--- title: 'Temp/Size Analysis' author: "Kathleen Durkin" date: "2023-10-12" output: pdf_document: default html_document: default --- ```{r global_options, include=FALSE} knitr::opts_chunk$set(message=FALSE, warning=FALSE, fig.height=3, fig.width=8,fig.align = "center") library(tidyverse) library(infer) library(broom) ``` # Data Munging ```{r} # read in the data codTempData <- read.csv("../data/temp-experiment.csv") head(codTempData) # Create two new columns indicating change from Nov.2022 measurement to Feb.2022 measurement, for both size (mm) and weight (g). Also, modify the Temperature variable from a numeric to an ordered factor, since it's the treatment (will be necessary for ANOVA/TukeyHSD) codTempData_plus <- transform(codTempData, # create column for change in size sizeChange_mm = SL_mm - SL_11212022, # create column for change in weight weightChange_g = WholeBodyWW_g - WWT_11212022) %>% # change type of Temperature variable to an ordered factor mutate(codTempData, Temperature = relevel(as.factor(Temperature), "0", "5", "9", "16")) head(codTempData_plus) # Reformatted data with single column for size values and single column for measurement values (and additional column indicating measurement date), enabling grouping by size/weight measurement date # # Sample of how data is being reformatted: # Original data # fishID | size_date1 | size_date2 | weight_date1 | weight_date2 #---------------------------------------------------------------- # 001 | s11 | s12 | w11 | w12 # 002 | s21 | s22 | w21 | w22 # # Reformatted data # fishID | date | size | weight #--------------------------------- # 001 | date1 | s11 | w11 # 001 | date2 | s12 | w12 # 002 | date1 | s21 | w21 # 002 | date2 | s22 | w22 # Note I renamed the final size and weight measurements to include the date 02/08/2023 -- this is just so that the measurement date column can have a consistent option despite final measurements happening between the days of 02/08/2023 and 02/10/2023. codTempData_reformat <- codTempData_plus %>% # Rename final size/weight variables to include date rename(WWT_02082023=WholeBodyWW_g) %>% rename(SL_02082023=SL_mm) %>% # Reformat data pivot_longer( cols = c("SL_11212022", "SL_12272022", "SL_02082023", "WWT_11212022", "WWT_12272022", "WWT_02082023"), names_to = "var", values_to = "value" ) %>% separate(var, into = c("var", "date"), sep = "_") %>% pivot_wider( names_from = "var", values_from = "value" ) # Set the date variable to have desired (chronological) order codTempData_reformat$date <- factor(codTempData_reformat$date, levels = c("11212022", "12272022", "02082023")) ``` # Plots ```{r} # Plot size measurements for all temperature treatments across the time of the study codTempData_reformat %>% ggplot(aes(x=Temperature, y=SL, group=Temperature)) + geom_boxplot() + geom_jitter(width = 0.2, height = 0.2, size = 1.5) + xlab("Temperature Treatment (*C)") + ylab("Size (mm)") + facet_wrap(~date) ggsave( "01_sizeVtreatment-all-dates.png", plot = last_plot(), path = "../output/01_temp-size-analysis" ) # Plot weight measurements for all temperature treatments across the time of the study codTempData_reformat %>% ggplot(aes(x=Temperature, y=WWT, group=Temperature)) + geom_boxplot() + geom_jitter(width = 0.2, height = 0.2, size = 1.5) + xlab("Temperature Treatment (*C)") + ylab("Weight (g)") + facet_wrap(~date) ggsave( "02_weightVtreatment-all-dates.png", plot = last_plot(), path = "../output/01_temp-size-analysis" ) ```