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These Two Mice are Genetically Identical and the Same Age

) Learn.Genetics

GENETIC SCIENCE LEARNING CENTER

Nature AND Nurture

Chromosome 3 Pairs :
b While pregnant, both of their mothers were fed
Bisphenol A (BPA) but DIFFERENT DIETS:

3-year-old twins
- The mother of this mouse The mother of this mouse
~f——— Yallow shows where the received a normal mouse | received a diet supplemented

twins have epigenetic tags diet with choline, folic acid,
in the same place. betaine and vitamin B12
50-year-old twins
—a———— Red and green show where
the twins have epigenetic

tags in different places.

A a8

Queen Bee Larvae: Queens are raised in specially constructed cells
called "queen cups,” which are filled with royal jelly.

High Nurtured

Queen Worker

These mothers come from a long line of inbred rats, so their genomes are highly | [] AUDIO
similar. But they care for their pups very differently.

http://learn.genetics.utah.edu
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=i Summary

e Sparsely (~16 %), mosaic methylated genome
* Gene body methylation correlated with function
 DNA methylation patterns are inherited

* DMRs are predominant in transposable elements
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Environmental impact (Estrogens)
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Environment and gene expression
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Environment and gene expression
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Environment and gene expression
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Environment and gene expression
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Take Home

Qyster genome has a fantastic degree of diversity
contributing to phenotypic plasticity & adaptation potential.



Take Home

Oyster genome has a fantastic degree of diversity
contributing to phenotypic plasticity & adaptation potential.
- large gene families

- very high mutation rate (snp/50bp)

- NUMerous exons per gene (potential for alternatives)

- genome full of repeats region

- high number of transposable elements

ack of methylation of transposable suggest mobility

family variation of methylation

imited methylation environmental response genes

IS associated with spurious transcription

- Inheritance of epigenetic marks as mechanism of improved
adaptation
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