/yfi5O0+FakPqx6YnfDeZr0DOO+zHCGsmuc1wD/DE+nwB8\nosRYXI4KTfySJkt6RNKjko5psk+XpHslPSipu8h4ypb6/B1ZEhvRd3reI1NbQrFK/VkF/fvTjDfo\nO4TXL/K2KPVjs7CLu5LGEi4O7Qg8RbhAOMXM5mT2WQm4FdjZzOZLmmBmzw/wWX5xt43iTTy/BraO\nTdcTVtTy2n6HkXg7MJ/eWVg3N+POEkNyw1DGxd1JwFwzm2dmiwjrse7Rb5/9gMvNbD7AQEm/TlKv\n+2XsS2/SX0w4208u6VeoPythoP404znC/7sNh7UtoApL/dgsMvGvBjyZ2Z4f27LWBlaWdLOkuyUd\nUGA8rgXxAt43Mk2nmfUM63OdKTt/zz4Sq5QWictFkZOttXKGuAywMbADsAJwu6Tfmtmj/XeUNBOY\nFzcXArMbdbTGX1ffzmX7MOheEwC6ngNOTiw+327zNujNcNUc2G1dYFk4+xTp0ItSiS/V7YZ2fn98\nflD86nk0UWSNfwtguplNjtvHAUvM7JuZfY4Bljez6XH7POB6M7us32d5jb8NJMYTRu+Mj02Hm/U5\n23MdSmJ/4KK4+RTwbjNflyN1ZdT47wbWljRR0rLAPsBV/fa5Etha0lhJKwCbAw8XGFOpUq/7AcfR\nm/QfIyzMkawK9GelDNGfl0HPNB2rAXsWHlCFpX5sFpb4zWwx4ULQDYRk/lMzmyNpqqSpcZ9HCCNG\n7gfuAM41s9om/pRJrAlMyzQdH5bjcw7iUN5zMk1+kbfCfK4eB4DED4FPxc27CMP20j84XNtIvAt4\ngt5rgxuacV+JIbkh+Fw9rqm4tmp2RNXRnvRdf2Y8Td+lGac129elzRN/GyVc9zsJaJwVXGvGLWUG\n06qE+7OSWuzP0zPP9/ehnQNL/dj0xN/hJDah74W6E8qKxVXC7dBz5+5ywCElxuJGyGv8HU7iOmCX\nuPkzM5+Iyw1OYl/g4ri5AFjLjL+XGJJrwmv8bikSW9Kb9JcAJ5YYjquOywl34gOsAkwpMRY3Ap74\n2yjBul92rv2fmDGn6Z4JSrA/K63V/ow3bn0/03RUnNjPRakfm574O5TE9sD2cfMN4KslhuOq51zg\nlfh8fXqPJVcBXuPvQPHsbBawVWw634zPlRiSqyCJM+mdo/9aMz5WZjxuac1ypyf+DiSxA2HRdIBF\nwNq+kLYbLom1CWtuNP7f/JAZD5UYkuvHL+4mIIW6Xzzbz17EvaCqST+F/qyT4fanGY/Sd/6tY3MN\nqMJSPzY98XeeLmCb+HwxcGp5obgayB4/UyTeXVokrmVe6ukwEt3AtnHzPDM+X2I4rgYkfkVYUwPg\nbDMOLTMe18tr/A6JbYHuuLkYWMeMP5QXkauDfteMXgMmmvGnEkNykdf4E5BA3S9b27+w6kk/gf6s\nlVH05030ncbhqFwCqrDUj01P/B1CYmtgu7j5BvD1EsNxNRJncs3W+g+Nq7m5RHmpp0NI/AL4p7g5\n04xPlxmPqxeJMcADwHqx6atmTC8vIgde4+9oEv8I3BY3lwDvN2NuiSG5GpL4JPCjuPkS8B4zni8x\npI5XSo1f0mRJj0h6NC6s3my/zSQtlvTxIuMpW4l1v69knv+4Lkk/9Tpq1eTQnxdDz3xPK9LB4/pT\nPzYLS/ySxgJnApMJP/+mSFq3yX7fJKy962f1OZOYRPhvAGB4bd8VxIw3gC9nmg6TWL2seFxzRZ7x\nTwLmmtk8M1sEXALsMcB+hwOXAc8VGEsSzKy7hK/9j8zzS8z4XQkxFKKk/qytnPrz54Q1myGM8PnK\nIPvWVurHZpGJfzXgycz2/NjWQ9JqhD8GZ8em9C84VIjExtAzcZaf7bvCxRE+x2eaPiOxTlnxuIGN\nK/CzW0nipwHHmplJEoOUeiTNBObFzYXA7MZf1UY9LfXtRlv7vs+OCP/sBhbcYvaJh1Lqj6r1Z923\n8+pP0GL4+T2w58bAWLj0v6V9Tir736/N2xua2Wnt/v74/CCCeTRR2KgeSVsA081sctw+DlhiZt/M\n7PM4vcl+AmF+78+b2VX9PqsWo3okdbXrJ6DERsA9maYNzHigHd/dLu3sz06QZ39KbA78NtO0pRm3\n5/HZVZDKsdn24ZySxhGmbN0BeJpwZ98UMxtwlSdJM4CrzeyKAV6rReJvJ4n/ofeayhVm7F1mPK7z\nSFwONEbqzQY2jReAXZu0fTinmS0GDgNuAB4GfmpmcyRNlTS1qO91PbX97IV0X13LleFLwKvx+YbA\nF0qMxWX4DVxt1K6ffxJXArvHzcvM+Jeiv7MMqfycrosi+lPiBOBrcfNFws2Dz+b5HSlK5dj0Sdo6\nhMQm9CZ9gJPKisU54D+h54bBfyDcs+NK5mf8NSNxFbBb3PyZGZ8oMx7nJHYm3KDZsI0Zvykrnk7i\nc/V0AIlN6b15xggjeR4sMSTnAJC4DHoGGPwe2NiMv5UYUkfwUk8C2jB/x9cyz39W96Sf+nwoVVNw\nf34ReDk+X4dQAqqt1I9NT/w1IdEF7Bw3l+AjeVxCzPgjYXqWhi9IfLSseDqdl3pqQEKEaZe3iE0+\n375LTjxOL6N3bP8CYH0zFpQXVb15jb/GJHYHroybrxPW0n2ixJCcG5DEBOB+4J2x6SpgzzjHj8uZ\n1/gTUETdT2IscEqm6exOSfqp11Grph39GRdmyf4a3R04uujvbbfUj01P/NW3H/DB+Pxl+v4RcC45\nZtwAnJFp+obErmXF04m81FNhEssBjwATY9NJZpxYXkTOtUZiWeBXwDax6a/AFmYMOJeXGxkv9dTT\nkfQm/T8D3ykvFOdaZ8brwD8Df4xNbwWulBhfXlSdwxN/G+VZ95N4B3BCpmm6GX/N6/OrIPU6atW0\nuz/jaJ49CNOxA6wNXC7xpnbGUYTUj01P/NX1NcKC1hAWuD6nxFicGxEzZtO7cAjAdsClEsuUE1Fn\n8Bp/BcVFVv6P3kVsJscLZs5VksQxwDcyTRcDB/j8/aPjNf6aiDfBnEZv0r/Ok76rOjO+Sd/EPwX4\nr3i8u5x54m+jnOp+ewMfic8XExa76Eip11GrJoH+PB74r8z2wcB58V6VSkmgLwflib9CJP4BOD3T\ndJYZj5QVj3N5infvHg78KNP8GeCnceiyy0nhNX5JkwmlibHAednF1uPr+wP/TihdvAQcYmb399vH\na/yAxFnAoXFzAfABM14oMSTncicxDjiXvhd9fwF83KdyHp5SavySxgJnApOB9YApktbtt9vjwEfM\nbAPgZOAHRcZUVRJbAodkmqZ50nd1ZMZi4LP0/XW7E3CT1DPHjxuFoks9k4C5ZjbPzBYBl9B3EXDM\n7HYzezFu3gGsXnBMpRlp3S/e5XguvRd0rwUuzSmsykq9jlo1KfWnGUuAo4DpmeZJwJ1xVFvSUurL\ngRSd+FcDnsxsz49tzXwWuK7QiKrpGMIvJoC/AYf6bIau7swwM74KHEZYYwLCieFvpJ6pnd0IFJ34\nW05OkrYjXMg5prhwymVm3cN9j8QGwJczTSfERS063kj60zWXan+acRawK9CoDKxAuMP3G6ne6JVq\nXzaMK/hmI2AzAAAIZ0lEQVTznwLWyGyvQTjr70PSBoRSxmQzG7BuLWkmMC9uLgRmNzq38bOqbttg\ndwKXQPeyYbvrLuDMVOLzbd9u4/ZrYFsA10D3ewGg6xhgG2mH0+GmBYnFW8p2fH5Q6J+efLmUQkf1\nSBoH/A7YAXgauBOYYmZzMvusCdwEfNLMftvkc2oxqkdS13DOBCTOIYxlhjCfySY+fLPXcPvTDa4K\n/SnxNuDH9C4zCvAC8Fkzfl5OVEtLpS9LGdVjZosJ9bkbgIeBn5rZHElTJU2Nu30FGA+cLeleSXcW\nGVNVxBrmwZmmaZ70Xacz48+Ess+x0DOdw3jgComLJd5eWnAV4nP1JEhiTeA+YKXY9DNgH7+g61yv\nOMT5EvqWk58HpgGX+P8vPldPZUisQFiQupH0nwAO9oPYub7MuA3YEPhhpnkC8BPCmP+NSwmsAjzx\nt9FQY3slxhAO4s1i0xvA/mYsLDi0Skp9rHTVVLE/zfiLGQcBu9B36HgXcLfETKn99wal3pee+NNy\nMmFVooYjzLi1rGCcqwozrgc+RFjLt1H7F3Ag8JjEuRJrlxVfarzGnwiJA4GZmabvmzGtpHCcqyyJ\nDwDfAnbr99ISQhn1LGBWJ5RPm+VOT/wJkNgNuBx6bkb5X2D3OGeJc24EJLYnrFT3jwO8/HvgAuBC\nM55pa2Bt5Bd3EzBQ3U9iD/om/QeBfT3pDy31OmrV1K0/zbgJ2IpQ77++38vrEBZ+eUpilsSRcTRd\nLlLvS0/8JZLYi/DTs5H0Hwd27bRF050rSpzv5xYzdgE2As6GPv9/Cdga+B7whMT9Et+W2LEOi743\n46WekkjsA1xE77QZc4HtzJae0sI5l584ZPqfgU8TVrNrdgL8d+A24GagG7jLjNfaEWNevMafiDhk\n80TCHcsNvwe2N+OpcqJyrjNJrEKYKn5vYHsYdNK3vxOmnZkVH78165k4Lkme+BMgTdwF5n0O+kwp\n+wgh6df2AlNRUpkPpS46vT8l3kK4HrAzYfGo9w3xFgMeAG6Nj9uBP5hhqfRls9xZ9OycLpJYF/7r\n+8B7M82/JEzF4CtpOVcyM14GrokP4o1fXZnHe/u9RcAG8dFYHe9ZidvhzAUK6fbu+LlJ8TP+gsXS\nzjTgVOhzseg04GgfveNcNcRlH7eJj62ADzP0AJklwEPAXZnHg+26VuClnhJITARmEM4WGl4HDjHj\ngjJics7lQ2JFYAtgS8K9Av8IvLWFty4iDNu+B5gN3A88UMQvf0/8bSTxZsK0sf9Gn7P8a+fCR/cy\n48GSQquVVOqodeH9OTrx1/16wObw471g/7WADwKt5q75hOnr58TH74HHgKfMeqahGGZMnvgLJzEW\n2I9wY8i7Mi8tAU6F8d1mL/yqlOBqyBNVvrw/89PoS4m3AhsDmxImX9yEpa8VDOV1wiy9fyT8cZgP\nPAM8ByyI//wLsNCMV/vF4Ym/KBLLAp8knOX3nwjq/4DDzBhwdTHnXGeRWIkwnfQmhAvD6xN+GSyb\nw8e/Rlib+K/hoY098edM4l3AAYRVxvpP/fon4Hjgh2YsaXdszrnqiIvGvw/4ALBufLwPeA+wyig+\nmbYnfkmTCaNXxgLnmdk3B9jnDMJc2q8AB5nZvQPsk0zijz/ddiYsaDyZpa/qv0iYGvbbZrzU973+\nUzpP3p/58v7MT559GS8ivxtYjXCCuTrwDuDtmcf4+Oh3A9rAib+wcfySxgJnAjsCTwF3Sbqq30Lr\nuwLvM7O1JW1OmEdji6JiGgmJ5Qk/x7Yl/IHamoH7bQHwXeDsQeba2ZBw67fLh/dnvrw/85NbX8YT\nyPvjoykJAcsTVu9bkTDCaMA1zIu8gWsSMNfM5oWgdAnh1ug5mX12Jy6bZmZ3SFpJ0qpm9myBcfUh\nMY7QUSsD7wQmxsd7Cf/x1iP8YmmmmzCP/qX9L6wMYKUhXnfD4/2ZL+/P/LS9L+P6Aq/EBwBqUicp\nMvGvRt+l0OYDm7ewz+rAUolfCnfTNaEBHmMyj3GEn0DLAMsR/iouD7yZ1sbd9ncvcBVhLu/HR/B+\n55wrTZGJv9WLB/3/JjV730dHEctoGGE87f8Rpli4YRTz6kzMKygHeH/mbWLZAdTIxLIDGEyRif8p\nYI3M9hqw1JTD/fdZPbYNoLRruwLeHx/7QfOfTy19mHRgLlE5wPszb96f+Um5L4tM/HcDa0uaCDwN\n7ANM6bfPVYShkJdI2gJYOFB9P5URPc45VweFJX4zWyzpMOAGwsXR881sjqSp8fVzzOw6SbtKmgv8\njbAwgnPOuQJV4gYu55xz+fE1dwsgabKkRyQ9KumYJvucEV+/T9JG7Y6xSobqT0ldkl6UdG98fLmM\nOKtA0gWSnpX0wCD7+LHZgqH6MuXj0hN/zjI3rk0m3AMwRdK6/fbpuXENOJhw45obQCv9Gd1iZhvF\nx9faGmS1zCD05YD82ByWQfsySvK49MSfv54b18xsEdC4cS2rz41rwEqSVm1vmJXRSn9CicO+qsTM\nZsGg8777sdmiFvoSEj0uPfHnb6Cb0lZrYZ/+k7y5oJX+NGDLWJq4TtJ6bYuufvzYzE+yx6WvuZu/\nvG9c63St9Ms9wBpm9oqkXYD/AdYpNqxa82MzH8kel37Gn7+cb1zreEP2p5m9ZGavxOf/CywjaeX2\nhVgrfmzmJOXj0hN//npuXJO0LOHGtav67XMV8CmAwW5cc0AL/SlpVSncTy1pEmGY8l/aH2ot+LGZ\nk5SPSy/15MxvXMtXK/0J/DNwiKTFhJkJ9y0t4MRJupgwxfgESU8CJxLncPdjc3iG6ksSPi79Bi7n\nnOswXupxzrkO44nfOec6jCd+55zrMJ74nXOuw3jid865DuOJ3znnOownfuec6zCe+J1zrsP8P2E7\nIUCMTQPjAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# pandas density plot\n", "CpG[1].plot(kind='kde', linewidth=3);\n", "plt.axis([-0.3, 1.7, 0, 1.7])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Now looking only at differentially expressed contigs , joining via common contig IDs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The file \"Ahya_diff_contigs\" is a text file that lists the 484 contigs that were differentially expressed\n", "between control and heated corals, regardless of source population. The contig IDs are the same as those \n", "in the transcriptome above. The file was obtained from an [Excel file]((http://www.pnas.org/content/suppl/2013/01/02/1210224110.DCSupplemental/sd01.xlsx) that was downloaded\n", "from the supplementary info page at http://www.pnas.org/content/110/4/1387.abstract." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "contig83050\n", "contig180146_147773\n", "contig216267\n", "contig118470_120199_147241\n", "contig211162\n", "contig181073\n", "contig145010\n", "contig189881_190487_185006\n", "contig185261\n", "contig184253_153996_125963\n", " 484 484 7941 Ahya_diff_contigs\n" ] } ], "source": [ "!head -10 Ahya_diff_contigs\n", "!wc Ahya_diff_contigs" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "!sort Ahya_diff_contigs.sorted" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "contig100302_114262_202031 0.908145\n", "contig100349 0.524223\n", "contig102770 1.2155\n", "contig103080_193887 0.661096\n", "contig104395_153016 0.885662\n", "contig105632_159216 2.26543\n", "contig105645 1.45804\n", "contig105949 0.973447\n", "contig107034 0.727932\n", "contig107336 0.719959\n", " 484 968 12122 Ahya_diff_cpg\n" ] } ], "source": [ "#Joining with CpG O/E data\n", "!join Ahya_diff_contigs.sorted ID_CpG.sorted > Ahya_diff_cpg | awk '{print $1, \"\\t\", $2}' \n", "!head Ahya_diff_cpg\n", "!wc Ahya_diff_cpg" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "contig100349 \t 0.524223\n", "contig103080_193887 \t 0.661096\n", "contig104395_153016 \t 0.885662\n", "contig105632_159216 \t 2.26543\n", "contig105949 \t 0.973447\n", "contig107034 \t 0.727932\n", "contig110172 \t 0.729807\n", "contig110751 \t 1.08054\n", "contig112007_150291_111307 \t 1.03768\n", "contig112463 \t 0.627976\n", " 278 556 7800 Ahya_diff_cpg_anno\n" ] } ], "source": [ "#Joining with annotation file\n", "!join Ahya_diff_cpg Ahya_blastx_uniprot_sql.tab.sorted | awk '{print $1, \"\\t\", $2}' > Ahya_diff_cpg_anno\n", "!head Ahya_diff_cpg_anno\n", "!wc Ahya_diff_cpg_anno" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " 698 3081 37965 Ahya_diff_cpg_GOslim\n" ] } ], "source": [ "#Joining with GOslim annotation file\n", "!join Ahya_diff_cpg Ahya_GOSlim.sorted | awk '{print $1, \"\\t\", $2, \"\\t\", $3, $4, $5, $6}' > Ahya_diff_cpg_GOslim\n", "!head Ahya_diff_cpg_GOslim\n", "!wc Ahya_diff_cpg_GOslim" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Column1Column2GOslim_bin
0 contig100302_114262_202031 NaN NaN
1 contig100349 0.524223 RNA metabolism
2 contig100349 0.524223 stress response
3 contig100349 0.524223 other biological processes
4 contig100349 0.524223 other metabolic processes
5 contig102770 1.215500 RNA metabolism
6 contig102770 1.215500 transport
7 contig102770 1.215500 protein metabolism
8 contig102770 1.215500 cell cycle and proliferation
9 contig102770 1.215500 signal transduction
10 contig102770 1.215500 developmental processes
11 contig102770 1.215500 other metabolic processes
12 contig102770 1.215500 other biological processes
13 contig103080_193887 NaN NaN
14 contig104395_153016 0.885662 RNA metabolism
15 contig104395_153016 0.885662 other biological processes
16 contig105632_159216 2.265430 other metabolic processes
17 contig105645 1.458040 other biological processes
18 contig105949 0.973447 transport
19 contig105949 0.973447 cell organization and biogenesis
20 contig107034 0.727932 protein metabolism
21 contig107336 NaN NaN
22 contig110017 NaN NaN
23 contig110172 0.729807 other metabolic processes
24 contig110172 0.729807 signal transduction
25 contig110751 1.080540 transport
26 contig112007_150291_111307 1.037680 developmental processes
27 contig112007_150291_111307 1.037680 signal transduction
28 contig112007_150291_111307 1.037680 cell cycle and proliferation
29 contig112007_150291_111307 1.037680 cell-cell signaling
............
1054 contig92662 0.295825 RNA metabolism
1055 contig93670 1.031360 other biological processes
1056 contig93732 0.830275 other metabolic processes
1057 contig93732 0.830275 developmental processes
1058 contig93732 0.830275 other biological processes
1059 contig9516 0.899129 other metabolic processes
1060 contig96421_189251 NaN NaN
1061 contig96499 NaN NaN
1062 contig97794_175986_93895 0.797713 developmental processes
1063 contig97794_175986_93895 0.797713 RNA metabolism
1064 contig98199 0.724031 other biological processes
1065 contig98199 0.724031 cell organization and biogenesis
1066 contig98199 0.724031 death
1067 contig98199 0.724031 signal transduction
1068 contig98199 0.724031 other metabolic processes
1069 contig98199 0.724031 stress response
1070 contig98199 0.724031 protein metabolism
1071 contig98199 0.724031 RNA metabolism
1072 contig98618 0.660431 other metabolic processes
1073 contig98618 0.660431 other biological processes
1074 contig98984 0.768580 transport
1075 contig98984 0.768580 other metabolic processes
1076 contig98984 0.768580 stress response
1077 contig98984 0.768580 other biological processes
1078 contig99157 0.511279 transport
1079 contig99523 0.785016 cell adhesion
1080 contig99523 0.785016 cell cycle and proliferation
1081 contig99523 0.785016 signal transduction
1082 contig99523 0.785016 protein metabolism
1083 contig99523 0.785016 other biological processes
\n", "

1084 rows × 3 columns

\n", "
" ], "text/plain": [ " Column1 Column2 GOslim_bin\n", "0 contig100302_114262_202031 NaN NaN\n", "1 contig100349 0.524223 RNA metabolism\n", "2 contig100349 0.524223 stress response\n", "3 contig100349 0.524223 other biological processes\n", "4 contig100349 0.524223 other metabolic processes\n", "5 contig102770 1.215500 RNA metabolism\n", "6 contig102770 1.215500 transport\n", "7 contig102770 1.215500 protein metabolism\n", "8 contig102770 1.215500 cell cycle and proliferation\n", "9 contig102770 1.215500 signal transduction\n", "10 contig102770 1.215500 developmental processes\n", "11 contig102770 1.215500 other metabolic processes\n", "12 contig102770 1.215500 other biological processes\n", "13 contig103080_193887 NaN NaN\n", "14 contig104395_153016 0.885662 RNA metabolism\n", "15 contig104395_153016 0.885662 other biological processes\n", "16 contig105632_159216 2.265430 other metabolic processes\n", "17 contig105645 1.458040 other biological processes\n", "18 contig105949 0.973447 transport\n", "19 contig105949 0.973447 cell organization and biogenesis\n", "20 contig107034 0.727932 protein metabolism\n", "21 contig107336 NaN NaN\n", "22 contig110017 NaN NaN\n", "23 contig110172 0.729807 other metabolic processes\n", "24 contig110172 0.729807 signal transduction\n", "25 contig110751 1.080540 transport\n", "26 contig112007_150291_111307 1.037680 developmental processes\n", "27 contig112007_150291_111307 1.037680 signal transduction\n", "28 contig112007_150291_111307 1.037680 cell cycle and proliferation\n", "29 contig112007_150291_111307 1.037680 cell-cell signaling\n", "... ... ... ...\n", "1054 contig92662 0.295825 RNA metabolism\n", "1055 contig93670 1.031360 other biological processes\n", "1056 contig93732 0.830275 other metabolic processes\n", "1057 contig93732 0.830275 developmental processes\n", "1058 contig93732 0.830275 other biological processes\n", "1059 contig9516 0.899129 other metabolic processes\n", "1060 contig96421_189251 NaN NaN\n", "1061 contig96499 NaN NaN\n", "1062 contig97794_175986_93895 0.797713 developmental processes\n", "1063 contig97794_175986_93895 0.797713 RNA metabolism\n", "1064 contig98199 0.724031 other biological processes\n", "1065 contig98199 0.724031 cell organization and biogenesis\n", "1066 contig98199 0.724031 death\n", "1067 contig98199 0.724031 signal transduction\n", "1068 contig98199 0.724031 other metabolic processes\n", "1069 contig98199 0.724031 stress response\n", "1070 contig98199 0.724031 protein metabolism\n", "1071 contig98199 0.724031 RNA metabolism\n", "1072 contig98618 0.660431 other metabolic processes\n", "1073 contig98618 0.660431 other biological processes\n", "1074 contig98984 0.768580 transport\n", "1075 contig98984 0.768580 other metabolic processes\n", "1076 contig98984 0.768580 stress response\n", "1077 contig98984 0.768580 other biological processes\n", "1078 contig99157 0.511279 transport\n", "1079 contig99523 0.785016 cell adhesion\n", "1080 contig99523 0.785016 cell cycle and proliferation\n", "1081 contig99523 0.785016 signal transduction\n", "1082 contig99523 0.785016 protein metabolism\n", "1083 contig99523 0.785016 other biological processes\n", "\n", "[1084 rows x 3 columns]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Ahya_diff = pd.read_table('Ahya_diff_cpg_GOslim')\n", "Ahya_diff" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[0.7, 1.1, -1, 14]" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAD7CAYAAAAhIE1vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmcXEW9/v9+EkACIWyiEQWDxIUlMCEQFUQmgFy9LLIE\nUBEIl4uoLPoVEC+gCeAScWNTEJQEgauyRCSgrE4AEQkkTBIW8aKg/lAEWQSUCIbn90dVZ06anplO\n0j3dZ+bzfr361afq1Kl6zpmePtVVdT6PbBMEQRAEQdBMhrVaQBAEQRAEg5/ocARBEARB0HSiwxEE\nQRAEQdOJDkcQBEEQBE0nOhxBEARBEDSd6HAEQRAEQdB0Vmm1gCAYSCTFc+BBEAQrgG2tzPHR4QiG\nHCv7TzMQSJpme1qrdfRHGXSWQSOEzkYTOhtLI36sxZRKELQnY1otoE7GtFpAHYxptYA6GdNqAXUy\nptUC6mRMqwXUyZhWCxgoosMRBEEQBEHTiQ5HELQnM1stoE5mtlpAHcxstYA6mdlqAXUys9UC6mRm\nqwXUycxWCxgoFF4qwVBCksuwhiMIgqCdaMR3Z4xwBEEbIqmz1RrqoQw6y6ARQmejCZ3tR3Q4giAI\ngiBoOjGlEgwpYkolCIJg+YkplSAIgiAISkF0OIK6kLS2pE+0Wkd/SDqp1RoaQVnmdcugswwaIXQ2\nmtDZfsSUSlAXksYAs22Pq8pfxfa/WyKqCknDgL/bXquPMvGBD4KgLgZi+lVSp+05zW5nZWnElEqE\nNg/qZTqwqaR7gZeBfwFPA28H3iHpauBNwOrAWbYvBJD0AnAmsAfwIvBB209I2h/4ArAEeNZ2p6Qp\nwD7AKOCNwKW2T8v1fAY4LGv5nu2zcifoBuDXwARgLjAia7zP9sG1TqSrq2HXJAiCQcqkSQPTThk6\nG40iOhxBvZwIbGF7vKSdgOty+g95/2G2n5E0Apgr6UrbzwBrAHfaPkXSV4EjgC8Bnwd2s/0XSaMK\n7WwHbEHqnNwt6bqcPwWYSJoGvEvSrcCzwFjgYNtzASTtb3t8065CEARBsEJEhyOoF1Vtzy10NgA+\nJWnvvL0R8FbSiMNLtiudhnnA+/L2HcDFki4HZhXquTF3VJA0C3gPYGCW7RcL+TsC1wB/qHQ26mX6\ndBg9Om2PHAljx0JHR0p3d6f3Vqcree2ip7f0lVe25/Urph9+GCZPbh89vaWr//at1tNbeihdz8r6\nisooRJPSHbbPHMD26krn7Sn5Ej5KA4g1HEFdFNdw5A/icbb3zPs6gdOB99leLKkLmGr7NknPV9ZU\nSJoM7G77sJyeCOwOHEKaEtkL6LQ9Je8/DfhblrC+7ak5/3Tgr8Bs4NriupJie72ch8swpdLd3fOl\n186UQWcZNELobDQrq3PSpFjDUSQeiw0GkueB3m7ko4BncmfjHcC7+qtM0qa25+ZOxJOk9R8A75O0\nbp6a+SDwS+B2YG9JIyStCeyd82p9+F+WVPqRuzJ8oUM5dJZBI4TORlMWnWXobDSK0n8xBwOD7ack\n3SFpEWl9xeOF3dcDH5f0APAQcGfx0KrtSvoMSW8ldRputr1Q0njSNMxVpA7IJbbnA0iamfcBXGh7\nQR51qR6iuwBYKGleb4tGgyAIgoEnplSCtiE/pTLB9jFNbCM+8EEQ1EVMqfQQj8UGg43iCEjzGilB\naPMSfQm1vc4yaITQ2WjKonMoESMcwZAivFSCIAiWn1g0GgRBEARBKYgORxC0IWXxVyiDzjJohNDZ\naEJn+xEdjiAIgiAImk6s4QiGFLGGIwiCYPmJNRwBkj6dg2QFQRAEQdsSIxwlR9IjwLa2n6qxb5jt\nV5rUbtvY0i8PEYcjaDYr+iuwLI9xhs7GUiKdEYdjqJBDel9Osm0fTvIueT2wIdAl6Unbu2Q7+POB\nXYGjJG0CHAOsBtwFfJIU3fP7JP8SA9/Pdu/HAkcC/wYesP3hKg1TgH2BNYFhknYHziW5u64KTLN9\njaQtgItym8PyMUtIEUnvAbYB7gcOsf2ipF2Ar5E+j3cDn7D9kqRHgZnAnrn+/W0/lN1qz8yyDOxo\n+x+STgD2B14D/MT2tFrXsov2N1PpppsO2j82cxl0DqTGSQyQp3kQlJCYUikP7wces92Rzcp+bvsc\n4M8kw7Ndcrk1gF/b7gCeBg4Ats+W7UuAg4CtgQ1tj7O9FTAjH3siyblwa1LHoxbjgf1sTwJOAW6x\n/U5gZ+BrktbIx56V25wAPJaPfRvwbdubA88Bn5S0em7/gKxlFeATubyBJ21PAM4Djs/5xwGfzPW/\nB1gsaTdgrO2JWeMESTsuzwVuJ9r9Jl6hDDrLoBHK46kROhtLWXQ2ghjhKA8Lga9Lmk5ySP1lL+WW\nkLxIAHYh3fDvkQQwgh6X1bdIOhu4Drix0Mb/SroauLpG3QZusv1sTu8G7Cmp0hF4DbAxyUvlZElv\nItnKP5zb/5Ptis/KpcCxwE3AI7YfzvkXA0cBZ+V0xbp+PmmkBJK1/bckXZbrfyx3OHaTdG8usyYw\nlmTytgzTmc5okj/9SEYylrFLb0rdJH/qSEd6RdKw7BB5O9mNRzrSy5NW2NMPbSStQ7JzP4I0snB6\nXsMxwfbTuUzRDv5o0kjGSTXqWoM0anIw8LTtwyUNA95LmsL4ADDO9pLCMYeS1osck9P3AB+2/X81\n6t8E2IM0nXMk8Agwx/aYvH9n4GhgGnCO7Z1y/i6kKZXJxXOTtC3wtTyyQp622Z00RfQf+Zr81vYF\n/VxDx5RK4yiDzoGeUok1HO1B6Gws8ZTKEELSG4DFti8Dvk6aNoBkGz+ql8NuASZL2iDXsZ6kjSWt\nD6xiexbweWAbpSGIjfMH/3PA2qRRgmVkVKVvII1SVDSOz++b2H4kT/n8FBiXi2wsqWJd/xHS6MND\nwBhJm+b8g4Fb+7kWm9q+3/YZpDUfb89a/iuvdUHSGyvnHQRBELSemFIpD+NIayReAV4GPp7zLwCu\nl/RYXsexdMjK9oOSTgFuzKMXL5NGBBYDM3IepA7GcOASSWuTOhZn2X6uSkO1udrpwJmSFpI6r78H\n9gIOkHRwbu8vwJeAdUidi6MkXURaNHqe7X9JOgy4QtIqJAv68wvtVbcP8ClJk4BXgPtI61lelrQZ\ncGeevnke+CjwZN+XtT1p91GDCmXQWQaNUJ65/NDZWMqisxHElEowIEgaA8zOC15bqSM+8EFTWdlh\n5yBoR+Kx2KBstMXNvgw3hBLN67a9zjJohNDZaEJn+xEdjmBAsP0osFWrdQRBEAStIaZUgiFFI4YF\ngyAIhhrxlEoQBEEQBKUgOhxB0IZUAvC0O2XQWQaNEDobTehsP6LDEQRBEARB04kORwuRdGGOHdHo\nel+okbe2pE/UKt9MJM2RNGEFjltGr6QNJV3RWHXtS1lWrZdBZxk0QuhsNKGz/YhFo4OQYnjzQt4Y\neomDoSZazUvqAo6zPX85jxtDE+J2RByOYCgSC6WDlSUWjZYESWtKuk5St6RFkvbP+Ut//Us6XNJD\nku7KIx/n5PyZks6SdIek30naL+ePlHSzpHmSFkraqx8Z04FNJd0r6QxJO0m6XdJPSdE6kXS1pHsk\n3SfpiIL+FyR9Meu/U9Lrcv7++Xy6Jd2a80ZI+pGkByTNIhnGLa2nsD1Z0oy8/XpJP8n1dEt6d5Xe\nr0p6s6SKztUlzcjnPb8yByppiqRZkn4u6beSvlr7UrgEr6420DBYdJZBYzN1NpayrDkIne1HxOEY\nGCrW8rsDSKp4nxiwpA1JVu/jgReAX0C2oUyMtr1Dnn65huQG+yKwj+3nJb2W5NB6TR8aTgS2cLJ0\nr3zIx+e8P+Qyh9l+RtIIYK6kK20/Q7K8v9P2KfkmfgQpXPnngd1s/6VwTp8AXrC9uaRxJJfXCu5l\n+2ygy/Y+Odz6yBp6xxSOOQpYYnsrSW8nhW5/W963NdABvAQ8JOls24/1cV2CIAiCASA6HANDX9by\nAiYCtzrbvue1CpUbqMlW8dkb5fU5fxjwFUk7kjxFNpT0OttP9KKh1lDY3EJnA5JHyd55eyPgrSRv\nk5dsX5fz5wHvy9t3ABdLupweG/kdydbythcp+az0xySS7wm2XwGek7ReH+V3IHVSsP2QpD+QrpdJ\nLrrPA0h6ABgDVHU4puRsSBYvHUBnTs/J75GuL13Jaxc9vaXpZ387pDubWH9CDbIvb3R9zUgXLNbb\nQk/ZrqeaYE+P7XgNwIt0ZzuI9A3w+ZzXBUwAPgjMLJQ9lmTZDjAD2K+w7/n8PgX4ETA8px8hub0u\nLVPV/hhgUSHdSVojUUzfDqxe0Pbe6vqAycCMQnoicGpufz3gJ8Ckwv55wDZ5+7lC/kcr9QBPAKv1\no3dpmtS5KbZxG8nc7tDKdcv5syvnUMgzOF7xGkIv3Orvv3iV/9WIz1Gs4RgA1Lu1PIBJFus7SVpH\nyTF1v5zfF6OAJ2wvUXJOfXM/5Z8H1upj/yjgGduLJb0DeFcfZYGlNvFzbU8lubJuRLr5fyTv35Jl\nw5n/VdI78rTJPvSc4y2kqRgkDc/TM33pvZ3UeSNPpWwM/IbaozglXSw3p9UC6mROqwXUwZxWC6iT\nOa0WUBdlWXMQOtuPmFIZGHqzlgfA9p8lfZk0ffE06eb592KRGtuXAbPzlMU9wIO9lK+08ZTSwtNF\nwM/yq1jueuDjeRriIdKakN7ar6TPkPRW0k39ZtsLJD0EzMj1PJi1VfgccC2pc3IPsGbO/xRwgaTD\ngSXAx23fVaX3O4V2vwOcl8/938ChTvb0RW29XosgCIJg4InHYtsESWva/kce4ZgFfN/2T1uta7Ch\neCw2GII4HosNVhKFPf2gYpqkXYHVgRuis9E84ss3CIJg4Ik1HG2C7RNsj7e9me1Pt1pP0FrKMq9b\nBp1l0Aihs9GEzvYjOhxBEARBEDSdWMMRDCkaMQ8ZBEEw1GjEd2eMcARBEARB0HSiwxEEbUhZ5nXL\noLMMGiF0NprQ2X7EUyolQNJJtr9cR7nrgA/bfm4AZCHp08B3bb/YT7lHSdFGn66z3mmk6KbfkHQq\ncJvtW1ZWb6H+UswjSuWY+WmUzpjqCoLBTazhaBMkDXPyEam171V28+2ApEeAbW0/1YhyhfJTSQZw\n32iAzOq63dXV6FqDlWXSpOhwBEE7E2s4SoCkMZJ+I+lSJcv2K5TcWJH0qKTpkuYB+0v6sJLl+qJs\n9EZ+H6Fk035Jzvuoko39vZLOz6HCK/Wtl9t8UNIFSlbzN0havYa2mZK+o2Q5/ztJnZIuzjpnFMrt\nJulXkuZJulzSmpKOBTYEuiTdksudJ+nu3Oa0quY+m8/tLkmbFq7NLyQtkHSzpI160bhf5VpIuj+X\nP2N5ziEIgiBoLdHhGBjeBnzb9ubAc8Anc76Bv9meQPIHmU5yTu0AtpP0QdufA17MMToOVrKoPwDY\n3sm6/RWyrwjLhvEeC5xre0vgWZI/SzUG1rH9buD/keztzwC2AMZJ2lrSa4GTgV2yznnAZ2yfDfwZ\n6LS9S67vJNvbkSzid1LyUqnwrO2tgHOBM3PeOSQDt61JodrP7kWjJa0P7G17i1z+i/WeQ406257u\n7lYrqI8y6CzLHHnobCyhs/2INRwDw59sV7xJLiW5wVamC36c37cDuirTDpIuA94LVEcc3YXkMHtP\nnjsfATxeo81HbFes4efR48dezez8fh/wuO37c/v352M2AjYHfpXbWw34VS91HSjpCNLn6g35uPvy\nvh/m9x8B38rb7wL2ztuXkjoKvfEssFjS90l+LNcuxzksKFY0fTqMHp22R46EsWOhoyOlKzfQVqcr\ntIue3tIPP9zY81Vz7LY7yM5oTap/qKXjeg6B66km2NPHGo4mI2kMMMf2mJzeGTja9r5Kaxsm2H5a\n0l4kG/pDc7nDgc1sH6/CGg5JRwMb2j6pRluPkDojo0jW8+Ny/nHASNunVpWfAVxr+6qss3jMDNJN\n/V/AR2x/pLf2sv5NgBtJazX+no/vsv2DXG6S7UclrQr82fYGkp4E3mD731X5U0mLRr9ZpXE1Uodr\nMjDG9i71nIPtqwqaYw1HGxJrOIKgvVGs4SgNG0uq2L1/hDR9Uk3Fon59ScOBDwG35n0vK5m6QbJy\nnyxpAwClNRsbN0m3gV8DO6hn3cWaSg6xkCzkR+XtUcA/gOckvR74QKEeAQfm7QPpGSH5Fek8IU0L\n3VYov8wHW9KapKmTnwOfIU3bBEEQBCUhOhwDw0PAUUqW7WsD5+X8pcNLtv9Csm/vArqBe2xXpgou\nABZKusT2g8ApwI2SFpBGFUbXaLNem/Zq6/lld9p/Iw2r/TC39yvg7QVd10u6xfYC4F7gN6T1GL+s\nqnfdfPwxpLUW5O3Dcv5BJJv6SvlqXWsBs3PZ2wt19HcOpRzCK8PaCCiHzrLMkYfOxhI624+YUmky\n1cP8QWtRSWJwDEWaNaUiqbMyR93OhM7GEjobSyOmVKLD0WRyh+Oa/IRG0GIa8U8TBEEw1IgORxAs\nJ9HhCIIgWH5i0WgQDFLKMq9bBp1l0Aihs9GEzvYjOhxBEARBEDSdmFIJhhQxpRIEQbD8xJRKEARB\nEASlYEiFNpe0Nilq5nk53QkcZ3vPlgrLSDoUuDHH5Oir3ByS7nl11juFFBH0GElHAv+0fcnK6i0r\n8WhsEPSwvL9aS/QYZ+hsM4ZUhwNYl2Scdl5/BetB0nDbSxpRV2YKyQ+kzw4Hyx/Mqhhg7LvLeWy/\nSBpm+5VG19ssumj/2ObddNNBR6tl9EsZdJZBI7RG5yQmDWh7wdBm0E6pSPqMks37IkmVCJbTgU2V\nbN3PIN2IRypZxj8o6dLC8RMkzZF0j6TrJY3O+XMkfUvS3SQTtmKb05Ss0W9TsorfV9LXlWzZf14J\nT16rbkmTgW2ByyTNl7S6pC9ImpvPobqjcHA+j0WStsv1rifpaiX79jslvSrYWNZ4XN4eq2QL361k\nPf+WqrJjJP1G0qVKdu9XSBqR9z2qZBc/D9hf0ofzeS6SNL1Qx/tz3d2Sbs55a0q6SMmqfr6SjwyS\ntsh59+Zz2DSXvS4fv0jSAf38fY5Vj4X9DykpZbhBQjl0lkEjlEdnWX6Nh872Y1B2OCRNII0WTCQ5\nkh4hqQM4Efidk9X7Z0l+HeNJIbU3B94iaQclI7FzSGZq2wIzgC/l6g2sans729/i1WxCspjfi+SA\nelMO+vUisHtvddu+EriHNOWzje3FwDm2J+YopSMk7VE5RWCEkz39J4GLcv6pwDwn+/aTgB8Uylco\nhg2/LLfRAbyb2iMrbwO+bXtz4LncXqWevzlZ1t9O6sxNIjkfbifpg0p+LxcA++Y2JudjTwZusf1O\nYGfga5LWAI4EzsrnNQF4DHg/8Jjtjnwdru/n73Mi0JGvwZE1zicIgiBoAYN1SuU9wCzbLwJImgXs\nCFxTo+xc23/O5bpJduZ/B7YAblayZB8O/LlwzI+pjYGf214i6T5gmO0b8r5Fue639VN3sXOws6QT\ngDWA9UjTLdfmdn4IYPt2SaPy+pQdgH1zfpeSEdxatYRKGklynf1pLv9SL+f0J9t35u1LSaM636i6\nDtuRnGGfynVfBrwXWALcZvsPuY1nc/ndgD0lHZ/TrwE2Bu4ETpb0JtLf72FJC4Gv51GTa23/UtKW\nfVzDhcD/SroauLrWCU1nOqOz/cxIRjKWsUt/XXaTzEFana7ktYue3tJXcmVbXr9i+mEeZnLu67aD\nnt7S1X/7gWgfll1DoDrt1G2fuRzlW2mvTrvoKdv1VNjT14ekY4H1bU/N6dOBvwKzSTetin15J4VF\no5LOIY0yzAMusL19jbq78jHza+ybCrxg+xs5XbSVnwq8ANxQT92SVif9kSfYfiwfb9un5XKnFj4k\nfwDGAXNIv/ofyfl/JI3cTKZn0ehUksvrBcCDtjfq4zqOAebYHpPTOwNH295Xy1rT75XbPTSXOzy3\n2wV8yPZHq+q9B/iw7f+r0eYmwB4kY7cjc8dpHWB34AiSW+5P+riGw0idnT1JjrXjiutsJDnWcDSO\nMugsg0Zo3RqOWDTaWkqkMx6L7YXbgb0ljVCyNd87571Ach3tC5PcXTdQtpSXtKqkzRukra+6i3bv\nq+f3p/JoxP6FOpbavUt6D/Cs7edI53hQzu8EnrT9QlX7InU0XwD+P0kfzOVfo7w+o4qNK1qBj+Q2\nqrkb2CmPqAwnWc7PIVnbvzd3XJC0Xi5/A4X1L5LG5/dNbD9i+xzgp8BWkt4ALLZ9GfB10hRYzWuo\nNNyxcf7n/RzJmXfNGnrbnjLcIKEcOsugEcqjsww3Rwid7cignFKxfa+kmcDcnHWhk306ku6QtAj4\nWX7VsmR/WWkR59l5qmIV4FvAA/U038t2rrrPumcC50v6J7A9cCFpGuVx4K6qehdLmp+P/6+cPw24\nSMnC/R/AoYXyrrF9MPBdSacBL5NGQh6t0vwQcJSki4D76XnCp/jky18kfY40oiHSKNJsAEkfA2bl\nkYe/Av8BnA6cmadLhgG/J615OUDSwVnLX0jrMiaS1ni8kvM/3sc1/C1wSc4TaT3IcwRBEAQtZ1BO\nqQSNIY9MzK5MQQ0GFDE4gmAZYkqltZRI50pPqQzKEY6goQy6G/TK/tMMBCX6Emp7nWXQCOXRGQQr\nSoxwBEOKRvTSgyAIhhqxaDQIgiAIglIQHY4gaEOKMQTamTLoLINGCJ2NJnS2H9HhCIIgCIKg6Qy5\nDoektSV9opDulDS7gfUv9Sqpyt9Q0hX9HLtSWiTdsYLH1dQctI6yLB4sg84yaITQ2WhCZ/tR11Mq\nkt4OHE8KzV05xrZ3bpKuZtJsx9iaq3Bz+PT9a+1rFLZ3WNFDV7RNSavY/veKHt8K4tHYYCCJRcpB\nkKh3hOMKYD5wCnBC4dXWqAWOsZmtJf1K0m8l/Xc+ZkwOOIaSE+wMJXfV+bXm8NSL86ukDSTdJOk+\nSRcqubaul/e9UDj+xFx/t6Qv57wjlNxnuyVd2Utk0aKGmZLOl3S3pIck7Z7zp0i6RtItwE2S1u1F\n68jCeS6QtG/O3y1fn3mSLleKBouS+2zF6fWMnLd//vt1S7o15w2X9LV8LgtycDEkvUHJqbfiovue\n2mfmEry62kDDYNHZSo31U5a5/NDZWMqisxHUG4fjZdsNGREYKLSsY+ww4K58wzoR2MLJkbTyxx5P\n8v74C3CHpB1IUUrPAfa0/ZSkA0mRLw8nfZOsanu7Wk0DWwHvBEYC90q6tqrMUcAS21vl0aMbJb2t\nqkzF+XVvSZNIzq/jganAzba/Kuk/sp4Kzuf0AVLkzom2F0taN++/yvaFuczp+dhz+7iMJoUK307S\nWKArv5O1jLP9rJIHTS2tnweecXLLRdI6kl5LcovdxfaLkk4EPiPp28Dett+Ry1ZCvH8e2C1HM63k\nHU4K5z5R0muAX0q6kWRcd73tL0sSJQ1rHgRBMBipt8MxW9JRwCzgX5VM2083RVVjaKVj7NW2/wX8\nS8lo7Z3AgkKZHYCzAWw/pGS+Vt3h6M35dQeSNwy2b5D0TA0NuwIXOVncY7tSZpykL5I8RkYC1/dy\nDkUuz3U8LOn3wDvyOd7kHvfX3rTuQvZ8yfuelbQHqXP3q3xdVwN+RbreiyV9n+SIW+mk3QFcLOly\n0ucPktvsOKXw5pD8Z8aSPF0uUrKvv7oSzr6cdLZaQJ10tlpAHXS2WkBdlGUuP3Q2lrLobAT1djim\nkG4yx1flb9JQNY3FsIzVu+h9jPNfhe0l9FyX+2s5kmb+sRxaXqmRVz2vW0tbb3O//c0JV597hZnA\nXrYXSTqUFfsmruisPv/l0XqT7Y+8qqA0kdRJmQwcTRoF+UTO3x2Yl0euILnW3lSjjh1JbrMzJX3T\n9iWvbn4KqU8JsA7QQc+lmJPfIx3pRqSXjSCqPuzAIx3pdkqrCfb02B6UL9KQ/gJgBGlofRGwNbA+\n8GihXCfJL6SSPgc4BFgV+D/gXTl/VWDzvN0FbNNLu9OAe4HX5Lb+AIwm3eEW5TL/D/he3n5b/mOu\nWtQCnAWcUtA4L2+fC3w2b+9G6sysl9PP5/f/II0MjMjpdfP7k8AGua2bSKMgFc3H1TiXmcB1pE7D\npsCfSCMSU4BzCuV60/oV4FuFcusAr83XZNOctybw1vz+upy3NvC3vL1p4fi5+W94BMmifpXCNVwD\n2BgYnvOOAr5Z45wMLsGrqw00DBadrdSIl+M7q7PV35uhM3T2odMrW0efIxySdrF9i6T90hf1stie\nVeOwtsCtc4w1sJDUKXktcJrtx5WM0CrtfAc4T8kt9d/Aobk9F8pMo7bz66nAD5VcVe8kOck+X2gb\np6mWDuAeSS+ROg2nkNZD3EXqeNxFmlapHPeqa5Dz/ki6hqOAI22/VKWzL61fBL6dr/USYJrtqyVN\nyefwmlzu5HwOP5W0OqmD8//yvjMkvTXn3Wx7Qb5uY4D5ea3GE8A+pM7OCZJezvUdUuOcgiAIghbQ\np5eKpFNtT8037lo35cOaqC2ogaTVSAtOl0h6N/Bt29s0qa0ZpBGXtu1YLi+ps9T7Zz4IGotwPBYb\nDALUbLdY21Pz+5SVaSRoKBsDl0saBrxEml4Ilov4/g+CIBho6nKLzY8yTiU9+WHgdtJUwVPNlRcE\njaURvfSBoLjQsJ0pg84yaITQ2WhCZ2NpxHdnvYG/fkSaJ9+X9ATBk/T+WGgQBEEQBMEy1DvCcZ/t\nLavyFtke1zRlQdAEyjLCEQRB0E4M5AjHjZI+LGlYfh0I3LgyDQdBEARBMHTos8Mh6QVJz5MWJl5G\nWqT4EvBD4GPNlxcEQ5NKAJ52pww6y6ARQmejCZ3tR58dDtsjba+VX8Nsr5Jfw2yvVSknaYvmS20c\naoIdezPqXFkkba3kq9JfuU5JswdCUxAEQTA0qTe0eX9cSorsWRaaEYihHYM7jAcmAD9vVgM58FYK\nQVcSVBJ7+nxp254y6CyDRmgfnX3N1ZfhiQoIne1IozocbY+kk0mRJ58gheiel/M3JYUL3wD4J2n6\n6HFgge0xucyawIMk75gx1eVtP1TVVgdwPims+u+A/3IyLpsDdAM7ka79f9m+W9K0XPcmpDgbnwG2\nJ4Uuf4yTRE2jAAAgAElEQVTkWPtvJR+Rb5AihP4NmJKjmM4Bfg1MIoUPP5wUSfQ0YHUlm/avAI+Q\nwpCvDrwIHGb7t31csymkCJ6jgDcCl9o+LUdNvSG3OQH4T0nHAO8ndby+aPvyXMeJwEGkEOw/t/0/\nta65k4nd/sAXSFFJ/257pzx6dhEppPowYF/bv5P0UeCYnH8X8ElSgI3vZ00mhW4/s/q8urp6O+Mg\nCCZNarWCYLBS76LRUpNv1AeSfDj+E9iOnhGJC4BjbG8LnAB8x/bfge7C3NoeJNvzJbXKF5qq1PkD\n4ATbW5M8XKYW9o+wPZ50g7yocOwmpA7DXqQRo5ucbN1fBHZXckA9B9gvtz0D+FKh3uG23wl8Gphq\n+2VSKPMf2R6fOwC/AXbMkUmnAl+u4/JtR3oceitgf/WYp40lRTndMpfZOpfZFfiapNF5OmcvYKLt\nDuCrvV3znF+xou8A9sx5RwJn5Ws2AXhM0mbAAcD2OX8JqVOzNbCh7XH52s2o4/zaku7uViuojzLo\nLINGKI/Osqw5CJ3tx1AZ4diRZFW/mGSBfg0sHbnYHriiMJS5Wn7/MamTMgf4EHCupJF9lCfXOQpY\n2/btOeti4IpCkR8C2L5d0qjs02LSr/8lku4Dhtm+IZdfRBpVeRuwBXBzbns48OdCvZXw4/PpsUIV\ny4bVXAf4gaSxuc1Va1+uZbjR2d5e0ixS8LergT/YrvjU7AD8b55WeULSraROyE6kUYbF+Zyfzdfw\n3dS+hrWs6O8ETpb0JtLf8GFJu5A6H/fkOkYAfwVmA2+RdDbJPyaepAqCIGgTGtXh+Ff/RVqKebVV\nPaQRnmfyr+RqZgNflrQusA3wC2CtPsr3Rj1W8pCe/sH2K9l8rMIrpL+TgPttb99LPZW/wRJ6/7ue\nDtxiex9Jb6bHS7s/bRWU9cCK29MPA56tdQ1dw4re9g8l/Zo0yvQzSUfm4hfbPulVjUlbkaZ2Pk4a\nBTm8usz06TB6dNoeORLGjoWOjpSu/MqMdH3pSl676OktXdTaDnpqpTs62kdPBfViX97f/nZIu8di\nvS30lO16qgn29HUF/spCtib9cq7czOySmHpJGk+yWn8n6Vf9POB829+UdAfJQv3KvAByK/e4yl5O\nupH/3fbROa+6/DjbCyVNBV6w/Q1J3cDRtn+Z12esZfu4vNbiwXxjfQ9pSmLrXOZ529/IbTxfeQqo\nUi9wNsmp9mDbv85TLG+1/YCkLpK9/HylMPR3295E0r7AXs5eOHmE4lLbs3Kbh+Zynfn4yjRG5bpN\nIU3bbAksJq3ZOAx4mmTqNi6X24c09fGfwPrA3cBE0qLVLwC72n5R0rq2n+njGm5q+3e5zrnAf5Nc\nXx+1bUlfI62/uQn4KbCD7SclrUda1/IP4GXbz0naErikumMjybGGIwh6Z9KkvheNBkMTDVTgLyXX\n0O+T5vL3yK89+zyojbB9L2mKZAHJjn5uYfdBwOG5k3Afy57Xj4GPsGwY9+ryexWbyu+HktYxLCCt\nazitsH+xpPmkdQuHF/Jdo57CKfhlUlj5r+a27yVNTdQ85fzeBWwu6V5JBwBnAF/J7Q/vp81K3lzg\nKtK1u9L2/Orytn8CLMxlbiGtX3kiTwtdQ5r6uBeoPDbc2zU8Q9JCJTv7O2wvJI1SLMrHbwH8wPaD\nwCmkgHQLSFMno0kLW7ty2UuAz/Vyfdqessznl0FnGTRCeXSWZc1B6Gw/6g1t/gCwhesdDglqUhyJ\naLWWesgjHBNsH9NqLY1CJXkkNghaSV+/ZFUes7HQ2UAaMcJR7xqOu4HNgftXprGgdFSPvAwKYrg4\nCFacMtwcIXS2I/WOcHSShsYfp2dxovOjh0FQGhrRSw+CIBhqDNgaDtL6jY+SVv/vmV979XlEEAQr\nTFnmdcugswwaIXQ2mtDZftQ7pfKE7WuaqiQIgiAIgkFLvVMq3yEFjZpNjhdBiR6LDYIKMaUSBEGw\n/AzkotE1SB2N3aryo8MRBEEQBEG/1B34KwiaQXXQs+U4bifgJdt35vRMUjCyq/o5rhQjHCV6VK7t\ndZZBI4TORhM6G0vTRzgknWj7q5LOqbHbto9dmcaDgBV/7HYSKQrpnctbT1licahNrMr7IbxFgyCo\niz5HOCTtaXt2DgBVjW1f3DRlwaBF0snAIcATpFDl80iGcLUs6/cETiYZvD1FilK6BqmjsSTXcSwp\nautzwLakqKOfrTXaIcldRGzzRjCJSRHTJAiGCI0Y4YgplWBAUbK3n0HyWlmV5G57PvAB4ONObrDv\nBL5sexdJ69h+Nh/738A7bB+fPWaet/3NvG8mMML2gUr29dfYfmuN9qPD0SCiwxEEQ4eBmFKZ3cdu\n245YHMHysiPJZn4xyVfmGmB1YHtqW9ZvlE30Rue83xfqKn74TRolwfaDkl7fvFNoPt1000FH/wVb\nTBnmn8ugEUJnowmd7Ud/T6n0tZAvhkaCFcEsh2U9cA7wddvX5oWi0/qo+6XCdq898elMZzTJn34k\nIxnL2KU3926Sg1ar0xXaRU9vaaBDUlvYafeR7gDaSU/Z03E9h8D1VCvt6ZcekKzA3+Tk5BkEy4Wk\n8cBM4J2kKZV5wHdJTsS1LOvnA/9te76Sa/EY25MkfQYYZXtarncGcG1l3Yak522vVaP9mFJpEDGl\nEgRDhwELbS5pjqRRubMxD/iepG+tTMPB0MT2vcCPSVb2PwPmkkY9erOsn0aaarkHeJKekbXZwD6S\n5kt6T6X6YlPNPI8gCIJg+ag30mi37Y68aG8j21MlLbI9rvkSg6BxlOWR2BIxqd3nn8syRx46G0vo\nbCxNXzRaYLikNwAHAKfkvPjiDkpJGaYBSvQl1NlqDUEQlIN6Rzj2Bz4P3GH7E5I2Bc6wvV+zBQZB\nI2lELz0IgmCoEXE4gmA5iQ5HEATB8jMgi0Yl/aek2yQ9lV+3Stp9ZRoNgqBvyjJVUQadZdAIobPR\nhM72o7/AX0cARwKfJT2dAjABmC7pTba/22R9QRAEQRAMAvrzUnkQeI/tp6ry1yet53hHk/UFQUOJ\nKZUgCILlZ0CmVKo7G4W8WPzRQiRNUXbxlTRN0nGtqlPSBElnrWz7NepdqkHSqZJ2aXQbQRAEwcDQ\n32Oxz0nqsL1MvGVJW5OswYPW0YwgVytUp+159Ey5NZKlGmxPbVSlEYsjWFmaMUpWpkehQ2fjKIvO\nRtDfCMdxwE/zL809Je0l6VTgmrwvaCCSDpG0QFK3pB/kvA0kXSlpbn5tXyneijol7S9pUa5vTs7r\nVDb6y3XfJOk+SRdKelTSepLGSHpQ0gV53w2SVs/HHJF1dGddI2q0O1PSfnn70fyZnCdpoaS399X2\nq8/CJXh1tYGGwaKz0RqDIFgR+uxw2P4lyfNiOMnE5VDSTemdtm9vurohhKQtgJNJkRs7gGPzrrNI\nHiMTgcnA91pZJykey265vlpuwVOBm21vCVwJbFzYNxY4N+97FqjEcbnK9sRc54PA4TXqLX7bG3jS\n9gTgPOD4OtouGZ2tFlAnna0WUAedrRZQF2X5lRs6G0tZdDaC/p5S2Ztk1Pb5nJ4LbAN8VNKJtq8Y\nAI1DhZ2By20/DWD72Zy/K7CZemzb15K0ZgvrvAO4WMkyflaN/TsAe+f2bpD0TGHfIwXTv3nAmLw9\nTtIXgbWBkcD1deiotD2fZPzWX9tBEARBC+lvDcdngQ8V0qsB2wJrkhw/o8PROEztKY3KiNJLy2TW\nWIcg6U3Atbmu8xtR56tEpkizE4HdgXmSJvRSfy3+VdheAqyet2cCe9leJOlQlv1J2pumSl1LWPZz\nXMdU0xR6+jrrkNyhK03Oye+tTlfy2kVPb+kzac/rV0x3A59ucP0JNd4OnEbV18R0h+0z20hPXM+S\n2NNju9cXcE9V+tuF7bv6OjZey/cCNgceAtbL6XXz+2XA8YVyHfl9CnBO3p4GHDdAdW5a2J4LbEX6\nNp6d884FPpu3dwNeAdYj3eEXFY49Hpiat58ENiDZ1d8EXFStAZgB7Ju3Hymc07ZAV19tV+k3uASv\nrjbQMFh0NlojbtJ3QGerv4dCZ+jsQ6dXto7+Fo2uW0zYPqqQ3KCfY4PlwPYDwJeAW5Us2r+Rdx0L\nbJsXft4PfKxySH5Vbze1TuCMvFBzESkWy8KqsqcCu+X9k4HH6XmiqVhf8ZjPA3cBvySt4ahVpjfq\nbbtkdLZaQJ10tlpAHXS2WkBduCRz+aGzsZRFZyPoL/DX/wJzbF9Qlf9xYCfbH26yvqBkSFoNWGJ7\niaR3k0bFtmmXtuuZNgqC/nAEjwuGGGq2eZuk1wNXk+bL5+fsbUhz73vbfnxlGg8GH5LGApeTnoB6\nCfiEU5yOtmi7Ef80A4FK8mx+GXSWQSOEzkYTOhtLI747+1w0avuvSjEadga2IA1dX2v7FyvTaDB4\nsf0wqVM6pNoOgiAI+ibs6YMhRVlGOIIgCNqJRnx39uulEgRBEARBsLJEhyMI2pBiDIF2pgw6y6AR\nQmejCZ3tR3Q4giAIgiBoOm3V4VATLNcbgVbQGl3SByVttrL1NBoVzNaq8pde/xr77mi+shVD0nWS\nRrVaRyMpw6p1KIfOMmiE0NloQmf70V9o84GmOjDUCiFpuO0lDdCThKy4Nfo+wGxyMKuVqGeg6PWa\n295hIIUsD7Z3X57yEYsjGGrEQumgHWh6h0PSISQrewMLbR8iaQOSy2fFzfPTtn9FffboY4CLgPVJ\nIbEPs/0nSTOBxSRjh19KOo8UwnsN4BrgU7bXkjSSFFtkXVIo7VNsX5Pr/TlwO7A98BjwQduLc92z\nSfHkK86qqwBb2B4m6QjgCJLXzMPAwcB4YE/gvZJOJkW+/AIpBPhVeaTja7meu0kxI16S9CjJW2TP\nrG9/2w/VuAY/IHnaABxt+848FzgtX5ctgXm2P5qPeT/wLeCfpIievbGRpC7gjcCltk/Lx79ge6Qk\nAWcA7yf9Tb9o+3JJw0ihxScBfwJeJoUov0rJb+UbJGO2vwFTbD+uZG//63zMOsDhtn8paTgwHdgJ\neA0pgNcFkt4A/BhYK1+3j9u+I1+zbUjxYi7P2ocDp9u+vPoEu7r6OPs2obsbOjparaJ/yqCzDBqh\neTonTWpsfSWKGxE624ymTqmoOfbo5wAzbG9N6lCcXdi3IfBu28cX2tiKdAOs8CKwj5O1+c70hPuG\n3u3TK/4J82yPtz2e1Dn5Wt7/Knv13IG6huRZso3t31fqkbQ6yRvkgKxvFeAThbZqWa8X+Svwvlzm\nQ1XXoAP4FMlH5S2Sts/tXQDskY8ZTe3RDAETSe6rWwH7S6rEtaiU3xfYOu/fFfiapNE5/822NyN1\nuN6dz3VV0t9sP9vb5vP+UqHO4bbfSXLXqowAHQ48mz8fE4Ejcifrw8D1+fpvDSyo0vZ+4DHbHbbH\nUZ/rbBAEQTAANHuEoxn26O8iW5ADl5J+bUO66VzhnsAi7wL2yts/BL6et4cBX5G0I8nca0NJr8v7\nHnFt+3QojL5IOpD0i/p9Oasve/XqURsBb89tPZzzLgaOInWSoLb1epHVgHMlbU1yS31rYd9c23/O\nOruBTUijGo/Y/l0ucyk9/inV3Gj7mXz8LGBHeqLMArwH+N98nZ+QdCuwHcka/nJYGjCuMo7wdlLQ\nuJvz33s48OdCfcVzHZO3dyNd08k5PYrUGbwbuCh3Yq62vYBlWQh8XdJ0UoC6miM506fD6NFpe+RI\nGDu255dld3d6j3R96Upeu+jpLV3U2g56aqU7Opp//o1yE210fc1Iu+AY2w56ynY91QS32KYG/pJ0\nNDDa9ilV+U8Cb/Sr7dEPBba1fYykqcALtr9R49g32P53vvH82fYGkmaQbjJX5XJ/A15n+5W8oPCx\nPKUyhfRL+CAnz41HSEP3w0jTHePy8ccBI22fWqxb0pakG+uOtp/KZR+hyl7d9mH5uNm2Z+VyM0j2\n8f9HcmXdKefvQppSmZzrmmD7aUnbAl+zvcygqKRpwBq2P5unHxbbXjV/QI6zvWcudw5wD8mf++xC\ne3sBR1TKVV3/Sban5PRppNGWcyQ9n6/fN0murzNymR8AV5A6lwtsz8z5V5FGoH4LXGB7e6rInZLj\nbM+X9FrgbtubSLoS+K7tm2ocMxrYg9RB+6btS6qu2TrA7qQprltsn151vMswpRIEjWLSpFjDEaw8\nKkHgr1+QhuXXA5BUcZ+9kZ7pFSRVfi8VT6a3E/sVaRoB4CDgtl7K/Zo0XUOhPKRfy0/kzsYk4M11\nnAek6YF1SKMlB1c6G5mRwOO5A/RReob4n8/tLVMPyTJ+jKRNc97BwK116qicQ8XH5hDSqEGvuoHf\n5PbekvN6M90T8D5J60oaAXwQqH465XbgQEnDlNbivJfk9HoHsJ8Sr6fHovMhYANJ7wKQtKqkzfs5\nvxuAT0paJR/zNklrSNqY1AH6HvB90jqZHvFpjcdi25eRRrRKG+a8+pdpu1IGnWXQCOXRWf2rvF0J\nne1HU6dUbD8gqWKPvoQ0bP5fpM7GtyUtyBpuBT5JffboxwAzJJ0APAEcVmyysP1p4FJJJ5FuYH/P\n+ZcBsyUtJP36r7ZDp4/0XqSFrt/L0wN2ciOt2Ks/md9H5vI/Ai6UdAywf+G6/EvSYcAV+aY6Fzi/\nRpu9XYPvAFcpLci9HnihD82V9j4GXCfpn6ROQ60pLGctVwFvAi6xPb+wD9s/UXJiXZDzTrD9RB7R\n2AV4gLRmZj7wd9sv56mRsyWtTfp7fyuXq9U+pDU9Y4D5Shf6CdITP53ACZJeJnXmDqk6bhxpTckr\nZPO2Gm0EQRAELWDQeqlIGmH7xbz9IeBA2/u0WNagRtKatv8haX1Sx2t720+0WlcRxSOxwRAkplSC\nlaURUyrtFoejkUyQdC5pmuAZ0shK0FyuzdNOqwGntVtno0J8+QZBEAw8g3aEIwhq0Yhe+kCgkjyb\nXwadZdAIobPRhM7GUoZFo0EQBEEQBDHCEQwtyjLCEQRB0E7ECEcQBEEQBKUgOhxB0IaU5dn8Mugs\ng0YInY0mdLYfQ77DoYIlu6RpOcJoM9qZKWm//ks2rL2mnEvV9TpS0sF5+x2SuiXNKwQYW5l2Ds2B\nvCrpCyVttrL1BkEQBK1hMD8WWy/Vgbaa2c5ALphZ4bYkrWL73/3Va/u7hfy9SV42X3r1Ib22M8z2\nK73sngLcB/wlt3VEvfXW0W4pFi5J5VhqUgadktr+cegyPKkAobPRlEVnIxiUHY4cgfM40s1xoe1D\nchju80iRQgE+7eTo2u+XUA7VfT7JCA1SBMv3A0/bPiuX+RLwV9tnSzqRFHb9FeBntk+qVJXL1rRr\nr2pzT5LT7mrAUyTvlyeUfFQ2zlo2Bs60XRlxOJkUffMJUrTPeTXOZSawGJhACpH+GdvXKXnM7EuK\nQDpM0r4kZ9eK+dvHbC+qqmsaKeLnAySH2iWSdra9i6SPkqLCrkYKAvbJ7GvzQr6WuwJHSdoZ2BMY\nAfzK9pE5Mum2wGU5Mur2pIiqx9meJ+nDwP/k63md7c9lPS8AZ5K8Vl4EPlgrFkgXYaYy1JhEgz3a\ngyBYbgbdlIqkLUg36klOdvEVz5aKXf1EksfK95aj2rOBrlzfNsD9wEXk0NqShgEHApdI+gApBHrF\nrv6MQj392bUXud32u3Lo9B8Dny3sexvJUXUiMFXS8NyJOZBk2/6fJAfXWr/kDWxsezuSydn5kl6T\n943PuiYBpwHzbG8NnAT8IJdRVV22/XNSJ+KbubOxGXAAKdLoeFLH66B8zBrAr50s5O8AzrU9MZvm\njZC0h+0rSWHnP2J7G9uLK21J2hCYDkwCOoDtJH2wUPed+brfRjJwKyXdlMNYoww6y6ARyjOXHzob\nS1l0NoLBOMKxM3C57acBbD+b83cFNisM/64lqZafSC0mkUzZyFMAzwHPSXpKyXhuNDDf9jOSdgUu\nyjfJYvvAUmv6vuzaK2wk6fJc92rA73O+Sb/qXwaekvRELrMjMCu3u1jSNfQ+elOxkX9Y0u+Bd+R6\nbyro3YE04oHtLknrS1qrRl21DPd2IY2g3JPPcQQ9ZnNLSF4tFXbOvjhrAOuRplGurVF3Jb0dMKfg\n1HsZyUDup8BLtq/LZecB76t18tOZzmiSP/1IRjKWsXSQ/AMrN6dWpyu0i57e0g/zcFvpqZWuaIT2\nsv8ucboDaCc9ZU+35fVU2ezpW4Gko4HRtk+pyn8SeKPtl6ryDwW2tX2MpKnAC7a/UVXmCeBNNY49\ngHRjfj0w0/b1kr4O/MbJ0bRYtmJN/xC92LVXlZ8DfN32tZJ2AqbZnlStUdIi0hTC3sB6tqfm/G8C\nj9U4lxnAre6xkb+VNPUxvnIdcv580mjHIzn9R2Bz0ujQhOrrVbV9NLBhYSqp2P7zttfK26uTPsgT\nbD+W67Dt01Swrs9lu4DjgTdmXYfm/MOBzWwfX1X3ZGB324dVte+YUhl6TGJS26/hCIJ2RhGHoya/\nAPaXtB6ApHVz/o30TK+QRyag9i/0am4hO4/m6YuK5fxPSGs5tiU50gLcBBymZO9ebB96rOnrsWsf\nRc/Ix5R+NJo0hbC3pNXzSMQe1J5SEen6SNKmwFtI9vXV9d5OngbJPd0nbb9QVaa3a3cLMFlp3QyS\n1lOylq9m9fz+lKSRFBx1SWtDRlWVr7jZ7pRHXIYDHyK5DQdBEARtzKDrcNh+gLQm4lZJ3aTFmZA6\nG9tKWiDpfuBjlUPouTH39iTJp4BJ6rG03yy39TKpg3O581CR7RuAa0jTCfeSFq8W9b1MGiX4atZ3\nL/DuGm1OI9nX30Oyve9To+17SWs9FgA/I92Ya2Hgj3n/z4Aj88hNdb3TSAZ4C4AvA4fWaL/mtu0H\ngVOAG/PxN0Kew1j2KZdngQtJ0yjXkxaXVphJWl8yP4+EVI55HPgc0AV0A/fYnl1dd43zKRVlWXdQ\nBp1l0AjlmcsPnY2lLDobwaCbUhlIlBaLzgMm2/5dq/XUQ55SmW17Vqu1tAKV5JHYoPG0+5SKymPi\nFTobSIl0rvSUymBcNDog5GmQ2aSFmqXobASJdr/xBEOTMtx0IHQ2mrLobAQxwhEMKRrRSw+CIBhq\nxKLRIBiklGVetww6y6ARQmejCZ3tR3Q4giAIgiBoOjGlEgwpYkolCIJg+YkplSAIgiAISkE8pRIs\nRcnArRJFdBrwfHWk0uWo61GS78wo0mO441ZS2wTgENufWpl6cl0xrBcMOP39OizR45Ghs4GURWcj\niA5HUKQ6cFaj6lppbM+jhvvtCtbWmGqayhygs8Ua6mEO7a9zDq3XGLN4QRBTKoMcSYfk6Krdkn6Q\n8zaQdKWkuflV8XXp91tR0p6Sfp0jgN4k6XU5f31JN0q6T9KFVXUNl3RB3ndDJXKopE0l/VzSPZJu\nk/T2nL+/pEVZ85yc1ylpdt5eT9LV+bzulDQu50+TdJGkLkm/k3RMY65iK+hstYA66Wy1gDrobLWA\nuijLr9zQ2VjKorMRRIdjECNpC+BkYJKTZXvFS+Ys4Fu2J5LCrH+vlypqcbvtd9nehhRK/bM5fypw\nm+0tSR4zRe+Ut5Js6LcEngX2y/kXAMfY3hY4AfhOzv88sFvWvFcNDacC82xvDZwE/KCw723AbsBE\nYGr2WwmCIAhaTEypDG52Jvm8PA1LvUsAdgU2k5YOQqwlac0669xI0uUkb5TVgN/n/B2BfXI7P5P0\nTOGYR2wvzNvzgDG5ve1JfjGVcqvl9zuAi3M7tUKw7wDsm9vqyqMra5HmSq7LfjVPKbn8vp4eE7zM\nFGBM3l6H5A7dmdNz8nur05W8dtHTW/pM2vP6FdPdwKdbrCeh/u3A6W1/G6U7bJ/ZRnriepbEnh7b\n8RqkL+Bo4Is18p8EVquRfyhwTt6eSrKHry4zB9gjb+8EdOXte4FNCuWeAtYj3dkXFfKPA74ArAX8\nuQ/tE0kjGY/kejpJi08B5le19cdc3zKagUXAxlX1GlyCV1cbaBgsOttBI67j/7Wz1d8ZdX6vhM6h\nqdMrW0dMqQxufkGyol8PQNK6Of9GeqZXkNRR2Swc29t6jlH0jBhMKeTfBnwk1/cBYF16R7afBx6R\nNDkfI0lb5e1Nbc+1PZXUOXpT1fG3Awflsp3Ak7m+QbQyr7PVAuqks9UC6qCz1QLqwiWZyw+djaUs\nOhtBdDgGMbYfAL4E3CqpG6g84nossG1edHk/8LHKIflVvV1kGmka5B5SZ6BS5lTgvZLuI02t/KEo\npVpafj8IODxru4+e9RpnSFooaRFwh9N0TFHPNGCCpAXAl0kjM31pDoIgCFpMRBoNhhQRgyNoFY44\nHANK6GwsCnv6IFh+VvafZiAo0ZdQ2+ssg8YgGArECEcwpGhELz0IgmCo0YjvzljDEQRBEARB04kO\nRxC0IcUYAu1MGXSWQSOEzkYTOtuP6HAEQRAEQdB0Yg1HMKSINRxBEATLT6zhGORIWiLp3hyTYpak\nkTl/jKRXJB1dKHuupEML6VUkPSnpK03Ud1Kd5V5YznpnStovb18oabMV0ddH/Y5XvJbn1cjPXxAM\nVeKx2Pbmn7bHQ7oJA0fSE7zrCeBYSd918g6p/lJ8H8m3ZD/gf5qk739Igbf6Y3m/sJcG8LJ9xPKK\n6o+urkbX2Hi6u6Gjo/9yraYMOldW46RJjdPSFyrJ47uhs7GURWcjiBGO8nAnsGkh/SRwCz1RNqv5\nEHAe8HtJ765VQNIcSd+UdLekByVtJ+knkn4r6fRCuY9KuktptOV8ScMkTQdG5LxLcrmrlazm75N0\nRFVb38z5N0t6bc7rULK6X6A0grNOLxq3yW3OVLKtXyjpU8tzDkEQBEFriQ5HCVCyWN+NFP67yBnA\n8ZKGVZVfneQU+3PgcuDDvVRt4F+2tyN1Tn4KfBzYEpgiaV2l6YwDgO3zaMsrwEG2Pwe8aHu87YNz\nfYc5Wc1vRxp9qfiprAnc7WRPfyvJZA2SrfwJTjbziwr51RoBxgMb2h5neytgRr3n0Mu5tzXtPmpQ\noYACjQcAAAuMSURBVAw6y6ARyuOpETobS1l0NoKYUmlvRki6F3gjyR74/OJO249IuotsmlZgD2CO\n7ZckXQ1Mk/Qp114hfE1+vw+4z/ZfAST9HtiYZDs/AbhHyUZ+BPB4L3o/JWnvvL0R8FZgLqmT8uOc\nfykwS9IoYG3bt+f8i4Erer0S8DvgLZLOBq4jGdDVew7PFCuaPh1Gj07bI0fC2LE9N6Xu7vQe6UgX\n0xXURvbhkY50M9Nqgj19PKXSxkh63vZakkYANwDfsv0TSWNIVu3jJL0duJI0cnC37YslXQXsALyY\nq9oA2Nv2zVX1d5Hs3OfnD9dxtvcs7DseeDdpZOFVC0Qr+vJ2J3A68D7bi/PxU23fJunfwGq2X5H0\nlqy3k2Rb/+Z8/KbA5bYnSJqRz29WlcY1gf8ADgaetn14HedwnO35Bc2ONRyNoww6G7GGYyCebFJJ\n5vJDZ2Mpkc54SmUoYPtFksPrl5SHGQr7HgIeAPYEnEcO3gNsZHsT25sAR9P7tEqfTZPWiUyWtAGA\npPUkbZz3vyypMko2CngmdzbeAbyrUM8wYP+8/RHgdtvPAc9Iek/OPxiY04sOSVofGG57FvB50hRL\nEARBUBJiSqW9WTr8ZLtb0sOk9RS/Lu4jWdBXfsXvDdySn1ypcA3wVUmrVuVXt/Wq4S7bD0o6Bbgx\nrxV5Gfgk8EfgAmChpHnA4cDHJT0APERa5FrhH8DEXM9fgQNz/qHA+ZLWIE2ZHNaHtjcCMwrrVT5X\n7zmUkXYfNahQBp1l0AjlmcsPnY2lLDobQUypBEMKRUyFYAWIYHHBUKcRUyoxwhEMOf7/9u49Rq6y\nDuP495FClEJbSCl3WaGKiChQUi+IXK0oiEGDEEwASRCFGBPRELwkNShUQRNEg5dIxCCSIKLcQiwJ\nKBikKXaXRS1aKAqUIAFRIAG5/PzjfUeGYWf37OycmffsPp9k0jmX9+xz3kyz7573zPk14ZdHg+Z1\ni8/ZhIzgnP3mnOXxPRxmZmZWO0+p2JzSj8uCZmZzjb+lYmZmZo3gAYdZgVoP4CldE3I2ISM4Z785\nZ3k84DAzM7PaecBRKL1cmv4eSaOSPtd66JekQ5TK0x/dtv/1kg5uW14s6XlJp9eUb6GkT1fYb0TS\n+DSPfauk/fP7G/LDzPpGBZQ7n+oF3NJju4Fqwt31TcgIztlvzlkefy22XO2l6bcDriA9zXNl3v4Q\n8CXg+rzc+dCr44CbSE8Y/UEN+bYhPQDskhqO3f7As6P6ffBbaMCzzXtwKAOqo25m1gNf4WiAiHgM\n+CTpEeUtY8CTko7o0uwE4MvAEkk7T7SDpAcknZevpKxVKgP/G0kb2q+MSPqCpDVKZeRX5tWrgD1y\n229Imq9Uev4upfLxx7T9qHmSLpf0Z0lXKdWGQdLhkv6Y9/+xpC26ZNw2H/+GfLVnXNJx0zmHphll\ndOqdCtCE+ecmZATn7DfnLI8HHA0RERuBzfLVjpbzSIOKV5C0K7AkIsZIhdKO79yndVjg7/lKyu+A\nnwDHkuqgfDUfawWwNCKWk+qXLJN0EHA2cF+k8vRnA88Cx0bEMuAw4FttP2dP4HsR8RbgP8AZkl5L\nKjH/sUjl5ucBE03RtK52HAk8HBH7RsQ+pGJ2lc7BzMyGz1MqDRYRt0lC0oEdm44nDTQglXy/FPh2\nl8O0SruPA/Mj4hngGUnPSVoIrABWSFqX95sPLAUe7DjOa4Dz82DkJWAnSUvytgcjolVb5XJSIbrV\nwMaI2JDXXwacCVzUJefdwIWSVgHXR8TtFc9hQS4U93+rWMUOpPr0W7EVS1nKvqSCG60rC01d1jTK\nT/djubWuhHLaky23Zy0hz0TLbSXBi8jj/pzb/SmXp5871Fb6PS/vDqyJiMVqK8Mu6X3AWaSiahdE\nKgd/F7B9XgewI/DWtl/urWNuBJZFxBOSTgYOiIjPtG07ADgH+GtE/LCj7QiphPw+efkU0lWIj0fE\ni7n9waSByK0RMZL3O4w0NbQSuDgiDs7rDwfOiIiP6pUl59szLgKOAk4jFag7t8I5LIuIJ9pyx2y+\nh8MPNTOzOsgP/pob8jTK94GLO7dFxGpgEfC2vO+bSH/l7xIvl6dfxdTl6Sf6IAVp6uJUSfPz8XfO\neZ4Ctm7bdwHwzzzYOBTYrW3b6yW1ytWfCNxGqig7ImmPvH6y8vRI2hF4NiJ+BlzIxOXpZ80vW9/D\n0T9NyAjO2W/OWR5PqZTrdXkaY3PgBeCnEdGaFun8RsrXgV/l9ycAv+w41tXAlcC5Heuj433nMhGx\nWtJewB1K38p9mnQVY6Ok3yt95fVG4JvAdZLuBtYCf2k71r3AmZIuBf4EXBIRz0n6BHCVpHnAGtKg\nqlMr0z7ABZJeIl25+VSXfV91DmZmNnyeUrE5RbO8PL2nVMysDv2YUvEVDptz/EvZzGzwfA+HWYGa\nMq/bhJxNyAjO2W/OWR4POMzMzKx2vofD5pR+zEOamc01/lqsmZmZNYIHHGYFasq8bhNyNiEjOGe/\nOWd5POAwK9O+ww5QURNyNiEjOGe/OWdhPOAwK9OiYQeoqAk5m5ARnLPfnLMwHnCYmZlZ7TzgMCvT\nyLADVDQy7AAVjAw7QEUjww5Q0ciwA1Q0MuwAFY0MO8Cg+GuxNqfM9kebm5nVZaZfi/WAw8zMzGrn\nKRUzMzOrnQccZmZmVjsPOGxWkHSkpPWS/ibp7Am2f17Suvwal/SCpEVV2haU8wFJd+dta4acc7Gk\nmySNSrpH0ilV2xaUs6T+3EbSNZLGJN0pae+qbQvKOZD+lHSppEcljU+yz3fyOYxJ2q9t/SD7ciY5\ni+hLSW+WdIekZyWd1bFt+n0ZEX751egXsBmwgXS39+bAKLDXJPsfDdzcS9th5czLG4FtS+hPYCVw\nfn6/GHgcmFdaf3bLWWB/XgB8Jb/fs9TPZ7ecA+7Pg4D9gPEu2z8I3JjfvwP4w6D7ciY5C+vL7YAD\ngK8BZ03nszLRy1c4bDZYDmyIiAci4nngSuDDk+x/IvDzHtsOK2fLIArPVcn5CLAgv18APB4RL1Rs\nW0LOllL6cy/gFoCIuBcYkbSkYtth59yubXvt/RkRtwH/mmSXY4DL8r53Aosk7cBg+7LXnNu3bR96\nX0bEYxGxFni+Y1NPfekBh80GOwMPti0/lNe9iqQtgfcDV0+3bR/MJCdAADdLWivptJoyQrWcPwL2\nlrQJGAM+O422JeSEsvpzDPgIgKTlwG7ALhXblpATBtefU+l2Hjt1WT8sk/V3KX3ZTU+fy3m1xTEb\nnOl8t/tDwO0R8WQPbWdqJjkBDoyIR/JflKslrc9/ofRblZxfBEYj4hBJe+Q8b68hy2R6zhkRT1FW\nf64CLpK0DhgH1gEvVmzbLzPJCfCeiNg0gP6sYhBXrvqhW86S+nIiPX0ufYXDZoOHgV3blncljbgn\ncgKvnKaYTtuZmklOIuKR/O9jwDWky5p1qJLz3cBVOc99pDnnPfN+JfVnt5xF9WdEPBURp0bEfhFx\nEmnu/L4qbQvIeX/etin/W3d/TqXzPHYhnccg+7KKiXI+DEX1ZTc99aUHHDYbrAXeKGlE0hbA8cC1\nnTtJWgi8F/j1dNsOO6ekLSVtnd/PB1aQ/sIcVs71wBE5z/akX+L3V2w79Jyl9aekhXkb+RL6byPi\n6YrnOPScA+7PqVwLnJSzvBN4MiIeZbB9WcWEOQvry5bOKzG99WXdd8H65dcgXsAHgHtJd06fk9ed\nDpzets/JwBVV2paWE3gD6U7wUeCeYeckfePjOtKc/jhwYon92S0nsHth/fmuvH098AtgYaH9OWHO\nQX4+SVf+NgH/Jd1HcOoE/4e+m89hDNh/SH3ZU85BfjanygjskNf/m3Rz6T+ArXrtSz/a3MzMzGrn\nKRUzMzOrnQccZmZmVjsPOMzMzKx2HnCYmZlZ7TzgMDMzs9p5wGFmZma184DDzMzMaucBh5mZmdXu\nf2c+Be9QL74iAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "Ahya_diff.groupby(\"GOslim_bin\")[\"Column2\"].mean().plot(kind='barh', color=list('myb'))\n", "plt.axis([0.7, 1.1, -1, 14])" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
01
0 contig100349 0.524223
1 contig103080_193887 0.661096
2 contig104395_153016 0.885662
3 contig105632_159216 2.265430
4 contig105949 0.973447
5 contig107034 0.727932
6 contig110172 0.729807
7 contig110751 1.080540
8 contig112007_150291_111307 1.037680
9 contig112463 0.627976
10 contig112626_149884 0.921502
11 contig112688_170707_146883 0.783514
12 contig112809_149298_131394_104581_171125 0.931365
13 contig113128 0.579855
14 contig113501_174692_88537_82393 1.220230
15 contig113836 0.504676
16 contig115860_4992_195722_171755 0.969490
17 contig115890_205214 0.924856
18 contig116802_21164 1.080490
19 contig118916 0.696836
20 contig119016 0.928775
21 contig11991 0.492810
22 contig12336_105256 0.992275
23 contig123587_153243 0.818188
24 contig124917 0.572254
25 contig12867_142623_79520_172896_150105_152164_... 0.735131
26 contig132286 0.846371
27 contig132443 0.777932
28 contig132966_210546_87461_180132 2.841970
29 contig13535_144960 0.629115
.........
248 contig75607_169164_74746 1.357380
249 contig76115 0.673705
250 contig76620_96728 0.983838
251 contig77121 0.917984
252 contig77601_207123 0.701044
253 contig77727 0.876562
254 contig77755_70614_107573 0.823651
255 contig77844 0.668139
256 contig78105_108948_169460 1.213730
257 contig78166 0.707433
258 contig78169 0.765839
259 contig78655_98713 1.089800
260 contig78998 0.437363
261 contig79495_132352 1.093730
262 contig79613_159385 1.303220
263 contig79838 0.682852
264 contig79841_173655 1.105070
265 contig79914 0.453962
266 contig80216 0.647116
267 contig80700 1.019690
268 contig8602_188720 7.575420
269 contig92386 0.702157
270 contig92662 0.295825
271 contig93732 0.830275
272 contig9516 0.899129
273 contig96421_189251 0.356141
274 contig97794_175986_93895 0.797713
275 contig98199 0.724031
276 contig98984 0.768580
277 contig99523 0.785016
\n", "

278 rows × 2 columns

\n", "
" ], "text/plain": [ " 0 1\n", "0 contig100349 0.524223\n", "1 contig103080_193887 0.661096\n", "2 contig104395_153016 0.885662\n", "3 contig105632_159216 2.265430\n", "4 contig105949 0.973447\n", "5 contig107034 0.727932\n", "6 contig110172 0.729807\n", "7 contig110751 1.080540\n", "8 contig112007_150291_111307 1.037680\n", "9 contig112463 0.627976\n", "10 contig112626_149884 0.921502\n", "11 contig112688_170707_146883 0.783514\n", "12 contig112809_149298_131394_104581_171125 0.931365\n", "13 contig113128 0.579855\n", "14 contig113501_174692_88537_82393 1.220230\n", "15 contig113836 0.504676\n", "16 contig115860_4992_195722_171755 0.969490\n", "17 contig115890_205214 0.924856\n", "18 contig116802_21164 1.080490\n", "19 contig118916 0.696836\n", "20 contig119016 0.928775\n", "21 contig11991 0.492810\n", "22 contig12336_105256 0.992275\n", "23 contig123587_153243 0.818188\n", "24 contig124917 0.572254\n", "25 contig12867_142623_79520_172896_150105_152164_... 0.735131\n", "26 contig132286 0.846371\n", "27 contig132443 0.777932\n", "28 contig132966_210546_87461_180132 2.841970\n", "29 contig13535_144960 0.629115\n", ".. ... ...\n", "248 contig75607_169164_74746 1.357380\n", "249 contig76115 0.673705\n", "250 contig76620_96728 0.983838\n", "251 contig77121 0.917984\n", "252 contig77601_207123 0.701044\n", "253 contig77727 0.876562\n", "254 contig77755_70614_107573 0.823651\n", "255 contig77844 0.668139\n", "256 contig78105_108948_169460 1.213730\n", "257 contig78166 0.707433\n", "258 contig78169 0.765839\n", "259 contig78655_98713 1.089800\n", "260 contig78998 0.437363\n", "261 contig79495_132352 1.093730\n", "262 contig79613_159385 1.303220\n", "263 contig79838 0.682852\n", "264 contig79841_173655 1.105070\n", "265 contig79914 0.453962\n", "266 contig80216 0.647116\n", "267 contig80700 1.019690\n", "268 contig8602_188720 7.575420\n", "269 contig92386 0.702157\n", "270 contig92662 0.295825\n", "271 contig93732 0.830275\n", "272 contig9516 0.899129\n", "273 contig96421_189251 0.356141\n", "274 contig97794_175986_93895 0.797713\n", "275 contig98199 0.724031\n", "276 contig98984 0.768580\n", "277 contig99523 0.785016\n", "\n", "[278 rows x 2 columns]" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Ahya_diff2 = pd.read_table('Ahya_diff_cpg_anno', header=None)\n", "Ahya_diff2" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[-0.3, 1.7, 0, 1.7]" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD7CAYAAABt0P8jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXe4nEX1xz/fJISOdFECBJWmgiBVaihCRAigCNJBhIAU\nEcQAoptXlKYiIIJIi4gCUpQiUgSilEgRQg81QSL8aFKlpJ3fHzN7992bu/fuvfd9d9/dPZ/n2Sfv\nzM7OnDt537OzZ86cIzPDcRzH6RyGNFsAx3Ecp7G44nccx+kwXPE7juN0GK74HcdxOgxX/I7jOB2G\nK37HcZwOY1izBagHSe5z6jiOMwDMTN3rWkLxQ8/CtxqSxpvZ+GbL0S74fGaLz2d2FGUuay2a3dTT\nWEY2W4A2Y2SzBWgzRjZbgDZiZLMF6A1X/I7jOB2GK/7GMqHZArQZE5otQJsxodkCtBETmi1Ab6gV\nYvVIsnaw8TuO4zSSWrrTV/wNRNKoZsvQTvh8ZovPZ3YUfS5d8TuO43QYuZp6JF0IfBl4xcxWr9Fm\nFPALYB7gNTMb1UMbN/U4juP0k1q6M2/FvwnwLnBxT4pf0qLAXcA2ZjZd0pJm9loP7VzxO47j9JOm\n2PjN7A7gjV6a7A5cZWbTY/u5lH47UXS7X6vh85ktPp/ZUfS5bLaNfyVgcUm3S7pf0l5NlsdxHKft\naXbIhnmAzwNbAgsAkyT908yebq5Y+WBmE5stQzvh85ktPp/ZUfS5bLbif4Gwofs+8L6kfwCfA+ZS\n/JImANNi8U1gcnlyyz+rvOxlL3u5k8vxel8C06hB7ge4JI0ErquxubsqcBawDTAvcA+wq5k93q1d\nW2zuShpV9JVAK+HzmS0+n9lRlLmspTtzXfFLuhTYDFhS0gtAiWDewczONbMpkm4EHgbmAOd1V/qO\n4zhOtnjIBsdxnDbFQzY4juM4gCv+hlJ0395Ww+czW3w+s6Poc+mK33Ecp8NwG7/jOE6b4jZ+x3Ec\nB3DF31CKbvdrNXw+s8XnMzuKPpeu+B3HcToMt/E7juO0KW7jdxzHcQBX/A2l6Ha/VsPnM1t8PrOj\n6HPpit9xHKfDcBu/4zhOm+I2fsdxHAdwxd9Qim73azV8PrPF5zM7ij6Xrvgdx3E6DLfxO47jtClu\n43ccx3EAV/wNpeh2v1bD5zNbfD6zo+hzmavil3ShpJclPdJHu3UlzZL0lTzlcRzHcXK28UvaBHgX\nuNjMVq/RZihwC/AecJGZXdVDG7fxO47j9JOm2PjN7A7gjT6aHQZcCbyapyyO4zhOoKk2fknLAjsA\n58Sq4rsYDYKi2/1aDZ/PbPH5zI6iz+WwJo9/OnCMmZkkATXNOZImANNi8U1gsplNjO+NAih6OfW3\nFEKeVi+XKYo8rV4uUxR5Wry8JtDw8eP1vgSmUYPc/fgljQSu68nGL+k5Ksp+SYKd/wAzu7ZbO7fx\nO47j9JNaurOpK34z+0T5WtJFhC+Ia3v5iOM4jjNI8nbnvBS4G1hF0guSviFprKSxeY5bVIpu92s1\nfD6zxeczO4o+l7mu+M1st3603S9PWRzHcZyAx+pxnIIhMT8wChgNbAwsDSwGzAGeBqYAtwNXmPFW\nk8R0WoBautMVv+MUBIlFgcOBIwiKvi8+AK4CfmTGU3nK5rQmHqStABTd7tdqtMt8SgyR+DbwPJBQ\nn9IHmA/YA3hU4hSJhQcnR3vMZxEo+ly64necJiIxAriZcKZlkdRbU4HTCOaeFYFFgWWATYGjgYdS\nbecBvgc8IvH5BojttDhu6nGcJiGxCXAN1Sv8p4ATgMvMmNXH59cjfDlslKr+ADjAjEsyFtdpQdzU\n4zgFQmInQnDCstI34GRgdTMu6UvpA5hxL7AJsBfwdqyeD/idxA+zl9ppF1zxN5Ci2/1ajVadT4n9\nCYEJ541VLwOjzDjWjBn96csMi6v7dYEnUm8l/VX+rTqfRaToc+mK33EaiMTXgPOoPHtPAxua8Y/B\n9Bu9etYn7BeUSSSOH0y/TnviNn7HaRASXwT+QtiMBXgAGG2WXUhyifkI+wZbp6r3NeO3WY3htA7u\nx+84TUCJPgrMxw1nrMaTY67ig8UX4MNFIBzC2sSM1zIfMxwAuxbYKlbNADY34+6sx3KKjSv+AiBp\nVDmUqjN4ijqfSrQCsBvBx/6zVW/OGQLPbfUB8731LUbcc7GVbHYuMgSf/rtT478CrGfG87U/U8z5\nbEWKMpfu1eM4OaNEn1WiWwlx0E+iu9IHGDIHPnXzfIy450JgmhJ9W4kyfw7NeAfYHrp+USwNXC51\nmZmcDsZX/I4zSJRoOHBcfFUr1tnDZvHOx4chA82BRf7TUxdXAftYyf6XuWxiY0Jcn3JAxh+b8YOs\nx3GKiZt6HCcHlGht4LfAZ1LVs4FbePpL93LFZcczY5Hyiv5kxutC4JvAfsBSqc88BOxgJatpihmw\njOJ7wCmxaAR7/9+zHscpHq74C0BR7H7tQrPnU4l2AC4F5k9VTwL2Z7xNByYD5WRDE4GtzJgdPzsv\ncCohKFuZ14DtrWT/zFROMYTg5rllrJoOfLZ7ZM9mz2c7UZS5dBu/42SIEh0CXE1F6b8HfBvYxEr2\nBCGUQlnpvwXsU1b6AFayD61k3wb2B2bG6iWB65VoxSxlNWMOsDfweqwaQTgl7HQovuJ3nH4QN2JP\nBMalqp8FtrWSPQUgsS3BX7/Mnmb8vpc+NyT43i8Zqx4BNrSSvZup7GJn4IpU1aZm3JHlGE6xaMqK\nX9KFkl6W9EiN9/eQ9JCkhyXdJWmNPOVxnMGgRCJE0Uwr/XsJSrqs9BcEzk69/0fgD731ayW7GxgD\nXeEaVgcuzsHb5yqCf3+Z8+KBL6fDyNvUcxEhrGwtngM2NbM1CBEJf5OzPE2l6PE7Wo0mzOcJwGGp\n8nXAFlayV1J1CbBCvH4dOMSMPn9WW8kmAQelqnYCSoMTt9sYQY5DgHdi1SrAseX3/f7MjqLPZa6K\n38zuAN7o5f1JZlbeYLqHYHt0nMKhREcD309V/RH4StoFU2ItQvasMkf152Sulewi4Bepqh8q0RcH\nKHLPYxjTgWNSVd+TGJnlGE7xKdLm7v7ADc0WIk+KsMvfTjRqPpVoLMEDp8xfgL2sZF2hk6PnzK+B\nobHqduDiAQz3PaoDrf1aiRYYQD+98WvgX/F6PuCn4PdnlhR+Li3Gdc3rBYwEHumjzebA48BiNd43\nYAIwPr6OAEal3h/lZS/nUWY827IPs9kHYzzGeG5nIbaeu/2JJ4FZeN06A8bsOeDxl2Un9ubtOJ6x\nA5dm//eNPaQi7+0Ghx1RhPn28iDv13A9gYq+tHK79Ct3rx5JI4HrzGz1Gu+vQXCLG21mz9RoY9YG\nXj1F8e1tF/KeTyX6LCHeTTmX7X3Allayd6raiYUImbM+FqtONKsyCw1k7G8AF8TibGBdK9mDg+lz\nrjHE74HdY/FhmP87Zu/fluUYnUpRnvVC+vFLWp6g9PespfQdpxko0dLA9VSU/vPAdt2VfuRYKkr/\nJUKcnsFyEeHQFwTz0flKNKx28wExjnD+AGANKG3dW2Onfch1xS/pUmAzgn/yywQvhXkAzOxcSecT\nvBf+HT8y08zW66GftljxO62BEs0H3ApsGKveJbhszuWWLLEiIfNVOZvWPmYDsu33JMdKBJ/+ct/f\ntZL9PIu+u8YQJYJJAOAFYGUzPshyDKd5eMgGx6mD6Kt/ASGWDoT9pTFWsut7bF9tLrkX+IKFk7JZ\nyXMc8JNYfAf4pJUsy8QtCxMOoJXjBh1lxmlZ9e80l0KaejqNovv2tho5zecBVJQ+hFV2LaW/FhWl\nD3Bklko/8lMquXQXhsHtHXTHQvjmE0JpIsD3JT6S5RidSNGfdVf8jhNRovWAX6aqfke1X3130rb8\na8y4K2uZrGQzSR2yAr6VdSwf4FxgarxeHDg64/6dguGmHscBlGgpQg7c8iHChwh2/fd6bC+2IOwD\nAMwBVjfj8ZxkE3AHsFGs+r2VbM9MxxB7AJfE4rvASLOuoG5Oi+KmHsepgRINJYRXLiv9N4Gv9qL0\nRXV0ywl5KX0AK5lRHR9oDyVaK+NhLoOuv2Eh4MiM+3cKhCv+BlJ0u1+rkeF8jqcSq96APaxkz/bS\nfjtg3Xj9IRWvmNywkt1FiOBZJguX0Ur/xmxIrkxVHS6xRJZjdBJFf9Zd8TsdjRKNBo5PVf3ISlYz\ndEhc7SepqnPMeCEv+bpxHHRtHm+jRFtk2/1PJuKr/o7AbfxOx6JEIwhZssor278Bo61ks2t+RuwI\n/CkW3wc+Ycb/5SpoevxE5xPiWgH83Uo2KtP+xS7A5bH4LrCCGf/NcgyncbiN33FSKNE8BLt2Wem/\nRDDx9Kb0h1C92v9VI5V+5ASgHBxuMyXaJOP+rwQei9cLEcI4O22GK/4GUnS7X6sxyPn8CRUvmTnA\n17vF1e+JnYBysqD/UR2xsyHEZOzpk8HH12rbX0J8GeZQvX9wuETW0UHbnqI/6674nY5Diban2lf9\n+1ayf/T6mWDbPy5VdZYZmZ2g7ScnUbH1bx3PH2TJ5YTYRBDCrezXS1unBXHF30CKEK2vnRjIfCrR\nCsBvU1V/pb6V+9bA5+P1+9C8sAZWsmcI7qdlMln1l+fTjFlAOibQdyWyDhDX1hT9WXfF73QMSjSc\nkDlrsVj1AiGhSj1hFtKr/fPM6MsslDcnpq63V6I1M+7/Qug6wDUS2CXj/p0m4oq/gRTd7tdqDGA+\nTwXKZpFZwK5Wsj5Pp0psDGya+tzP+jlu5ljJHickTy8z6FV/ej7N+B/V4Su+F81dTh0U/Vl3xe90\nBEr0VeDbqapxMcF5PaRj5fyugX77ffHj1PVXlGjljPs/i0q8/s8B22Tcv9MkXPE3kKLb/VqNeudT\niVYlpKIrcw29B1+rfFasCWxbHhI4pX4J88VKNplKnmoBRw2qv27zGWP1nJ+qGodTF0V/1l3xO22N\nEi1EyPK2UKx6Ftg3xr+ph/Rq/0oznsxSvgz4aep6HyX6aMb9n0ZI/QgwSiJrDyKnCbjibyBFt/u1\nGn3NZyqpymqx6n1C8LU36+uflYGvpaoyjY+TEX8H7o/X8wKHDrSjnubTjOep9iDyVX8dFP1Zz1Xx\nS7pQ0suS5kpZl2pzpqSnJT0kZR5x0OlsjqDaG+UgK9lD/fj8OOja0PyrGZkmO8+C+Mslver/lhIt\nmPEwaXfXneIXotPC5L3ivwgYXetNSdsCnzKzlYADgXNylqepFN3u12r0Np9KtDXV3jfnWMnqzoUr\nsRywd6rqxFptC8DVwHPxenHgGwPppNZ8mvEI1XsJhw+k/06i6M96rorfzO4A3uilyRjiYRozuwdY\nVMrcRul0GEq0CsFfv3x/3wN8p5/dHAFdh5buMOPOjMTLHCvZLKoPlB2pRFkfuEr3v5/UdRbCaUGa\nbeNfFqpc46ZTSYbRdhTd7tdq9DSfSrQ4cB105Y2dDuxoJfuw/n5ZhJB7t0xhPHl64SKqD1x9tb8d\n9HF/3gY8Gq8XoBIh1OmBoj/rzVb8wFyHQoofJ9opJHGVezmwUqx6H9jBStbfCJr7ExKbA0whhHUo\nNDFb2K9SVUfFze1s+jcMOD1VdZiHcWhdmv0f9x9guVR5RKybC0kTgGmx+CYwuWxHK3+7ermDywJK\n7A1s1ZU2fEX2sZI90J/+gjK7aVxwkBkF8AvQplLB/t4eyoznV8A4pjIvsC4rsiFwV2b9Y38AToaJ\nSwLLw6gdgSuL8vcXrVymkePH633j0NOoQe6JWCSNBK4zs9V7eG9b4FAz21bSBsDpZrZBD+08EYvT\nK0p0ItU+9+OtZEmt9jX7qU5E8hqwvBnvZyBiQ+iWqOVqK1m/TT699i9OoBIe4i4zNs6yfydbBpyI\nRdLVkr4sqd9mIUmXAncDq0h6QdI3JI2VNBbAzG4AnpP0DHAu8K3+jtFKFN3u12qU51OJDqda6V8E\n/Kj//c11+vXsVlL6kfSJ5B2V6BP1frDO+/McYGa83kjqyj3spCj6s16PMj8H2AN4RtLJklapt3Mz\n283MPm5mw81sOTO70MzONbNzU20ONbNPmdnnzOyBAfwNTgejRF+n2vZ8PXBgP07mptmQShC3GcDZ\ngxSv4VjJHgNujsUhZOx6acaLVH4RQXX8I6dF6FPxm9ktZrY7IRb5NOBWSXdL2k/SPHkL2E4U3be3\n5RjPUsAlVBwEJhEibs6q/aFeSScXv8SMlwcjXhNJu17ur0QfqdkyRT/uz/QX7a4SH69XsE6h6M96\nXeYbSUsQNgy+CTwAnAmsDdySm2SO0wtKtCshlMDQWPUEsF30bul/f+KThNSKZZqWaCUDbgYej9cL\nEZ7bzDDjX9B1rmEYbW6ibUfqsfH/ifCfvACwvZmNMbPLzOxQKi5vTh0U3e7XKijR7sAfmNql9KcA\nW1rJ/juIbg+n8svhJrOuhOMtRzRzpW39h9dzoKuf92d61X+QxPz9+GzbU/RnvZ4V/3lmtpqZnWhm\nLwFImhfAzNbOVTrH6YYSfRP4HZV793FglJXCvTmgPsMp1PSBpFZe7Zf5PXTlBF4e2DHj/q+hkpd3\nCWD3jPt3cqQexf+THurqTWDhpCi63a/IKJGU6EfAeZTv2xV5DNjcSjZYW/wBQDmw2aO0gQnTSvY+\n8OtU1RF9fqYf92fMy3tWqupwz9BVoejPek3FL+ljktYG5pf0eUlrx39HEcw+jtMQlGgegovmD1LV\nDxKU/qBy30rMQ7Xny2nxlGo7UO16mWidjPu/gEqGrjWopKd0Ck5vK/5tCNENlwV+Hq9/TvB8OK6X\nzzk1KLrdr4jE2Ds3APukqm8ENmM8n8lgiF0I9zjAy8AfMuizEETzV92ul/29P814A0hHPPWonZGi\nP+s1Fb+ZTTCzzYF9zWzz1GuMmV3dQBmdDkWJVgfuA7ZKVV8IjLGSvTPo/oNpIu3CeZYZdQdzaxHO\nSF3vqkQfy7j/dEL2HSVWyLh/JwdqhmyQtJeZ/U7SUVQHThNgZtawDTAP2dB5KNHXCHly02bF8cCP\nBng4a+4xxGbAxFj8AFjOjNey6LtIKNGdwEaxeIKV7IeZ9i9uofLlfKqZZ+kqCgMJ2VB+4Bau8XKc\nzFGiYUp0KiGefvkefJeQMjHJSulH0uEZftuOSj+SXvUfpETzZdz/manrAySyzgDmZEzuQdqyoF1W\n/JJGFX23v5lEM8TlwCap6mcI8fTn8qsfzHzG9IHpxOmrFjCReiZEH/7nqETC3d9KduFc7QY4nxJD\ngaeAclygsWb8ZoDitgVFedYHE6TtVEmLSJpH0q2SXpO0Vz5iOp2KEm1O8NRJK/0bgPV6UvoZkHZv\nvL5dlT50Zeiqdr1MMo3VP3uu/t21s9D0ueKX9JCZfU7STsB2hM2wO8xsjUYIGGVoixW/MzdRAR0N\nnERlITKH4Lp5spVsTuZjiiUImd/Kp023MOP2rMcpEkq0GCHXRflv3sxK9o/M+heLErKdlc08W5px\nW1b9OwNjwCt+KslatgOuNLO38CxZTgYo0SLAlYTUhuV78RVgKyvZiXko/chBVBTgg1Q2eNsWK1mu\nrpdmvEnMn51H/0621KP4r5M0hRCU7VZJSxM8IJx+UnTf3kaiRKsB9wJfSVXfBaxlJatr9T2Q+ZSY\nFzg0VdVOB7b6Iu16uZMSLZ9+M4P7M93/GIkVB9lfy1L0Z72esMzHEFzB1jazGcD/gB3yFsxpX5Ro\nK0LYj3RuhzMJJ3FfzHn4rwPLxOsXCd5DHUHcK7k1FocAh2TavzEFuCkWlXX/TnbU5dUjaSNgBaAc\nf9/M7OJePpIpbuNvH2KQtXOomBDfAw6wkuV+YjZuOD4ElNOAHmPGKXmPWySUaAwhwBrAG8CIgYay\n7rF/sS3wl1h8CxhhxrtZ9e/0j8F49VwC/BTYGFgnvupKtyZptKQpkp6WNNehDklLSrpR0mRJj0ra\nt55+ndZDiYYo0cmEIGtlpf8isHEjlH5kSypK/z3oSJfDv0BXOvrFCNn1suRGggsuwEcA9wAsIPXY\n+NcGNjKzb5nZYeVXXx+SNJTg4jUa+DSwm6TVujU7FHjQzNYERgE/l/qOG96qFN3ulxdKNISQUzn9\n5f8gwVXzwQH32//5TIdnuDDGmukorGSzqbbFd7l2ZnF/mjFnrv470LWz6M96PYr/UWAg8T3WA54x\ns2lmNhO4jLn3Bl4CFonXiwCvmw04bZ5TQOLhoQlUZ4G6DtjUSvafhskhPg18KRaN6tOsncZFhL06\ngM8SFl1ZMgG6zDurUh1rySkA9Sj+pYDHJd0s6br4uraOzy1L8JUuM51KFMQy5wGfkfQiwfba1omb\ni3CSr5HEcMqXUP1z/2JgJyvZoO2+/ZzP76Su/2zWZY7oOKxkb1Lt2nkYZHd/mvE24culTMe5dhb9\nWa/HrDI+/mtUUtPV4/5WT5vjgMlmNkrSJ4FbJH3ObPCRF53mokRDCVmgvpaqPg84KEf//J5lER+l\n+sunHTJsDZazgIPj9Q5KtIKV7PnePjCA/ssm4S9LfKqTv2yLRp+K38wmShoJfMrM/iZpgXo+Rzgl\nuFyqvBxh1Z9mQ2KGLzN7VtJUgovf/d07kzQBmBaLbxK+MCbG90aVZS1yuVxXFHlyKw/RKHbk23wu\npvubCrzF1azJWCuZNXo+4TenwsrzRovGfTB0mDRnVGHmq1n343huBbZkKkN4gxMlnZfl/Ql2A7At\nTBRMOwn2/VqR/v6cy2ua2emNHj9e70tgGjWoJ2TDgYTUdIub2SclrQycY2Zb9vG5YYQgWFsSvDfu\nBXYzsydSbU4D3jKzRNJHgX8Ba5hVJ81uF3dOFSRwU94o0bHAiamqM4EjMo6sWdd8SixAMDkuHqt2\nMeOKLOVoVZRoB+DPsfg6P2N3e8duzqx/sQ3BywfgbYJrZ0f8mi/Ksz6YkA2HEFw53wYws6eApfv6\nUNykPZRwoONx4HIze0LSWEljY7MTgXUkPQT8Dfhed6XfThThRsgbJdqXaqV/GfCdrJU+1D2f+1FR\n+lOBP2UtRwtzPZVV4RJ8d649uMFyC5UIqIsAe2fcf2Ep+rNez4r/XjNbT9KDZrZWXMk/YB6kzelG\nPJF7IzA0Vt0GbGsla0pWqx7CBR9mVhVFsuNRoqOBU2PxQWDtLL+kJQ6hErnzSeDT0eXTaQCDWfH/\nXdL3gQUkfRG4guCO5/STovv2DgYlWoGwui8r/YcI3ju5Kf065nNHKkr/Dao9TZzABcD7AExlLcK+\nW5ZcTLQWEPbvRmfcfyEp+rNej+I/BngVeAQYS4iRfnyeQjmthRLND1wNLBGrXiKs9N+u/amcZQqH\nho5OVZ1t1uW77kSsZP8leF+V6fNwZr/6Dzb9C1JVR9Vq6zSOemP1LA1gZq/kLlHP47upp6DEU58X\nUvEkmAmMspLd3TShAImNgTticQawvBkvN1GkwqJEaxB+oQHMApa3kr2UWf9iJCGMQ/nX4FpmTM6q\nf6c2/Tb1KDBe0msE29yTCtm3SlJ22XuclmcsFaUPwXunqUo/8t3U9cWu9GtjJXuYypfkMODATPs3\nphHyLpTxVX+T6c3U8x1COOZ1zWwxM1uMEIZhI6pPQTp1UnS7X3+JK8V06IPfEiJvNmb8GvMpsQow\nJlXlB7b65lddodtgbDx1nSU/S11/XWJExv0XiqI/670p/r2B3c2s63Yws+cI0fw6xi3L6Rklmo9g\nGx4eqyYDB+fhtjkAjqRyyvx6M57orbEDwJ+Yw+vx+mPATll2bsb9QDnV4zA6MIxDkehN8Q8zs1e7\nV8a6to2gmSdF9+3tJycSAnxB8ArZzUr2fiMF6Gk+JZYB9klV/bRhArUwVrIZfLLK1TWPJCo/T12P\nlboCNLYdRX/We1P8Mwf4ntPmRH/9tLnvKCvZlGbJ040jgXnj9b1UbNdO3/yGsLkLsKkSrd5b4wFw\nPeFcBYQDXftn3L9TJ70p/jUkvdPTi0oyC6cfFN3uVw9KtDjVSbVvAH7dFFm6zafE4lQCjwGc2EH5\ndAfPeFYmuOWWyTo14xyq91uOkNrTelD0Z72m4jezoWa2cI1XW/5nOXVxBvDxeP0q8I2C2PUhhAhZ\nKF4/hh80HAhpc89eSrRoxv1fDLwWr5cHds64f6cO6jnA5WRE0e1+faFE2wB7pqoOsJI1zU0yPZ8S\nC1Gdz+EkDw3QP+J83kk4rAmwANWuuhmMwfvAr1JV323HDF1Ff9Zd8Tt1oUQLUm3SudRKdk2t9k3g\nQCrB2J4DLm+iLC1L/PWWVszfiqkzs+Rs4IN4vTbZZwBz+sAVfwMput2vD34EjIzX/wWOaJ4ogfJ8\nSsxL9YGtU8zwFJ79JHV//p5KfJ2VyDh1ohmvUL1P9P0s+y8CRX/WXfE7faJE61Ct6I+0UnPCd9Rg\nXyp5oV+iWqk4/SSmxUwHtMvDtfNUYHa83lJigxzGcGrgir+BFN3u1xMxWfp5VO6Vv1Gdr7VphIxD\nDAPGpap/ZkZTwkC3Ot3uz7NT19vF6KsZjsVzwKWpqrZa9Rf9WXfF7/TFQcCa8fp9Qs7conjxAOwK\nrBiv/0vwRXcGiZXsKUIiFQh64qAchjmJSm7u7aSu+8zJGVf8DaTodr/uKNGSwAmpqhOsZM82S57u\nSMM3B45NVZ1hxrvNkqfV6eH+TG/yfjOG6cgMMx6n+tzAcVn230yK/qy74nd648dA2Y/7WQoX7Oz4\nzYHPxMK74Nm1MuZ64N/xeklglxzG+EnqemeJVXMYw+lGropf0mhJUyQ9LWlcjTajJD0o6VFJE/OU\np9kU3e6XRonWojo87xHNSqHYE8G2/8O0IjrDjLbN19wIut+fVrLZVLvwZr7Ja8aDwF9iUVT/gmtZ\niv6s56b4JQ0lrMBGA58GdpO0Wrc2ixJ+Tm5vZp/FT/EVgphc5UwqES5vpPJwFoXdCan8AN6iOgCY\nkx3nExLZAKynROvlMEZ61b+H1LVn4+REniv+9YBnzGyamc0k5GPdoVub3YGrzGw6gJm9RhtTdLtf\niq8DG8frWYTVfmE2dCXmAUowsVx1mhlvNE+i9qCn+9NK9irh2S1zaNbjmjEJuC0Wh1LtpdWSFP1Z\nz1PxLws0Pjz3AAAbmUlEQVS8kCpPj3VpVgIWl3S7pPsl7ZWjPE4dxA28k1NVp1vJnmyWPDXYl0oS\n9f8CpzdPlI4gvXeyq5KQijVj0qv+/aS5dIWTIXkGW6tnhTgP8HlgS0JckEmS/mlmT3dvKGkCMC0W\n3wQml+1o5W9XL2dSPpSpLA/AirwKnFAk+cIp3Zt/HPK/jAI4FfR5qRjytWOZ8SzIbjzBKqwGDOc+\nTpR0SbbjDZkDsycBX4CJw+GFs2CvnYrw9w+0XKaxz4dGUYmvNI0a1JVsfSBI2gAYb2ajY/lYYI6Z\nnZJqMw6Y38zGx/L5wI1mdmW3vjzZegNQosUI3juLxarDrGSF8pSROITKCvQV4BNm/K+JInUESrQH\ncEks/gdY0UqWaV4OiW0I+0kQcn6sHPP1OgOklu7M09RzP7CSpJGShhMO2lzbrc01wMaShkpaAFgf\neDxHmZpK0e1+BI+KstJ/loIdhpKYn6oTnmde4Uo/O/q4P68kfNFCMNnumIMINxOig0KwBvwwhzEa\nQtGf9dwUv5nNImwE3URQ5peb2ROSxkoaG9tMIXzDPwzcA5xnZm2r+IuMEi1PdR7U46xkM2q1bxIH\nU4nJ8yKc1H0h4eREdOU9N1WVxyavUR26YR+JlbMex8nR1JMlburJHyX6LbB3LN4HrF8wT55FgGeA\npWLVIWZV8WScnFGijwPPU9kbXNNK9lDm44ibgS/G4mVm7Jb1GJ1CM0w9TosQc6umPaqOLpLSjxxL\nRen/G7igibJ0JFayF6kOsXB4rbaD5Aep669LrJ3TOB2LK/4GUmC734+oHNb6i5Xs780UpjsSK1Cd\n3P1YMz4s8Hy2JHXO5xmp6z3ycO004x7gz6mqU1otS1fR701X/B2OEq1N9UZdEcPjngTMG6/vpfpA\nkdNYJhH+DyD8nxzcS9vBcCypeP3A1jmN05G4jb/DUaIbgC/F4hVWsjwCcQ2YmKBjUqpqYzPuapY8\nDijR16nE0n8FWMFK9kEvHxnYOOJcKvGiHgY+b9b1ZeDUgdv4nblQog2pKP05QKmJ4sxF/Hmfjgh6\npSv9QnAV4SQ+wNKQ2+breOC9eL0GFecDZ5C44m8gBbT7pWPt/8FK9kTTJOmZrwFfiNczgGPSbxZw\nPluaeuczHtz6ZarqOzGwX6aY8RLVwfdOlFg463HyoOj3piv+DkWJtgC2iMXZQNJEceZCYj7glFTV\nmWYUJgmMw3lUVuOrU7mXsuZU4MV4vQxtlKylmbjibyBFidEdV2c/SlVNsJI90yx5anA4MDJev051\nEC+gOPPZLvRnPq1kb1CdkP07tdoOhphRLf1L70ipK0BfYSn6vemKvzPZAtgoXs+k2uTTdCQ+RrV3\n0Xgz3myWPE5NzqASjPHLSvSZ3hoPgt9T8SQajudeGDSu+BtIEex+cbWf3sS90Er2fLPkqcHPgEXi\n9ZNUhwroogjz2U70dz6tZE9THX/rmFptB4MZc4Bvp6p2lNg2j7Gyouj3piv+zmMUsEm8nkXwkS8M\nEpsTEvSUOdSMTKNAOpmSvn92U6JcsmeZ8U+qTUtnxaB9zgBwxd9ACmL3S6/2JxRptS8xHKri71xu\nxt9qtS/IfLYNA5lPK9k9wK2xOBQ4OkuZujEOujKtrUiB8/MW/d50xd9BKNFmwGaxOAs4sYni9MRR\nwKrx+t1YdopPetX/DSVaJo9BzHiVanPSOKnrfnH6gSv+BlIAu196tX+xlWxq0yTpRgy/m5avZMZ/\nev9M0+ezrRjEfN5GdRiHXDx8IucTQrhD2Og9TyqeHiv6vVm4CXPyQYk2BjaPxdn04B7ZLOKD+xsq\n8XgeAM5snkROf4iRXNOr/m/FbG7ZjxU2eg8k/GIF2Jj84gW1La74G0iT7X7pbEa/s5I91zRJ5uab\nVExQs4H9zboe7JoU3Y7aagxyPq+lkj1vIaq9cDLFjIeBk1NVJ8cIroWh6PemK/4OQIm+QCWxxRyK\ntdpfDvhpquqnZkxuljzOwLCSzaF61X+kEi2Z45A/BsohRhYimHw8kGOd5Kr4JY2WNEXS0zGxeq12\n60qaJekrecrTbJpo90uv9n9flFO68UG9kIrP/tNUnyju4/PFtqO2GhnM56VUlPHC5OTXD2DGh8D+\nVA6QfRH4Vl7j9Zei35u5KX5JQ4GzgNHAp4HdJK1Wo90phNy7/o2dMUq0HuH/AMJDUpjVPsE2u1W8\nngPsa8b7TZTHGQRWstnA8amqQ5VoRG7jGZMIh/3K/NS9fOojzxX/esAzZjbNzGYSkmfs0EO7w4Ar\ngVdzlKUQNMnul05jd5mV7MkmyDAXEp+i2sTzMzPu7k8fRbejthoZzeefCDmbIWzW/7CXtlnwA+CR\neD0/8DuJeXIes0+Kfm/mqfiXBV5IlafHui4kLUv4MjgnVhU/K0wLoUSfB7aLxcKs9uNBrT8AC8Sq\nx8hfQTgNIHr4pCNofkOJVs5tvGDy2ZMQthtgHQoWe6qI5Kn461HipwPHWEgDJnox9UiaIGl8fB2R\ntqFJGtUK5XJdA8cPq/2pwGP83Ur2WBHmAy6YABPXjYWZsM8ZoC/U+/kmzmdbl7OaT8Yziyk8EEtD\neZRf53s/aXH45YWV8sRx0ve+l9d4dZaPaMb48XpCfI2nBrmlXpS0ATDezEbH8rHAHDM7JdXmOSrK\nfklCfO8DzOzabn21RepFSaMa9RNQidaCrocPYA0r2SO12jcKiS2BW6j8v3/XbGDRFhs5n51AlvOp\nROsD/0xVbWglm1Sr/aDHC2dB/kJlP+s1YM2+DgHmJ08x7s1aujNPxT+MEFlxS0IihXuB3cx6zvIk\n6SLgOjO7uof32kLxNxIl+jOVPZWrrWRfbaY8ABLLAA8SEmoA3Ax8KR7KcdoMJboKKHvqTQbWiRvA\n+YwnlorjfDxW3QlsadZlBuo4aunO3Ew9ZjYLOBS4iXCw43Ize0LSWElj8xrX6bLtpzfSm55dS2IY\nYYO/rPRfAfZxpd/WHAVdXlprAgflOViM5bM7dN1TG+Ox+3sktxV/lrTLir9RP/+U6BpgTCxeaSX7\nWt5j9oXEyYToihD2f0abcfPg+izGz+l2IY/5VKLvEw5bAbwFrGIleznLMeYaU4yj+mTvfmZMyHPM\nuWUoxr3Z8BW/0xyUaG0qSh/6cSAqLyR2oKL0IWTUGpTSd1qGnwHlA4MfoTqPcl6cSnARL/NriQ0a\nMG7L4Cv+NkOJrgW2j8UrrGS7NFUe8VlgEuFYPcBfge3cxNM5KNE2hAOaZTaxkt2Z65hiIcLmcjkd\n5CvA+mZMy3PcouEr/g5AidahovSNJq/2JZYgBO8qK/2pwF6u9DsLK9lNwFWpqguUaMFcxwxJ2ncA\nXo9VSwN/kfhInuO2Cq74G0i173Eu/Dh1fYWV7NGcx6tJPKR1BVBOxfcuMMas60HMYIxix0NpNXKe\nzyMJ9wDAylSHWsgFM54FdqRyuOvTwFVSV/jv3Cj6vemKv01QolHANrE4hyZ68sTga+dRif8PsKcZ\nTfsicpqLlezfhPAsZQ5Soi/nPq5xJ/CNVNWWhLAOQ/Meu8i44m8gee3yK5GoDol7sZXs8VrtG0AJ\n2DtV/r4Z12Q9SBG8JtqJBsznb4H0OZ0LlWjpnMfEjN8D309VfY2QrD23fcOi35uu+NuD7aHLa2EG\nML5ZgkjsT3UKxQuo/lJyOpQYx2cs8FKsWho4Ly5c8uYk4IxU+SDglE6N4e+Kv4HkYfdToqFUJ00/\nx0r2fNbj1CWL+AohhWKZm4GDzfIJvld0O2qr0Yj5tJK9BuyXqhoDHJ37uOEePJIQHLDM0cCP81D+\nRb83XfG3PrtTcVl7l+ovgYYhsRUhEUf5npoMfM2Mmc2Qxyku0csnnVP5ZCXaNvdxgzfZvlBldjwO\nOKHTVv7ux9/CKNG8wBRgZKz6kZWsVPsTOckhRhECZJXDLD8FbGLGK42WxWkNlGg48Ddgk1j1NrCB\nlXqO5ZXp2MGr5yogvbl8FvDtdnM1dj/+9uQIKkr/dZoQlyRG27yBitKfDmztSt/pDSvZDGBn4N+x\nahHgGiVaLPexQwz/nQmHCcscClxchCQujcAVfwPJ0u6nRMtQ7akw3kr2dlb91yWD2Bq4npD5CEIU\n1q3MaMgeQ9HtqK1Go+fTSvYK4ZDVe7FqJeAqJZov97GNDwg+/penqvcA/iR13c8Dpuj3piv+1uXH\nhITWEBJcn9vIwSVGE07llh/S6cBmZhQitaPTGljJJhPs7mU2B/6oRLmvvGO45j2ofna+DNzY7id8\n3cbfgsQkK/+iksxkdNwwa8z44ssEf+zhserfwOZmPNcoGZz2Qom6R9S8FNgrz/j9XWOHjd0TqP4F\n/SjhpPnUvMfPE7fxtwnR5/l0Kkr/hgYr/X2BP1NR+s8TVvqu9J0BYyU7hWrFvxtwdiN8/M0wM44n\n5A8o81ngvui40Ha44m8gGdn9vgpsGq9nUX2z5oaEJErARcCwWD2VoPSnNUKGuWUqth211SjAfB4H\nnJ0qHwicH8+q5I4ZpxFOnJdj+ywB3CJxcH/7KsBc9oor/hZCiT5C9enDX1nJpuQ+bvB0OJ/qE8EP\nE1w2m3JYzGk/4snew4Dfpaq/AVweXZfzl8H4HbAZ8H+xahhwtsTZ7eTxk7vilzRa0hRJT0sa18P7\ne0h6SNLDku6StEbeMjWLDOJ3nEgln+grNCAQm8QiBM+ddKCrWwhKvymJrMsUPR5Kq1GE+bSSzSHc\naxNS1V8Frs07lHOXDMY/gXUJ+2hlDgZul1i+vj6aP5e9kavilzSUcDBiNCEk6m6SVuvW7DlgUzNb\ng7DB8hucuVCiDaHqJ+fhVrI3ch1TfBK4A9g6VX0R8GUzGuo66nQOVrJZwP5U/7rdGrhNiT7WEBmM\n6QST6mWp6o2AyTGjXEuT94p/PeAZM5tmZjMJk1g1aWY2yczeisV7gBE5y9Q0Bmr3i6ccz6OyofsX\n4I8ZidXzmGJb4H4g/QtsPLB/UcIwFN2O2moUaT7jyv87VJsX1wPujV5t+ctgvEcIiXIMUPYuWgz4\ns8SZvcX1L9Jc9kTein9Z4IVUeXqsq8X+hFOgTjXjCL+YAP4HfCvaQzNHYkjcxL0eWDRWzyAkrE7y\nCrjmON2xkpmVLCGcqi2HUhgB3KlEX2mIDMHj5xSC3T+tyw4DJkms0gg5siZvxV+3kpC0OcG2N9c+\nQLswELufEq0BHJ+q+n5MapE5EosRDmWNp/Lr4gWCPX9CHmMOhqLbUVuNos6nlexXwLZA2TKwAOGE\n78mNOOgFYMZdwJoEV+YyaxFMP0d1T+xS1Lksk7fi/w+wXKq8HGHVX0Xc0D0PGGPWs91a0gRJ4+Pr\niPRPKUmj2rGsRAsAlzGV4fEYyX3AWfmMd/ChhM2sL8NEwovbgLVBCxRhPrzcuWXG8yEh58SzTIX4\nPIwDJuoT2qUR8pjxX+ArcNoZcFvZ3DkfTPwZXPewxKrNnq94PSG+xlODXE/uShoGPElId/YicC+w\nm1klAp+k5QkKZk8z+2eNftri5G64eepfCSjRuQRfZgjxTNbO2n0zuqj9kOBDnV4InErInDUry/Gy\npL/z6fROK8ynEi0B/J5KmlGAN4D9rWR/apgcYg1CRrE1U9UfAj8ATgNtUoS5rKU7c13xm9ksgn3u\nJuBx4HIze0LSWEljY7MfEjZMzpH0oKR785SpVYg2zANTVYfnoPRXAu4kmJLK98JbwM5mjCuy0nc6\nEyvZ6wSzT/cN16uV6FIlWqohchgPEzabfwhdzg7zEhZM98L+3b0XC4XH6ikgSrQ88BCVzdUrgF2z\n2tCNsUkOAE4D0r7RE4F9zMhlD8FxsiS6OF9GtTn5NeBw4LK8HCDmkiOs/i8CPt/trfOBY814rRFy\n9ERTVvxO/4l2/SupKP3ngQMzVPqrALcTIhKWlf5Mgr10K1f6TqtgJbubYGr5bap6SUJ6xduUqLsi\nzkeOsPrfgBDk7YPUW98EnpI4qPvmb7PxFX8D6cuGqkRDCPHBd45Vs4HNrGR3DX5shgPfI5h10v7H\nU4A9zHhgsGM0mlawSbcSrTyfSjSacPgzvfo34GLgeCvZXE4lucghVgROh4ljqI7v9jBhcXVTI12i\nfcXfGpxARekDfDsjpf8FgsfOCVSU/myCPXLtVlT6jpPGSnYjIaLmmVRs/wL2AZ5VovOUaKXc5TCm\nmrED3HgsVEWsXYOQ8etWiXXzlqMvfMVfEJRoH6rjk/zSSnb4oPoUyxFC3e7e7a37gQPMmDyY/h2n\niCjRqoRFzfbd3ppDMKP+Crgj7z0AifkIv7LHUUlNWuaPwA/zTlxUS3e64i8ASrQ9Iflz+TDKX4Ex\nMWZJ//sTCxJuuKOhKo3c/wimnl+akXuCC8dpJkq0BSFT3Rd6ePsp4ELgYivZS7nKIZYheP8cCFW2\nfiM4bvwk7hPkMLYr/qbTkw1ViXYg/OeXlf6jwEYDyZ8rMQzYE/gJlSieZa4CjmqnMMqtbJMuIu04\nnzGRy6YE98/RPTQx4C7C83F1Vqfie3zWxcqEZ3PnHj5yHeEL4J4sxk/J4Yq/2XS/GZRoJ8JPvnJi\nk+eAUVayF3r4eC/9MhTYFSgBK3d7+0HgCDP+MVC5i0o7Kqpm0u7zqURrElbdewCL1Gj2COHc0U3A\nnVayD2q0632sXuZSYn3Cs/qlHt7+OyGi8TVZBEN0xV8wlGhX4BIqSv8ZYPP+eB9IDCGsHsYD3Q+M\n/B9wLHCxWVeAK8fpeKLL9M7AfoRfA7WcXD4A7ia4P08E7rOSfZiZHGJtwon5ngLO/Qf4NfAbM14Z\n+Biu+AtBdNksEWx+ZZ4CtrCS1ZXYJG4a7QkcydwK/03CwazTzXhn8BI7TvuiREsTQsV/FdgCes2y\n9QEh7Mwd8fVPK3WFlB+4DOLThEXabjCXv/9MQmC4iwmuoP36FeCKvwBoUX2J7/BNqr/hpxCUfp8b\nTBJLEZKxHAIs3e3td4BfAL8w482MRC407W6aaDSdPp9KtBDB+X4bwn7Ap/r4iBFMQ3fF1yRgqpXM\nBjKXEssCY+Or+/MN8CpwKSE15b/qOQ/gir/JKNFqPMV1rMwnU9W3EEIx1MykFcMrrEcIsbAHMF+3\nJu8SfJd/HqMHdgydrqiyxuezGiUaQfgiKL8+2UvzMi8Dk7iXV1iPS4H7rWTv9mvckODlq4SY/xvU\naPYccE183VUrrpYr/iYRTTuHAydRrbRPB46u5bIpsQTBnPNNwsGU7kwnpKY7z4xB/9x0HKd3YtrH\nTeJrI+Bz9H0Idg7wGCGkevn1aL17BRKfBfYiLPpqJbH6LyEr31+B2826EsW74m8GSjSSELxpVKp6\nBnCwlezCudoH//ttgV2AMcDwHrr9F/Bz4MqipEB0nE5EiRYmrMg3JJwV+AK1vYXSzCS4bT8ATCaE\nc3ikj1/+Q4HNCV8COwEL99L/E4RQ97eBrnLF3yCUaEGC3/B3Sa/yn+IZVmYnK9mjXW3FAgS3rl2A\n7Zj7hB+EWPyXARcAkzz9YcBNE9ni8zk44q/7TwPr8zA7sQYrAJ8B6tVd0wnh65+Ir6eAZ4H/WMm6\nDlxGU9DmhE3pMcx9ZictFa74c0aJhhLCI5xM9X/GHOAkTmYiH9itwCqEzaMvEXJ51krafB8htOtl\nZvT7QFe744oqW3w+s6M8l0q0CCFc8zrAusDa1LdXkGYGIUrvvwlfDtOBl4BXmT3Pq/zj+KV5Ysd1\neOMT6zNzofWpshS44s8NJRpOsMcfA1QHgjL+xRNfPYk/XrkQsDGwFTCyl+6mECJ0XmHGY7kI7DhO\n01CiRQnhpNcmBG9bnfDLoCfTbv8wPmT28Pf5cBHjvSWH86spC7rizxgl+jjB5nYoMKLqzRkLvsMd\nx07hzmNGYEM/1kdXjxOOjP8ReMxNOY7TWcSk8Z8CViWczVktlj9Bz66d9TGexq/4JY0meK8MBc43\ns1N6aHMmweTxHrCvmT3YQ5vCKP74020bZg3/JkNnbIW67ep/8BG453C462iY0X3/ZSJxn/dd4G+E\nXfib2il+TiNx00S2+HxmR5ZzGTeRVyR49YyIr2WApVKvxeKr+gDa+J4V/7DuFVkhaSgh5sRWhOPH\n90m6tlui9W2BT5nZSpLWB86htt9qw4g76MsAy7HQi59gpb+uw4hJ67Dsfauw9NClGDJbDJtR/aF3\nl4ZJR8L9B8OHc23svw3cBb+dA6NOBf5pxozujZx+sybh29TJBp/P7MhsLq1k7xA8f3qN4BkD0s1P\nyN63MMHDqMcc5rkpfsKho2fMbBqApMsIu9BPpNqMIaZNM7N7JC0q6aNm9nJ/B4txa4YRvGgWJHjH\nLNjDdbn8EWBxhn64JAu8ujQLvL40C/3fkizywqJsNn1BFn9OLDMZlnochvQSwXjqKJi8Lzy2C8ya\nH8JGzCMEN60HCMnMHzNjtjRhvNlFbRcsrYks2ncTpx/4fGZHw+cy5hd4L74A0PieDSV5Kv5lgXSU\nyenA+nW0GUE4/VaF9v7i/0DCNCT+K9CQ8C9D2MMAA5X/nVN5DZkFQ2fCkJkw7EMY9j7M8z7M8z+Y\nbwDOMi+tBU9uN5tHdn+W11d9DHiS8IU2GXjC/esdxykyeSr+ejcPun8l9fy5T/6tJ//2/DHBux99\nk7dHPM+rn7mHx79yE0+NmQw8P4BkJiNzkLCTGdlsAdqMkc0WoI0Y2WwBeiO3zV1JGwDjzWx0LB8L\nzElv8Er6NTDRzC6L5SnAZt1NPZLcy8VxHGcANHRzl5DXdSVJI4EXCYlCduvW5lqCK+Rl8YvizZ7s\n+0Xx6HEcx2kHclP8ZjZL0qGETDZDgQvM7AlJY+P755rZDZK2lfQMIR/sfnnJ4ziO4wRa4gCX4ziO\nkx19hRR1BoCk0ZKmSHpa0rgabc6M7z8kaa1Gy9hK9DWfkkZJekvSg/F1fDPkbAUkXSjpZUmP9NLG\n78066Gsui3xfuuLPmNTBtdGESH27SVqtW5uug2uE5M/nNFzQFqGe+Yz83czWiq8fN1TI1uIiwlz2\niN+b/aLXuYwU8r50xZ89XQfXzGwmIZzyDt3aVB1cAxaV9NHGitky1DOfUH/o247GzO4AasZ9x+/N\nuqljLqGg96Ur/uzp6VBa98w5tQ6uOXNTz3wasGE0Tdwg6dMNk6798HszOwp7X+bpztmpZHtwzaln\nXh4AljOz9yR9CfgzsHK+YrU1fm9mQ2HvS1/xZ89/gOVS5eUIq6be2oyIdc7c9DmfZvaOmb0Xr/8K\nzCNp8caJ2Fb4vZkRRb4vXfFnT9fBNUnDCQfXru3W5lpgb+g64dzjwTUHqGM+JX1UkuL1egQ35f82\nXtS2wO/NjCjyfemmnozxg2vZUs98AjsDB0uaRYhM+PWmCVxwJF1KSPe5pKQXgBIxhrvfm/2jr7mk\nwPelH+ByHMfpMNzU4ziO02G44nccx+kwXPE7juN0GK74HcdxOgxX/I7jOB2GK37HcZwOwxW/4zhO\nh+GK33Ecp8P4fwQmSz3MaCYuAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# pandas density plot\n", "Ahya_diff2[1].dropna().plot(kind='kde', linewidth=3);\n", "CpG[1].plot(kind='kde', linewidth=3);\n", "plt.axis([-0.3, 1.7, 0, 1.7])" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1 0.736736\n", "dtype: float64" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.mean(CpG)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1 0.89944\n", "dtype: float64" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.mean(Ahya_diff2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }