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Preface

This book is the answer to a question I asked myself two years ago: “What book
would I want to read first when getting started in bioinformatics?” When I began
working in this field, I had programming experience in Python and R but little else. I
had hunted around for a terrific introductory text on bioinformatics, and while I
found some good books, most were not targeted to the daily work I did as a bioinfor‐
matician. A few of the texts I found approached bioinformatics from a theoretical and
algorithmic perspective, covering topics like Smith-Waterman alignment, phylogeny
reconstruction, motif finding, and the like. Although they were fascinating to read
(and I do recommend that you explore this material), I had no need to implement
bioinformatics algorithms from scratch in my daily bioinformatics work—numerous
terrific, highly optimized, well-tested implementations of these algorithms already
existed. Other bioinformatics texts took a more practical approach, guiding readers
unfamiliar with computing through each step of tasks like running an aligner or
downloading sequences from a database. While these were more applicable to my
work, much of those books’ material was outdated.

As you might guess, I couldn’t find that best “first” bioinformatics book. Bioinformat‐
ics Data Skills is my version of the book I was seeking. This book is targeted toward
readers who are unsure how to bridge the giant gap between knowing a scripting lan‐
guage and practicing bioinformatics to answer scientific questions in a robust and
reproducible way. To bridge this gap, one must learn data skills—an approach that
uses a core set of tools to manipulate and explore any data you’ll encounter during a
bioinformatics project.

Data skills are the best way to learn bioinformatics because these skills utilize time-
tested, open source tools that continue to be the best way to manipulate and explore
changing data. This approach has stood the test of time: the advent of high-
throughput sequencing rapidly changed the field of bioinformatics, yet skilled bioin‐
formaticians adapted to this new data using these same tools and skills. Next-
generation data was, after all, just data (different data, and more of it), and master
bioinformaticians had the essential skills to solve problems by applying their tools to
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this new data. Bioinformatics Data Skills is written to provide you with training in
these core tools and help you develop these same skills.

The Approach of This Book
Many biologists starting out in bioinformatics tend to equate “learning bioinformat‐
ics” with “learning how to run bioinformatics software.” This is an unfortunate and
misinformed idea of what bioinformaticians actually do. This is analogous to think‐
ing “learning molecular biology” is just “learning pipetting.” Other than a few simple
examples used to generate data in Chapter 11, this book doesn’t cover running bioin‐
formatics software like aligners, assemblers, or variant callers. Running bioinformat‐
ics software isn’t all that difficult, doesn’t take much skill, and it doesn’t embody any
of the significant challenges of bioinformatics. I don’t teach how to run these types of
bioinformatics applications in Bioinformatics Data Skills for the following reasons:

• It’s easy enough to figure out on your own
• The material would go rapidly out of date as new versions of software or entirely

new programs are used in bioinformatics
• The original manuals for this software will always be the best, most up-to-date

resource on how to run a program

Instead, the approach of this book is to focus on the skills bioinformaticians use to
explore and extract meaning from complex, large bioinformatics datasets. Exploring
and extracting information from these datasets is the fun part of bioinformatics
research. The goal of Bioinformatics Data Skills is to teach you the computational
tools and data skills you need to explore these large datasets as you please. These data
skills give you freedom; you’ll be able to look at any bioinformatics data—in any for‐
mat, and files of any size—and begin exploring data to extract biological meaning.

Throughout Bioinformatics Data Skills, I emphasize working in a robust and reprodu‐
cible manner. I believe these two qualities—reproducibility and robustness—are too
often overlooked in modern computational work. By robust, I mean that your work is
resilient against silent errors, confounders, software bugs, and messy or noisy data. In
contrast, a fragile approach is one that does not decrease the odds of some type of
error adversely affecting your results. By reproducible, I mean that your work can be
repeated by other researchers and they can arrive at the same results. For this to be
the case, your work must be well documented, and your methods, code, and data all
need to be available so that other researchers have the materials to reproduce every‐
thing. Reproducibility also relies on your work being robust—if a workflow run on a
different machine yields a different outcome, it is neither robust nor fully reproduci‐
ble. I introduce these concepts in more depth in Chapter 2, and these are themes that
reappear throughout the book.

xiv | Preface

Steven Roberts




Why This Book Focuses on Sequencing Data
Bioinformatics is a broad discipline, and spans subfields like proteomics, metabolo‐
mics, structure bioinformatics, comparative genomics, machine learning, and image
processing. Bioinformatics Data Skills focuses primarily on handling sequencing data
for a few reasons.

First, sequencing data is abundant. Currently, no other “omics” data is as abundant as
high-throughput sequencing data. Sequencing data has broad applications across
biology: variant detection and genotyping, transcriptome sequencing for gene expres‐
sion studies, protein-DNA interaction assays like ChIP-seq, and bisulfite sequencing
for methylation studies just to name a few examples. The ways in which sequencing
data can be used to answer biological questions will only continue to increase.

Second, sequencing data is terrific for honing your data skills. Even if your goal is to
analyze other types of data in the future, sequencing data serves as great example data
to learn with. Developing the text-processing skills necessary to work with sequenc‐
ing data will be applicable to working with many other data types.

Third, other subfields of bioinformatics are much more domain specific. The wide
availability and declining costs of sequencing have allowed scientists from all disci‐
plines to use genomics data to answer questions in their systems. In contrast, bioin‐
formatics subdisciplines like proteomics or high-throughput image processing are
much more specialized and less widespread. Still, if you’re interested in these fields,
Bioinformatics Data Skills will teach you useful computational and data skills that will
be helpful in your research.

Audience
In my experience teaching bioinformatics to friends, colleagues, and students of an
intensive week-long course taught at UC Davis, most people wishing to learn bioin‐
formatics are either biologists, or computer scientists/programmers. Biologists wish
to develop the computational skills necessary to analyze their own data, while the
programmers and computer scientists wish to apply their computational skills to bio‐
logical problems. Although these two groups differ considerably in biological knowl‐
edge and computational experience, Bioinformatics Data Skills covers material that
should be helpful to both.

If you’re a biologist, Bioinformatics Data Skills will teach you the core data skills you
need to work with bioinformatics data. It’s important to note that Bioinformatics Data
Skills is not a how-to bioinformatics book; such a book on bioinformatics would
quickly go out of date or be too narrow in focus to help the majority of biologists. You
will need to supplement this book with knowledge of your specific research and sys‐
tem, as well as the modern statistical and bioinformatics methods that your subfield
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uses. For example, if your project involves aligning sequencing reads to a reference
genome, this book won’t tell you the newest and best alignment software for your
particular system. But regardless of which aligner you use, you will need to have a
thorough understanding of alignment formats and how to manipulate alignment data
—a topic covered in Chapter 11. Throughout this book, these general computational
and data skills are meant to be a solid, widely applicable foundation on which the
majority of biologists can build.

If you’re a computer scientist or programmer, you are likely already familiar with
some of the computational tools I teach in this book. While the material presented in
Bioinformatics Data Skills may overlap knowledge you already have, you will still
learn about the specific formats, tools, and approaches bioinformaticians use in their
work. Also, working through the examples in this book will give you good practice in
applying your computational skills to genomics data.

The Difficulty Level of Bioinformatics Data Skills
Bioinformatics Data Skills is designed to be a thorough—and in parts, dense—book.
When I started writing this book, I decided the greatest misdeed I could do would be
to treat bioinformatics as a subject that’s easier than it truly is. Working as a professio‐
nal bioinformatician, I routinely saw how very subtle issues could crop up and
adversely change the outcome of the analysis had they not been caught. I don’t want
your bioinformatics work to be incorrect because I’ve made a topic artificially simple.
The depth at which I cover topics in Bioinformatics Data Skills is meant to prepare
you to catch similar issues in your own work so your results are robust.

The result is that sections of this book are quite advanced and will be difficult for
some readers. Don’t feel discouraged! Like most of science, this material is hard, and
may take a few reads before it fully sinks in. Throughout the book, I try to indicate
when certain sections are especially advanced so that you can skip over these and
return to them later.

Lastly, I often use technical jargon throughout the book. I don’t like using jargon, but
it’s necessary to communicate technical concepts in computing. Primarily it will help
you search for additional resources and help. It’s much easier to Google successfully
for “left outer join” than “data merge where null records are included in one table.”

Assumptions This Book Makes
Bioinformatics Data Skills is meant to be an intermediate book on bioinformatics. To
make sure everyone starts out on the same foot, the book begins with a few simple
chapters. In Chapter 2, I cover the basics of setting up a bioinformatics project, and in
Chapter 3 I teach some remedial Unix topics meant to ensure that you have a solid
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grasp of Unix (because Unix is a large component in later chapters). Still, as an inter‐
mediate book, I make a few assumptions about you:

You know a scripting language
This is the biggest assumption of the book. Except for a few Python programs
and the R material (R is introduced in Chapter 8), this book doesn’t directly rely
on using lots of scripting. However, in learning a scripting language, you’ve
already encountered many important computing concepts such as working with
a text editor, running and executing programs on the command line, and basic
programming. If you do not know a scripting language, I would recommend
learning Python while reading this book. Books like Bioinformatics Programming
Using Python by Mitchell L. Model (O’Reilly, 2009), Learning Python, 5th Edition,
by Mark Lutz (O’Reilly, 2013), and Python in a Nutshell, 2nd, by Alex Martelli
(O’Reilly, 2006) are great to get started. If you know a scripting language other
than Python (e.g., Perl or Ruby), you’ll be prepared to follow along with most
examples (though you will need to translate some examples to your scripting lan‐
guage of choice).

You know how to use a text editor
It’s essential that you know your way around a text editor (e.g., Emacs, Vim, Text‐
Mate2, or Sublime Text). Using a word processor (e.g., Microsoft Word) will not
work, and I would discourage using text editors such as Notepad or OS X’s Tex‐
tEdit, as they lack syntax highlighting support for common programming lan‐
guages.

You have basic Unix command-line skills
For example, I assume you know the difference between a terminal and a shell,
understand how to enter commands, what command-line options/flags and
arguments are, and how to use the up arrow to retrieve your last entered com‐
mand. You should also have a basic understanding of the Unix file hierarchy
(including concepts like your home directory, relative versus absolute directories,
and root directories). You should also be able to move about and manipulate the
directories and files in Unix with commands like cd, ls, pwd, mv, rm, rmdir, and
mkdir. Finally, you should have a basic grasp of Unix file ownership and permis‐
sions, and changing these with chown and chmod. If these concepts are unclear, I
would recommend you play around in the Unix command line first (carefully!)
and consult a good beginner-level book such as Practical Computing for Biologists
by Steven Haddock and Casey Dunn (Sinauer, 2010) or UNIX and Perl to the Res‐
cue by Keith Bradnam and Ian Korf (Cambridge University Press, 2012).

You have a basic understanding of biology
Bioinformatics Data Skills is a BYOB book—bring your own biology. The examples
don’t require a lot of background in biology beyond what DNA, RNA, proteins,
and genes are, and the central dogma of molecular biology. You should also be
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familiar with some very basic genetics and genomic concepts (e.g., single nucleo‐
tide polymorphisms, genotypes, GC content, etc.). All biological examples in the
book are designed to be quite simple; if you’re unfamiliar with any topic, you
should be able to quickly skim a Wikipedia article and proceed with the example.

You have a basic understanding of regular expressions
Occasionally, I’ll make use of regular expressions in this book. In most cases, I try
to quickly step through the basics of how a regular expression works so that you
can get the general idea. If you’ve encountered regular expressions while learning
a scripting language, you’re ready to go. If not, I recommend you learn the basics
—not because regular expressions are used heavily throughout the book, but
because mastering regular expressions is an important skill in bioinformatics.
Introducing Regular Expressions by Michael Fitzgerald (O’Reilly) is a great intro‐
duction. Nowadays, writing, testing, and debugging regular expressions is easier
than ever thanks to online tools like http://regex101.com and http://www.debug‐
gex.com. I recommend using these tools in your own work and when stepping
through my regular expression examples.

You know how to get help and read documentation
Throughout this book, I try to minimize teaching information that can be found
in manual pages, help documentation, or online. This is for three reasons:

• I want to save space and focus on presenting material in a way you can’t find
elsewhere

• Manual pages and documentation will always be the best resource for this
information

• The ability to quickly find answers in documentation is one of the most
important skills you can develop when learning computing

This last point is especially important; you don’t need to remember all arguments of a
command or R function—you just need to know where to find this information. Pro‐
grammers consult documentation constantly in their work, which is why documenta‐
tion tools like man (in Unix) and help() (in R) exist.

You can manage your computer system (or have a system administrator)
This book does not teach you system administration skills like setting up a bioin‐
formatics server or cluster, managing user accounts, network security, managing
disks and disk space, RAID configurations, data backup, and high-performance
computing concepts. There simply isn’t the space to adequately cover these
important topics. However, these are all very, very important—if you don’t have a
system administrator and need to fill that role for your lab or research group, it’s
essential for you to master these skills, too. Frankly, system administration skills
take years to master and good sysadmins have incredible patience and experience
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in handling issues that would make most scientists go insane. If you can employ a
full-time system administrator shared across labs or groups or utilize a university
cluster with a sysadmin, I would do this. Lastly, this shouldn’t need to be said, but
just in case: constantly back up your data and work. It’s easy when learning Unix
to execute a command that destroys files—your best protection from losing
everything is continual backups.

Supplementary Material on GitHub
The supplementary material needed for this book’s examples is available in the Git‐
Hub repository. You can download material from this repository as you need it (the
repository is organized by chapter), or you can download everything using the
Download Zip link. Once you learn Git in Chapter 5, I would recommend cloning
the repository so that you can restore any example files should you accidentally over‐
write them.

Try navigating to this repository now and poking around so you’re familiar with the
layout. Look in the Preface’s directory and you’ll find the README.md file, which
includes additional information about many of the topics I’ve discussed. In addition
to the supplementary files needed for all examples in the book, this repository con‐
tains:

• Documentation on how all supplementary files were produced or how they were
acquired. In some cases, I’ve used makefiles or scripts (both of these topics are
covered in Chapter 12) to create example data, and all of these resources are
available in each chapter’s GitHub directory. I’ve included these materials not
only for reproducible purposes, but also to serve as additional learning material.

• Additional information readers may find interesting for each chapter. This infor‐
mation is in each chapter’s README.md file. I’ve also included other resources
like lists of recommended books for further learning.

• Errata, and any necessary updates if material becomes outdated for some reason.

I chose to host the supplementary files for Bioinformatics Data Skills on GitHub so
that I could keep everything up to date and address any issues readers may have. Feel
free to create a new issue on GitHub should you find any problem with the book or
its supplementary material.

Computing Resources and Setup
I’ve written this entire book on my laptop, a 15-inch MacBook Pro with 16 GB of
RAM. Although this is a powerful laptop, it is much smaller than the servers common
in bioinformatics computing. All examples are designed and tested to run a machine
this size. Nearly every example should run on a machine with 8 GB of memory.
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All examples in this book work on Mac OS X and Linux—other operating systems are
not supported (mostly because modern bioinformatics relies on Unix-based operat‐
ing systems). All software required throughout the book is freely available and is
easily installable; I provide some basic instructions in each section as software instal‐
lation is needed. In general, you should use your operating system’s package manage‐
ment system (e.g., apt-get on Ubuntu/Debian). If you’re using a Mac, I highly
recommend Homebrew, a terrific package manager for OS X that allows you to easily
install software from the command line. You can find detailed instructions on Home‐
brew’s website, Most important, Homebrew maintains a collection of scientific soft‐
ware packages called homebrew-science, including the bioinformatics software we
use throughout this book. Follow the directions in homebrew-science’s README.md
to learn how to install these scientific programs.

Organization of This Book
This book is composed of three parts: Part I, containing one chapter on ideology;
Part II, which covers the basics of getting started with a bioinformatics project; and
Part III, which covers bioinformatics data skills. Although chapters were written to be
read sequentially, if you’re comfortable with Unix and R, you may find that you can
skip around without problems.

In Chapter 1, I introduce why learning bioinformatics by developing data skills is the
best approach. I also introduce the ideology of this book, and describe reproducible
and robust bioinformatics and some recommendations to apply in your own work.

Part II of Bioinformatics Data Skills introduces the basic skills needed to start a bioin‐
formatics project. First, we’ll look at how to set up and manage a project directory in
Chapter 2. This may seem like trivial topic, but complex bioinformatics projects
demand we think about project management. In the frenzy of research, there will be
files everywhere. Starting out with a carefully organized project can prevent a lot of
hassle in the future. We’ll also learn about documentation with Markdown, a useful
format for plain-text project documentation.

In Chapter 3, we explore intermediate Unix in bioinformatics. This is to make sure
that you have a solid grasp of essential concepts (e.g., pipes, redirection, standard
input and output, etc.). Understanding these prerequisite topics will allow you to
focus on analyzing data in later chapters, not struggling to understand Unix basics.

Most bioinformatics tasks require more computing power than we have on our per‐
sonal workstations, meaning we have to work with remote servers and clusters.
Chapter 4 covers some tips and tricks to increase your productivity when working
with remote machines.

In Chapter 5, we learn Git, which is a version control system that makes managing
versions of projects easy. Bioinformatics projects are filled with lots of code and data
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that should be managed using the same modern tools as collaboratively developed
software. Git is a large, powerful piece of software, so this is a long chapter. However,
this chapter was written so that you could skip the section on branching and return to
it later.

Chapter 6 looks at data in bioinformatics projects: how to download large amounts of
data, use data compression, validate data integrity, and reproducibly download data
for a project.

In Part III, our attention turns to developing the essential data skills all bioinformati‐
cians need to tackle problems in their daily work. Chapter 7 focuses on Unix data
tools, which allow you to quickly write powerful stream-processing Unix pipelines to
process bioinformatics data. This approach is a cornerstone of modern bioinformat‐
ics, and is an absolutely essential data skill to have.

In Chapter 8, I introduce the R language through learning exploratory data analysis
techniques. This chapter prepares you to use R to explore your own data using tech‐
niques like visualization and data summaries.

Genomic range data is ubiquitous in bioinformatics, so we look at range data and
range operations in Chapter 9. We’ll first step through the different ways to represent
genomic ranges, and work through range operations using Bioconductor’s IRanges
package to bolster our range-thinking intuition. Then, we’ll work with genomic data
using GenomicRanges. Finally, we’ll look at the BEDTools Suite of tools for working
with range data on the command line.

In Chapter 10, we learn about sequence data, a mainstay of bioinformatics data. We’ll
look at the FASTA and FASTQ formats (and their limitations) and work through
trimming low-quality bases off of sequences and seeing how this affects the distribu‐
tion of quality scores. We’ll also look at FASTA and FASTQ parsing.

Chapter 11 focuses on the alignment data formats SAM and BAM. Understanding
and manipulating files in these formats is an integral bioinformatics skill in working
with high-throughput sequencing data. We’ll see how to use Samtools to manipulate
these files and visualize the data, and step through a detailed example that illustrates
some of the intricacies of variant calling. Finally, we’ll learn how to use Pysam to
parse SAM/BAM files so you can write your own scripts that work with these special‐
ized data formats.

Most daily bioinformatics work involves writing data-processing scripts and pipe‐
lines. In Chapter 12, we look at how to write such data-processing pipelines in a
robust and reproducible way. We’ll look specifically at Bash scripting, manipulating
files using Unix powertools like find and xargs, and finally take a quick look at how
you can write pipelines using Make and makefiles.

Preface | xxi



In bioinformatics, our data is often too large to fit in our computer’s memory. In
Chapter 7, we saw how streaming with Unix pipes can help to solve this problem, but
Chapter 13 looks at a different method: out-of-memory approaches. First, we’ll look
at Tabix, a fast way to access information in indexed tab-delimited files. Then, we’ll
look at the basics of SQL through analyzing some GWAS data using SQLite.

Finally, in Chapter 14, I discuss where you should head next to further develop your
bioinformatics skills.

Code Conventions
Most bioinformatics data has one thing in common: it’s large. In code examples, I
often need to truncate the output to have it fit into the width of a page. To indicate
that output has been truncated, I will always use [...] in the output. Also, in code
examples I often use variable names that are short to save space. I encourage you to
use more descriptive names than those I’ve used throughout this book in your own
personal work.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.
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This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Bioinformatics Data Skills by Vince
Buffalo (O’Reilly). Copyright 2015 Vince Buffalo, 978-1-449-36737-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.
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Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/Bio-DS.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia
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PART I

Ideology: Data Skills for Robust and
Reproducible Bioinformatics





CHAPTER 1

How to Learn Bioinformatics

Right now, in labs across the world, machines are sequencing the genomes of the life
on earth. Even with rapidly decreasing costs and huge technological advancements in
genome sequencing, we’re only seeing a glimpse of the biological information con‐
tained in every cell, tissue, organism, and ecosystem. However, the smidgen of total
biological information we’re gathering amounts to mountains of data biologists need
to work with. At no other point in human history has our ability to understand life’s
complexities been so dependent on our skills to work with and analyze data.

This book is about learning bioinformatics through developing data skills. In this
chapter, we’ll see what data skills are, and why learning data skills is the best way to
learn bioinformatics. We’ll also look at what robust and reproducible research entails.

Why Bioinformatics? Biology’s Growing Data
Bioinformaticians are concerned with deriving biological understanding from large
amounts of data with specialized skills and tools. Early in biology’s history, the data‐
sets were small and manageable. Most biologists could analyze their own data after
taking a statistics course, using Microsoft Excel on a personal desktop computer.
However, this is all rapidly changing. Large sequencing datasets are widespread, and
will only become more common in the future. Analyzing this data takes different
tools, new skills, and many computers with large amounts of memory, processing
power, and disk space.

In a relatively short period of time, sequencing costs dropped drastically, allowing
researchers to utilize sequencing data to help answer important biological questions.
Early sequencing was low-throughput and costly. Whole genome sequencing efforts
were expensive (the human genome cost around $2.7 billion) and only possible
through large collaborative efforts. Since the release of the human genome, sequenc‐
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ing costs have decreased exponentially until about 2008, as shown in Figure 1-1. With
the introduction of next-generation sequencing technologies, the cost of sequencing a
megabase of DNA dropped even more rapidly. At this crucial point, a technology that
was only affordable to large collaborative sequencing efforts (or individual research‐
ers with very deep pockets) became affordable to researchers across all of biology.
You’re likely reading this book to learn to work with sequencing data that would have
been much too expensive to generate less than 10 years ago.

Figure 1-1. Drop of sequencing costs (note the y-axis is on a logarithmic scale); the sharp
drop around 2008 was due to the introduction of next-generation sequencing data. (fig‐
ure reproduced and data downloaded from the NIH)

What was the consequence of this drop in sequencing costs due to these new technol‐
ogies? As you may have guessed, lots and lots of data. Biological databases have
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swelled with data after exponential growth. Whereas once small databases shared
between collaborators were sufficient, now petabytes of useful data are sitting on
servers all over the world. Key insights into biological questions are stored not just in
the unanalyzed experimental data sitting on your hard drive, but also spinning
around a disk in a data center thousands of miles away.

The growth of biological databases is as astounding as the drop of sequencing costs.
As an example, consider the Sequence Read Archive (previously known as the Short
Read Archive), a repository of the raw sequencing data from sequencing experiments.
Since 2010, it has experienced remarkable growth; see Figure 1-2.

To put this incredible growth of sequencing data into context, consider Moore’s Law.
Gordon Moore (a cofounder of Intel) observed that the number of transistors in
computer chips doubles roughly every two years. More transistors per chip translates
to faster speeds in computer processors and more random access memory in com‐
puters, which leads to more powerful computers. This extraordinary rate of techno‐
logical improvement—output doubling every two years—is likely the fastest growth
in technology humanity has ever seen. Yet, since 2011, the amount of sequencing data
stored in the Short Read Archive has outpaced even this incredible growth, having
doubled every year.

To make matters even more complicated, new tools for analyzing biological data are
continually being created, and their underlying algorithms are advancing. A 2012
review listed over 70 short-read mappers (Fonseca et al., 2012; see http://bit.ly/hts-
mappers). Likewise, our approach to genome assembly has changed considerably in
the past five years, as methods to assemble long sequences (such as overlap-layout-
consensus algorithms) were abandoned with the emergence of short high-throughput
sequencing reads. Now, advances in sequencing chemistry are leading to longer
sequencing read lengths and new algorithms are replacing others that were just a few
years old.

Unfortunately, this abundance and rapid development of bioinformatics tools has
serious downsides. Often, bioinformatics tools are not adequately benchmarked, or if
they are, they are only benchmarked in one organism. This makes it difficult for new
biologists to find and choose the best tool to analyze their data. To make matters
more difficult, some bioinformatics programs are not actively developed so that they
lose relevance or carry bugs that could negatively affect results. All of this makes
choosing an appropriate bioinformatics program in your own research difficult. More
importantly, it’s imperative to critically assess the output of bioinformatics programs
run on your own data. We’ll see examples of how data skills can help us assess pro‐
gram output throughout Part II.
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Figure 1-2. Exponential growth of the Short Read Archive; open access bases are SRA
submissions available to the public (figure reproduced and data downloaded from the
NIH)

Learning Data Skills to Learn Bioinformatics
With the nature of biological data changing so rapidly, how are you supposed to learn
bioinformatics? With all of the tools out there and more continually being created,
how is a biologist supposed to know whether a program will work appropriately on
her organism’s data?

The solution is to approach bioinformatics as a bioinformatician does: try stuff, and
assess the results. In this way, bioinformatics is just about having the skills to experi‐
ment with data using a computer and understanding your results. The experimental
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part is easy; this comes naturally to most scientists. The limiting factor for most biol‐
ogists is having the data skills to freely experiment and work with large data on a
computer. The goal of this book is to teach you the bioinformatics data skills neces‐
sary to allow you to experiment with data on a computer as easily as you would run
experiments in the lab.

Unfortunately, many of the biologist’s common computational tools can’t scale to the
size and complexity of modern biological data. Complex data formats, interfacing
numerous programs, and assessing software and data make large bioinformatics data‐
sets difficult to work with. Learning core bioinformatics data skills will give you the
foundation to learn, apply, and assess any bioinformatics program or analysis
method. In 10 years, bioinformaticians may only be using a few of the bioinformatics
software programs around today. But we most certainly will be using data skills and
experimentation to assess data and methods of the future.

So what are data skills? They are the set of computational skills that give you the abil‐
ity to quickly improvise a way of looking at complex datasets, using a well-known set
of tools. A good analogy is what jazz musicians refer to as having “chops.” A jazz
musician with good chops can walk into a nightclub, hear a familiar standard song
being played, recognize the chord changes, and begin playing musical ideas over
these chords. Likewise, a bioinformatician with good data skills can receive a huge
sequencing dataset and immediately start using a set of tools to see what story the
data tells.

Like a jazz musician that’s mastered his instrument, a bioinformatician with excellent
data chops masters a set of tools. Learning one’s tools is a necessary, but not sufficient
step in developing data skills (similarly, learning an instrument is a necessary, but not
sufficient step to playing musical ideas). Throughout the book, we will develop our
data skills, from setting up a bioinformatics project and data in Part II, to learning
both small and big tools for data analysis in Part III. However, this book can only set
you on the right path; real mastery requires learning through repeatedly applying
skills to real problems.

New Challenges for Reproducible and Robust Research
Biology’s increasing use of large sequencing datasets is changing more than the tools
and skills we need: it’s also changing how reproducible and robust our scientific find‐
ings are. As we utilize new tools and skills to analyze genomics data, it’s necessary to
ensure that our approaches are still as reproducible and robust as any other experi‐
mental approaches. Unfortunately, the size of our data and the complexity of our
analysis workflows make these goal especially difficult in genomics.

The requisite of reproducibility is that we share our data and methods. In the pre-
genomics era, this was much easier. Papers could include detailed method summaries
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and entire datasets—exactly as Kreitman’s 1986 paper did with a 4,713bp Adh gene
flanking sequence (it was embedded in the middle of the paper). Now papers have
long supplementary methods, code, and data. Sharing data is no longer trivial either,
as sequencing projects can include terabytes of accompanying data. Reference
genomes and annotation datasets used in analyses are constantly updated, which can
make reproducibility tricky. Links to supplemental materials, methods, and data on
journal websites break, materials on faculty websites disappear when faculty members
move or update their sites, and software projects become stale when developers leave
and don’t update code. Throughout this book, we’ll look at what can be done to
improve reproducibility of your project alongside doing the actual analysis, as I
believe these are necessarily complementary activities.

Additionally, the complexity of bioinformatics analyses can lead to findings being
susceptible to errors and technical confounding. Even fairly routine genomics
projects can use dozens of different programs, complicated input parameter combi‐
nations, and many sample and annotation datasets; in addition, work may be spread
across servers and workstations. All of these computational data-processing steps cre‐
ate results used in higher-level analyses where we draw our biological conclusions.
The end result is that research findings may rest on a rickety scaffold of numerous
processing steps. To make matters worse, bioinformatics workflows and analyses are
usually only run once to produce results for a publication, and then never run or tes‐
ted again. These analyses may rely on very specific versions of all software used,
which can make it difficult to reproduce on a different system. In learning bioinfor‐
matics data skills, it’s necessary to concurrently learn reproducibility and robust best
practices. Let’s take a look at both reproducibility and robustness in turn.

Reproducible Research
Reproducing scientific findings is the only way to confirm they’re accurate and not
the artifact of a single experiment or analysis. Karl Popper, in The Logic of Scientific
Discovery, famously said: “non-reproducible single occurrences are of no significance
to science” (1959). Independent replication of experiments and analysis is the gold
standard by which we assess the validity of scientific findings. Unfortunately, most
sequencing experiments are too expensive to reproduce from the test tube up, so we
increasingly rely on in silico reproducibility only. The complexity of bioinformatics
projects usually discourages replication, so it’s our job as good scientists to facilitate
and encourage in silico reproducibility by making it easier. As we’ll see later, adopting
good reproducibility practices can also make your life easier as a researcher.

So what is a reproducible bioinformatics project? At the very least, it’s sharing your
project’s code and data. Most journals and funding agencies require you to share your
project’s data, and resources like NCBI’s Sequence Read Archive exist for this pur‐
pose. Now, editors and reviewers will often suggest (or in some cases require) that a
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project’s code also be shared, especially if the code is a significant part of a study’s
results. However, there’s a lot more we can and should do to ensure our projects’
reproducibility. By having to reproduce bioinformatics analyses to verify results, I’ve
learned from these sleuthing exercises that the devil is in the details.

For example, colleagues and I once had a difficult time reproducing an RNA-seq dif‐
ferential expression analysis we had done ourselves. We had preliminary results from
an analysis on a subset of samples done a few weeks earlier, but to our surprised, our
current analysis was producing a drastically smaller set of differentially expressed
genes. After rechecking how our past results were created, comparing data versions
and file creation times, and looking at differences in the analysis code, we were still
stumped—nothing could explain the difference between the results. Finally, we
checked the version of our R package and realized that it had been updated on our
server. We then reinstalled the old version to confirm this was the source of the dif‐
ference, and indeed it was. The lesson here is that often replication, by either you in
the future or someone else, relies on not just data and code but details like software
versions and when data was downloaded and what version it is. This metadata, or
data about data, is a crucial detail in ensuring reproducibility.

Another motivating case study in bioinformatics reproducibility is the so-called
“Duke Saga.” Dr. Anil Potti and other researchers at Duke University created a
method that used expression data from high-throughput microarrays to detect and
predict response to different chemotherapy drugs. These methods were the beginning
of a new level of personalized medicine, and were being used to determine the che‐
motherapy treatments for patients in clinical trials. However, two biostatisticians,
Keith Baggerly and Kevin Coombes, found serious flaws in the analysis of this study
when trying to reproduce it (Baggerly and Coombes, 2009). Many of these required
what Baggerly and Coombes called “forensic bioinformatics”—sleuthing to try to
reproduce a study’s findings when there isn’t sufficient documentation to retrace each
step. In total, Baggerly and Coombes found multiple serious errors, including:

• An off-by-one error, as an entire list of gene expression values was shifted down
in relation to their correct identifier

• Two outlier genes of biological interest were not on the microarrays used
• There was confounding of treatment with the day the microarray was run
• Sample group names were mixed up

Baggerly and Coombes’s work is best summarized by their open access article,
“Deriving Chemosensitivity from Cell Lines: Forensic Bioinformatics and Reproduci‐
ble Research in High-Throughput Biology” (see this chapter’s GitHub directory for
this article and more information about the Duke Saga). The lesson of Baggerly and
Coombes’s work is that “common errors are simple, and simple errors are common”
and poor documentation can lead to both errors and irreproducibility. Documenta‐
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tion of methods, data versions, and code would have not only facilitated reproducibil‐
ity, but it likely would have prevented a few of these serious errors in their study.
Striving for maximal reproducibility in your project often will make your work more
robust, too.

Robust Research and the Golden Rule of Bioinformatics
Since the computer is a sharp enough tool to be really useful, you can cut yourself
on it.

— The Technical Skills of Statistics
(1964) John Tukey

In wetlab biology, when experiments fail, it can be very apparent, but this is not
always true in computing. Electrophoresis gels that look like Rorschach blots rather
than tidy bands clearly indicate something went wrong. In scientific computing,
errors can be silent; that is, code and programs may produce output (rather than stop
with an error), but this output may be incorrect. This is a very important notion to
put in the back of your head as you learn bioinformatics.

Additionally, it’s common in scientific computing for code to be run only once, as
researchers get their desired output and move on to the next step. In contrast, con‐
sider a video game: it’s run on thousands (if not millions) of different machines, and
is, in effect, constantly being tested by many users. If a bug that deletes a user’s score
occurs, it’s exceptionally likely to be quickly noticed and reported by users. Unfortu‐
nately, the same is not true for most bioinformatics projects.

Genomics data also creates its own challenges for robust research. First, most bioin‐
formatics analyses produce intermediate output that is too large and high dimen‐
sional to inspect or easily visualize. Most analyses also involve multiple steps, so even
if it were feasible to inspect an entire intermediate dataset for problems, it would be
difficult to do this for each step (thus, we usually resort to inspecting samples of the
data, or looking at data summary statistics). Second, in wetlab biology, it’s usually eas‐
ier to form prior expectations about what the outcome of an experiment might be.
For example, a researcher may expect to see a certain mRNA expressed in some tis‐
sues in lower abundances than a particular housekeeping gene. With these prior
expectations, an aberrant result can be attributed to a failed assay rather than biology.
In contrast, the high dimensionality of most genomics results makes it nearly impos‐
sible to form strong prior expectations. Forming specific prior expectations on the
expression of each of tens of thousands of genes assayed by an RNA-seq experiment
is impractical. Unfortunately, without prior expectations, it can be quite difficult to
distinguish good results from bad results.

Bioinformaticians also have to be wary that bioinformatics programs, even the large
community-vetted tools like aligners and assemblers, may not work well on their par‐
ticular organism. Organisms are all wonderfully, strangely different, and their
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genomes are too. Many bioinformatics tools are tested on a few model diploid organ‐
isms like human, and less well-tested on the complex genomes from the other parts of
the tree of life. Do we really expect that out-of-the-box parameters from a short-read
aligner tuned to human data will work on a polyploid genome four times its size?
Probably not.

The easy way to ensure everything is working properly is to adopt a cautious attitude,
and check everything between computational steps. Furthermore, you should
approach biological data (either from an experiment or from a database) with a
healthy skepticism that there might be something wrong with it. In the computing
community, this is related to the concept of “garbage in, garbage out”—an analysis is
only as good as the data going in. In teaching bioinformatics, I often share this idea as
the Golden Rule of Bioinformatics:

Never ever trust your tools (or data)

This isn’t to make you paranoid that none of bioinformatics can be trusted, or that
you must test every available program and parameter on your data. Rather, this is to
train you to adopt the same cautious attitude software engineers and bioinformati‐
cians have learned the hard way. Simply checking input data and intermediate results,
running quick sanity checks, maintaining proper controls, and testing programs is a
great start. This also saves you from encountering bugs later on, when fixing them
means redoing large amounts of work. You naturally test whether lab techniques are
working and give consistent results; adopting a robust approach to bioinformatics is
merely doing the same in bioinformatics analyses.

Adopting Robust and Reproducible Practices Will Make
Your Life Easier, Too
Working in sciences has taught many of us some facts of life the hard way. These are
like Murphy’s law: anything that can go wrong, will. Bioinformatics has its own set of
laws like this. Having worked in the field and discussed war stories with other bioin‐
formaticians, I can practically guarantee the following will happen:

• You will almost certainly have to rerun an analysis more than once, possibly with
new or changed data. Frequently this happens because you’ll find a bug, a collab‐
orator will add or update a file, or you’ll want to try something new upstream of a
step. In all cases, downstream analyses depend on these earlier results, meaning
all steps of an analysis need to be rerun.

• In the future, you (or your collaborators, or advisor) will almost certainly need to
revisit part of a project and it will look completely cryptic. Your only defense is to
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document each step. Without writing down key facts (e.g., where you downloa‐
ded data from, when you downloaded it, and what steps you ran), you’ll certainly
forget them. Documenting your computational work is equivalent to keeping a
detailed lab notebook—an absolutely crucial part of science.

Luckily, adopting practices that will make your project reproducible also helps solve
these problems. In this sense, good practices in bioinformatics (and scientific com‐
puting in general) both make life easier and lead to reproducible projects. The reason
for this is simple: if each step of your project is designed to be rerun (possibly with
different data) and is well documented, it’s already well on its way to being reproduci‐
ble.

For example, if we automate tasks with a script and keep track of all input data and
software versions, analyses can be rerun with a keystroke. Reproducing all steps in
this script is much easier, as a well-written script naturally documents a workflow
(we’ll discuss this more in Chapter 12). This approach also saves you time: if you
receive new or updated data, all you need to do is rerun the script with the new input
file. This isn’t hard to do in practice; scripts aren’t difficult to write and computers
excel at doing repetitive tasks enumerated in a script.

Recommendations for Robust Research
Robust research is largely about adopting a set of practices that stack the odds in your
favor that a silent error won’t confound your results. As mentioned above, most of
these practices are also beneficial for reasons other than preventing the dreaded silent
error—which is all the more reason to include apply the recommendations below in
your daily bioinformatics work.

Pay Attention to Experimental Design
Robust research starts with a good experimental design. Unfortunately, no amount of
brilliant analysis can save an experiment with a bad design. To quote a brilliant statis‐
tician and geneticist:

To consult the statistician after an experiment is finished is often merely to ask him to
conduct a post mortem examination. He can perhaps say what the experiment died of.

—R.A. Fisher
This quote hits close to the heart; I’ve seen projects land on my desk ready for analy‐
sis, after thousands of sequencing dollars were spent, yet they’re completely dead on
arrival. Good experimental design doesn’t have to be difficult, but as it’s fundamen‐
tally a statistical topic it’s outside of the scope of this book. I mention this topic
because unfortunately nothing else in this book can save an experiment with a bad
design. It’s especially necessary to think about experimental design in high-
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throughput studies, as technical “batch effects” can significantly confound studies
(for a perspective on this, see Leek et al., 2010).

Most introductory statistics courses and books cover basic topics in experimental
design. Quinn and Keough’s Experimental Design and Data Analysis for Biologists
(Cambridge University Press, 2002) is an excellent book on this topic. Chapter 18 of
O’Reilly’s Statistics in a Nutshell, 2nd Edition, by Sarah Boslaugh covers the basics
well, too. Note, though, that experimental design in a genomics experiment is a dif‐
ferent beast, and is actively researched and improved. The best way to ensure your
multithousand dollar experiment is going to reach its potential is to see what the cur‐
rent best design practices are for your particular project. It’s also a good idea to con‐
sult your local friendly statistician about any experimental design questions or
concerns you may have in planning an experiment.

Write Code for Humans, Write Data for Computers
Debugging is twice as hard as writing the code in the first place. Therefore, if you write
the code as cleverly as possible, you are, by definition, not smart enough to debug it.

—Brian Kernighan
Bioinformatics projects can involve mountains of code, and one of our best defenses
against bugs is to write code for humans, not for computers (a point made in the
excellent article from Wilson et al., 2012). Humans are the ones doing the debugging,
so writing simple, clear code makes debugging easier.

Code should be readable, broken down into small contained components (modular),
and reusable (so you’re not rewriting code to do the same tasks over and over again).
These practices are crucial in the software world, and should be applied in your bio‐
informatics work as well. Commenting code and adopting a style guide are simple
ways to increase code readability. Google has public style guides for many languages,
which serve as excellent templates. Why is code readability so important? First, reada‐
ble code makes projects more reproducible, as others can more easily understand
what scripts do and how they work. Second, it’s much easier to find and correct soft‐
ware bugs in readable, well-commented code than messy code. Third, revisiting code
in the future is always easier when the code is well commented and clearly written.
Writing modular and reusable code just takes practice—we’ll see some examples of
this throughout the book.

In contrast to code, data should be formatted in a way that facilitates computer read‐
ability. All too often, we as humans record data in a way that maximizes its readability
to us, but takes a considerable amount of cleaning and tidying before it can be pro‐
cessed by a computer. The more data (and metadata) that is computer readable, the
more we can leverage our computers to work with this data.
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Let Your Computer Do the Work For You
Humans doing rote activities tend to make many mistakes. One of the easiest ways to
make your work more robust is to have your computer do as much of this rote work
as possible. This approach of automating tasks is more robust because it decreases the
odds you’ll make a trivial mistake such as accidentally omitting a file or naming out‐
put incorrectly.

For example, running a program on 20 different files by individually typing out (or
copy and pasting) each command is fragile—the odds of making a careless mistake
increase with each file you process. In bioinformatics work, it’s good to develop the
habit of letting your computer do this sort of repetitive work for you. Instead of past‐
ing the same command 20 times and just changing the input and output files, write a
script that does this for you. Not only is this easier and less likely to lead to mistakes,
but it also increases reproducibility, as your script serves as a reference of what you
did to each of those files.

Leveraging the benefits of automating tasks requires a bit of thought in organizing up
your projects, data, and code. Simple habits like naming data files in a consistent way
that a computer (and not just humans) can understand can greatly facilitate automat‐
ing tasks and make work much easier. We’ll see examples of this in Chapter 2.

Make Assertions and Be Loud, in Code and in Your Methods
When we write code, we tend to have implicit assumptions about our data. For exam‐
ple, we expect that there are only three DNA strands options (forward, reverse, and
unknown), that the start position of a gene is less than the end position, and that we
can’t have negative positions. These implicit assumptions we make about data impact
how we write code; for example, we may not think to handle a certain situation in
code if we assume it won’t occur. Unfortunately, this can lead to the dreaded silent
error: our code or programs receive values outside our expected values, behave
improperly, and yet still return output without warning. Our best approach to pre‐
vent this type of error is to explicitly state and test our assumptions about data in our
code using assert statements like Python’s assert() and R’s stopifnot().

Nearly every programming language has its own version of the assert function. These
assert functions operate in a similar way: if the statement evaluated to false, the assert
function will stop the program and raise an error. They may be simple, but these
assert functions are indispensable in robust research. Early in my career, a mentor
motivated me to adopt the habit of using asserts quite liberally—even when it seems
like there is absolutely no way the statement could ever be false—and yet I’m continu‐
ally surprised at how many times these have caught a subtle error. In bioinformatics
(and all fields), it’s crucial that we do as much as possible to turn the dreaded silent
error into loud errors.
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Test Code, or Better Yet, Let Code Test Code
Software engineers are a clever bunch, and they take the idea of letting one’s com‐
puter do the work to new levels. One way they do this is having code test other code,
rather than doing it by hand. A common method to test code is called unit testing. In
unit testing, we break down our code into individual modular units (which also has
the side effect of improving readability) and we write additional code that tests this
code. In practice, this means if we have a function called add(), we write an addi‐
tional function (usually in separate file) called test_add(). This test_add() function
would call the add() function with certain input, and test that the output is as
expected. In Python, this may look like:

EPS = 0.00001 # a small number to use when comparing floating-point values

def add(x, y):
    """Add two things together."""
    return x + y

def test_add():
    """Test that the add() function works for a variety of numeric types."""
    assert(add(2, 3) == 5)
    assert(add(-2, 3) == 1)
    assert(add(-1, -1) == -2)
    assert(abs(add(2.4, 0.1) - 2.5) < EPS)

The last line of the test_add() function looks more complicated than the others
because it’s comparing floating-point values. It’s difficult to compare floating-point
values on a computer, as there are representation and roundoff errors. However, it’s a
good reminder that we’re always limited by what our machine can do, and we must
mind these limitations in analysis.

Unit testing is used much less in scientific coding than in the software industry,
despite the fact that scientific code is more likely to contain bugs (because our code is
usually only run once to generate results for a publication, and many errors in scien‐
tific code are silent). I refer to this as the paradox of scientific coding: the bug-prone
nature of scientific coding means we should utilize testing as much or more than the
software industry, but we actually do much less testing (if any). This is regrettable, as
nowadays many scientific conclusions are the result of mountains of code.

While testing code is the best way to find, fix, and prevent software bugs, testing isn’t
cheap. Testing code makes our results robust, but it also takes a considerable amount
of our time. Unfortunately, it would take too much time for researchers to compose
unit tests for every bit of code they write. Science moves quickly, and in the time it
would take to write and perform unit tests, your research could become outdated or
get scooped. A more sensible strategy is to consider three important variables each
time you write a bit of code:
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• How many times is this code called by other code?
• If this code were wrong, how detrimental to the final results would it be?
• How noticeable would an error be if one occurred?

How important it is to test a bit of code is proportional to the first two variables, and
inversely proportional to the third (i.e., if a bug is very noticeable, there’s less reason
to write a test for it). We’ll employ this strategy throughout the book’s examples.

Use Existing Libraries Whenever Possible
There’s a turning point in every budding programmer’s career when they feel com‐
fortable enough writing code and think, “Hey, why would I use a library for this, I
could easily write this myself.” It’s an empowering feeling, but there are good reasons
to use an existing software library instead.

Existing open source libraries have two advantages over libraries you write yourself: a
longer history and a wider audience. Both of these advantages translate to fewer bugs.
Bugs in software are similar to the proverbial problem of finding a needle in a hay‐
stack. If you write your own software library (where a few bugs are bound to be lurk‐
ing), you’re one person looking for a few needles. In contrast, open source software
libraries in essence have had many more individuals looking for a much longer time
for those needles. Consequently, bugs are more likely to be found, reported, and fixed
in these open source libraries than your own home-brewed versions.

A good example of this is a potentially subtle issue that arises when writing a script to
translate nucleotides to proteins. Most biologists with some programming experience
could easily write a script to do this task. But behind these simple programming exer‐
cises lurks hidden complexity you alone may not consider. What if your nucleotide
sequences have Ns in them? Or Ys? Or Ws? Ns, Ys, and Ws may not seem like valid
bases, but these are International Union of Pure and Applied Chemistry (IUPAC)
standard ambiguous nucleotides and are entirely valid in bioinformatics. In many
cases, well-vetted software libraries have already found and fixed these sorts of hid‐
den problems.

Treat Data as Read-Only
Many scientists spend a lot of time using Excel, and without batting an eye will
change the value in a cell and save the results. I strongly discourage modifying data
this way. Instead, a better approach is to treat all data as read-only and only allow pro‐
grams to read data and create new, separate files of results.

Why is treating data as read-only important in bioinformatics? First, modifying data
in place can easily lead to corrupted results. For example, suppose you wrote a script
that directly modifies a file. Midway through processing a large file, your script
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encounters an error and crashes. Because you’ve modified the original file, you can’t
undo the changes and try again (unless you have a backup)! Essentially, this file is
corrupted and can no longer be used.

Second, it’s easy to lose track of how we’ve changed a file when we modify it in place.
Unlike a workflow where each step has an input file and an output file, a file modified
in place doesn’t give us any indication of what we’ve done to it. If we were to lose
track of how we’ve changed a file and don’t have a backup copy of the original data,
our changes are essentially irreproducible.

Treating data as read-only may seem counterintuitive to scientists familiar with work‐
ing extensively in Excel, but it’s essential to robust research (and prevents catastrophe,
and helps reproducibility). The initial difficulty is well worth it; in addition to safe‐
guarding data from corruption and incorrect changes, it also fosters reproducibility.
Additionally, any step of the analysis can easily be redone, as the input data is
unchanged by the program.

Spend Time Developing Frequently Used Scripts into Tools
Throughout your development as a highly skilled bioinformatician, you’ll end up cre‐
ating some scripts that you’ll use over and over again. These may be scripts that
download data from a database, or process a certain type of file, or maybe just gener‐
ate the same pretty graphs. These scripts may be shared with lab members or even
across labs. You should put extra effort and attention into making these high-use or
highly shared scripts as robust as possible. In practice, I think of this process as turn‐
ing one-off scripts into tools.

Tools, in contrast to scripts, are designed to be run over and over again. They are well
documented, have explicit versioning, have understandable command-line argu‐
ments, and are kept in a shared version control repository. These may seem like
minor differences, but robust research is about doing small things that stack the deck
in your favor to prevent mistakes. Scripts that you repeatedly apply to numerous
datasets by definition impact more results, and deserve to be more developed so
they’re more robust and user friendly. This is especially the case with scripts you
share with other researchers who need to be able to consult documentation and apply
your tool safely to their own data. While developing tools is a more labor-intensive
process than writing a one-off script, in the long run it can save time and prevent
headaches.

Let Data Prove That It’s High Quality
When scientists think of analyzing data, they typically think of analyzing experimen‐
tal data to draw biological conclusions. However, to conduct robust bioinformatics
work, we actually need to analyze more than just experimental data. This includes
inspecting and analyzing data about your experiment’s data quality, intermediate out‐
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put files from bioinformatics programs, and possibly simulated test data. Doing so
ensures our data processing is functioning as we expect, and embodies the golden
rule of bioinformatics: don’t trust your tools or data.

It’s important to never assume a dataset is high quality. Rather, data’s quality should be
proved through exploratory data analysis (known as EDA). EDA is not complex or
time consuming, and will make your research much more robust to lurking surprises
in large datasets. We’ll learn more about EDA using R in Chapter 8.

Recommendations for Reproducible Research
Adopting reproducible research practices doesn’t take much extra effort. And like
robust research practices, reproducible methods will ultimately make your life easier
as you yourself may need to reproduce your past work long after you’ve forgotten the
details. Below are some basic recommendations to consider when practicing bioin‐
formatics to make your work reproducible.

Release Your Code and Data
For reproducibility, the absolute minimal requirements are that code and data are
released. Without available code and data, your research is not reproducible (see
Peng, 2001 for a nice discussion of this). We’ll discuss how to share code and data a
bit later in the book.

Document Everything
The first day a scientist steps into a lab, they’re told to keep a lab notebook. Sadly, this
good practice is often abandoned by researchers in computing. Releasing code and
data is the minimal requirement for reproducibility, but extensive documentation is
an important component of reproducibility, too. To fully reproduce a study, each step
of analysis must be described in much more detail than can be accomplished in a
scholarly article. Thus, additional documentation is essential for reproducibility.

A good practice to adopt is to document each of your analysis steps in plain-text
README files. Like a detailed lab notebook, this documentation serves as a valuable
record of your steps, where files are, where they came from, or what they contain.
This documentation can be stored alongside your project’s code and data (we’ll see
more about this in Chapters 2 and 5), which can aid collaborators in figuring out
what you’ve done. Documentation should also include all input parameters for each
program executed, these programs’ versions, and how they were run. Modern soft‐
ware like R’s knitr and iPython Notebooks are powerful tools in documenting
research; I’ve listed some resources to get started with these tools in this chapter’s
README on GitHub.
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Make Figures and Statistics the Results of Scripts
Ensuring that a scientific project is reproducible involves more than just replicability
of the key statistical tests important for findings—supporting elements of a paper
(e.g., figures and tables) should also be reproducible. The best way to ensure these
components are reproducible is to have each image or table be the output of a script
(or scripts).

Writing scripts to produce images and tables may seem like a more time-consuming
process than generating these interactively in Excel or R. However, if you’ve ever had
to regenerate multiple figures by hand after changing an earlier step, you know the
merit of this approach. Scripts that generate tables and images can easily be rerun,
save you time, and lead your research to be more reproducible. Tools like iPython
Notebooks and knitr (mentioned in the previous section) greatly assist in these tasks,
too.

Use Code as Documentation
With complex processing pipelines, often the best documentation is well-
documented code. Because code is sufficient to tell a computer how to execute a pro‐
gram (and which parameters to use), it’s also close to sufficient to tell a human how to
replicate your work (additional information like software version and input data is
also necessary to be fully reproducible). In many cases, it can be easier to write a
script to perform key steps of an analysis than it is to enter commands and then
document them elsewhere. Again, code is a wonderful thing, and using code to docu‐
ment each step of an analysis means it’s easy to rerun all steps of an analysis if neces‐
sary—the script can just simply be rerun.

Continually Improving Your Bioinformatics Data Skills
Keep the basic ideology introduced in this chapter in the back of your head as you
work through the rest of the book. What I’ve introduced here is just enough to get
you started in thinking about some core concepts in robust and reproducible bioin‐
formatics. Many of these topics (e.g., reproducibility and software testing) are still
actively researched at this time, and I encourage the interested reader to explore these
in more depth (I’ve included some resources in this chapter’s README on GitHub).
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PART II

Prerequisites: Essential Skills for
Getting Started with

a Bioinformatics Project





CHAPTER 2

Setting Up and Managing a
Bioinformatics Project

Just as a well-organized laboratory makes a scientist’s life easier, a well-organized and
well-documented project makes a bioinformatician’s life easier. Regardless of the par‐
ticular project you’re working on, your project directory should be laid out in a con‐
sistent and understandable fashion. Clear project organization makes it easier for
both you and collaborators to figure out exactly where and what everything is. Addi‐
tionally, it’s much easier to automate tasks when files are organized and clearly
named. For example, processing 300 gene sequences stored in separate FASTA files
with a script is trivial if these files are organized in a single directory and are consis‐
tently named.

Every bioinformatics project begins with an empty project directory, so it’s fitting that
this book begin with a chapter on project organization. In this chapter, we’ll look at
some best practices in organizing your bioinformatics project directories and how to
digitally document your work using plain-text Markdown files. We’ll also see why
project directory organization isn’t just about being tidy, but is essential to the way by
which tasks are automated across large numbers of files (which we routinely do in
bioinformatics).

Project Directories and Directory Structures
Creating a well-organized directory structure is the foundation of a reproducible bio‐
informatics project. The actual process is quite simple: laying out a project only
entails creating a few directories with mkdir and empty README files with touch
(commands we’ll see in more depth later). But this simple initial planning pays off in
the long term. For large projects, researchers could spend years working in this direc‐
tory structure.

21



Other researchers have noticed the importance of good project organization, too
(Noble 2009). While eventually you’ll develop a project organization scheme that
works for you, we’ll begin in this chapter with a scheme I use in my work (and is sim‐
ilar to Noble’s).

All files and directories used in your project should live in a single project directory
with a clear name. During the course of a project, you’ll have amassed data files,
notes, scripts, and so on—if these were scattered all over your hard drive (or worse,
across many computers’ hard drives), it would be a nightmare to keep track of every‐
thing. Even worse, such a disordered project would later make your research nearly
impossible to reproduce.

Keeping all of your files in a single directory will greatly simplify things for you and
your collaborators, and facilitate reproducibility (we’ll discuss how to collaboratively
work on a project directory with Git in Chapter 5). Suppose you’re working on SNP
calling in maize (Zea mays). Your first step would be to choose a short, appropriate
project name and create some basic directories:

$ mkdir zmays-snps
$ cd zmays-snps
$ mkdir data
$ mkdir data/seqs scripts analysis
$ ls -l
total 0
drwxr-xr-x  2 vinceb  staff   68 Apr 15 01:10 analysis
drwxr-xr-x  3 vinceb  staff  102 Apr 15 01:10 data
drwxr-xr-x  2 vinceb  staff   68 Apr 15 01:10 scripts

This is a sensible project layout scheme. Here, data/ contains all raw and intermediate
data. As we’ll see, data-processing steps are treated as separate subprojects in this
data/ directory. I keep general project-wide scripts in a scripts/ directory. If scripts
contain many files (e.g., multiple Python modules), they should reside in their own
subdirectory. Isolating scripts in their own subdirectory also keeps project directories
tidy while developing these scripts (when they produce test output files).

Bioinformatics projects contain many smaller analyses—for example, analyzing the
quality of your raw sequences, the aligner output, and the final data that will produce
figures and tables for a paper. I prefer keeping these in a separate analysis/ directory,
as it allows collaborators to see these high-level analyses without having to dig deeper
into subproject directories.
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What’s in a Name?

Naming files and directories on a computer matters more than you
might think. In transitioning from a graphical user interface (GUI)
based operating system to the Unix command line, many folks
bring the bad habit of using spaces in file and directory names.
This isn’t appropriate in a Unix-based environment, because spaces
are used to separate arguments in commands. For example, sup‐
pose that you create a directory named raw sequences from a GUI
(e.g., through OS X’s Finder), and later try to remove it and its con‐
tents with the following command:

$ rm -rf raw sequences

If you’re lucky, you’d be warned that there is “No such file or direc‐
tory” for both raw and sequences. What’s going on here? Spaces
matter: your shell is interpreting this rm command as “delete both
the raw and sequences files/directories,” not “delete a single file or
directory called raw sequences.”
If you’re unlucky enough to have a file or directory named either
raw or sequences, this rm command would delete it. It’s possible to
escape this by using quotes (e.g., rm -r "raw sequences"), but it’s
better practice to not use spaces in file or directory names in the
first place. It’s best to use only letters, numbers, underscores, and
dashes in file and directory names.
Although Unix doesn’t require file extensions, including extensions
in filenames helps indicate the type of each file. For example, a file
named osativa-genes.fasta makes it clear that this is a file of sequen‐
ces in FASTA format. In contrast, a file named osativa-genes could
be a file of gene models, notes on where these Oryza sativa genes
came from, or sequence data. When in doubt, explicit is always bet‐
ter than implicit when it comes to filenames, documentation, and
writing code.

Scripts and analyses often need to refer to other files (such as data) in your project
hierarchy. This may require referring to parent directories in your directory’s hierar‐
chy (e.g., with ..). In these cases, it’s important to always use relative paths (e.g., ../
data/stats/qual.txt) rather than absolute paths (e.g., /home/vinceb/projects/
zmays-snps/data/stats/qual.txt). As long as your internal project directory struc‐
ture remains the same, these relative paths will always work. In contrast, absolute
paths rely on your particular user account and directory structures details above the
project directory level (not good). Using absolute paths leaves your work less portable
between collaborators and decreases reproducibility.

My project directory scheme here is by no means the only scheme possible. I’ve
worked with bioinformaticians that use entirely different schemes for their projects
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and do excellent work. However, regardless of the organization scheme, a good bioin‐
formatician will always document everything extensively and use clear filenames that
can be parsed by a computer, two points we’ll come to in a bit.

Project Documentation
In addition to having a well-organized directory structure, your bioinformatics
project also should be well documented. Poor documentation can lead to irreproduci‐
bility and serious errors. There’s a vast amount of lurking complexity in bioinformat‐
ics work: complex workflows, multiple files, countless program parameters, and
different software versions. The best way to prevent this complexity from causing
problems is to document everything extensively. Documentation also makes your life
easier when you need to go back and rerun an analysis, write detailed methods about
your steps for a paper, or find the origin of some data in a directory. So what exactly
should you document? Here are some ideas:

Document your methods and workflows
This should include full command lines (copied and pasted) that are run through
the shell that generate data or intermediate results. Even if you use the default
values in software, be sure to write these values down; later versions of the pro‐
gram may use different default values. Scripts naturally document all steps and
parameters (a topic we’ll cover in Chapter 12), but be sure to document any
command-line options used to run this script. In general, any command that
produces results used in your work needs to be documented somewhere.

Document the origin of all data in your project directory
You need to keep track of where data was downloaded from, who gave it to you,
and any other relevant information. “Data” doesn’t just refer to your project’s
experimental data—it’s any data that programs use to create output. This includes
files your collaborators send you from their separate analyses, gene annotation
tracks, reference genomes, and so on. It’s critical to record this important data
about your data, or metadata. For example, if you downloaded a set of genic
regions, record the website’s URL. This seems like an obvious recommendation,
but countless times I’ve encountered an analysis step that couldn’t easily be
reproduced because someone forgot to record the data’s source.

Document when you downloaded data
It’s important to include when the data was downloaded, as the external data
source (such as a website or server) might change in the future. For example, a
script that downloads data directly from a database might produce different
results if rerun after the external database is updated. Consequently, it’s impor‐
tant to document when data came into your repository.
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Record data version information
Many databases have explicit release numbers, version numbers, or names (e.g.,
TAIR10 version of genome annotation for Arabidopsis thaliana, or Wormbase
release WS231 for Caenorhabditis elegans). It’s important to record all version
information in your documentation, including minor version numbers.

Describe how you downloaded the data
For example, did you use MySQL to download a set of genes? Or the UCSC
Genome Browser? These details can be useful in tracking down issues like when
data is different between collaborators.

Document the versions of the software that you ran
This may seem unimportant, but remember the example from “Reproducible
Research” on page 6 where my colleagues and I traced disagreeing results down
to a single piece of software being updated. These details matter. Good bioinfor‐
matics software usually has a command-line option to return the current version.
Software managed with a version control system such as Git has explicit identifi‐
ers to every version, which can be used to document the precise version you ran
(we’ll learn more about this in Chapter 5). If no version information is available,
a release date, link to the software, and download date will suffice.

All of this information is best stored in plain-text README files. Plain text can easily
be read, searched, and edited directly from the command line, making it the perfect
choice for portable and accessible README files. It’s also available on all computer
systems, meaning you can document your steps when working directly on a server or
computer cluster. Plain text also lacks complex formatting, which can create issues
when copying and pasting commands from your documentation back into the com‐
mand line. It’s best to avoid formats like Microsoft Word for README documenta‐
tion, as these are less portable to the Unix systems common in bioinformatics.

Where should you keep your README files? A good approach is to keep README
files in each of your project’s main directories. These README files don’t necessarily
need to be lengthy, but they should at the very least explain what’s in this directory
and how it got there. Even this small effort can save someone exploring your project
directory a lot of time and prevent confusion. This someone could be your advisor or
a collaborator, a colleague trying to reproduce your work after you’ve moved onto a
different lab, or even yourself six months from now when you’ve completely forgotten
what you’ve done (this happens to everyone!).

For example, a data/README file would contain metadata about your data files in
the data/ directory. Even if you think you could remember all relevant information
about your data, it’s much easier just to throw it in a README file (and collaborators
won’t have to email you to ask what files are or where they are). Let’s create some
empty README files using touch. touch updates the modification time of a file or
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creates a file if it doesn’t already exist. We can use it for this latter purpose to create
empty template files to lay out our project structure:

$ touch README data/README

Following the documentation guidelines just discussed, this data/README file would
include where you downloaded the data in data/, when you downloaded it, and how.
When we learn more about data in Chapter 6, we’ll see a case study example of how
to download and properly document data in a project directory (“Case Study: Repro‐
ducibly Downloading Data” on page 120).

By recording this information, we’re setting ourselves up to document everything
about our experiment and analysis, making it reproducible. Remember, as your
project grows and accumulates data files, it also pays off to keep track of this for your
own sanity.

Use Directories to Divide Up Your Project into Subprojects
Bioinformatics projects involve many subprojects and subanalyses. For example, the
quality of raw experimental data should be assessed and poor quality regions
removed before running it through bioinformatics tools like aligners or assemblers
(we see an example of this in “Example: Inspecting and Trimming Low-Quality
Bases” on page 346). Even before you get to actually analyzing sequences, your
project directory can get cluttered with intermediate files.

Creating directories to logically separate subprojects (e.g., sequencing data quality
improvement, aligning, analyzing alignment results, etc.) can simplify complex
projects and help keep files organized. It also helps reduce the risk of accidentally
clobbering a file with a buggy script, as subdirectories help isolate mishaps. Breaking
a project down into subprojects and keeping these in separate subdirectories also
makes documenting your work easier; each README pertains to the directory it
resides in. Ultimately, you’ll arrive at your own project organization system that
works for you; the take-home point is: leverage directories to help stay organized.

Organizing Data to Automate File Processing Tasks
Because automating file processing tasks is an integral part of bioinformatics, organ‐
izing our projects to facilitate this is essential. Organizing data into subdirectories and
using clear and consistent file naming schemes is imperative—both of these practices
allow us to programmatically refer to files, the first step to automating a task. Doing
something programmatically means doing it through code rather than manually,
using a method that can effortlessly scale to multiple objects (e.g., files). Programmat‐
ically referring to multiple files is easier and safer than typing them all out (because
it’s less error prone).
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Shell Expansion Tips

Bioinformaticians, software engineers, and system administrators
spend a lot of time typing in a terminal. It’s no surprise these indi‐
viduals collect tricks to make this process as efficient as possible. As
you spend more time in the shell, you’ll find investing a little time
in learning these tricks can save you a lot of time down the road.
One useful trick is shell expansion. Shell expansion is when your
shell (e.g., Bash, which is likely the shell you’re using) expands text
for you so you don’t have to type it out. If you’ve ever typed cd ~ to
go to your home directory, you’ve used shell expansion—it’s your
shell that expands the tilde character (~) to the full path to your
home directory (e.g., /Users/vinceb/). Wildcards like an asterisk
(*) are also expanded by your shell to all matching files.
A type of shell expansion called brace expansion can be used to
quickly create the simple zmays-snps/ project directory structure
with a single command. Brace expansion creates strings by expand‐
ing out the comma-separated values inside the braces. This is easier
to understand through a trivial example:

$ echo dog-{gone,bowl,bark}
dog-gone dog-bowl dog-bark

Using this same strategy, we can create the zmays-snps/ project
directory:

$ mkdir -p zmays-snps/{data/seqs,scripts,analysis}

This produces the same zmays-snps layout as we constructed in
four separate steps in “Project Directories and Directory Struc‐
tures” on page 21: analysis/, data/seqs, and scripts/. Because mkdir
takes multiple arguments (creating a directory for each), this cre‐
ates the three subdirectories (and saves you having to type “zmays-
snps/” three times). Note that we need to use mkdir’s -p flag, which
tells mkdir to create any necessary subdirectories it needs (in our
case, data/ to create data/seqs/).

We’ll step through a toy example to illustrate this point, learning some important
shell wildcard tricks along the way. In this example, organizing data files into a single
directory with consistent filenames prepares us to iterate over all of our data, whether
it’s the four example files used in this example, or 40,000 files in a real project. Think
of it this way: remember when you discovered you could select many files with your
mouse cursor? With this trick, you could move 60 files as easily as six files. You could
also select certain file types (e.g., photos) and attach them all to an email with one
movement. By using consistent file naming and directory organization, you can do
the same programmatically using the Unix shell and other programming languages.
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We’ll see a Unix example of this using shell wildcards to automate tasks across many
files. Later in Chapter 12, we’ll see more advanced bulk file manipulation strategies.

Let’s create some fake empty data files to see how consistent names help with pro‐
grammatically working with files. Suppose that we have three maize samples, “A,” “B,”
and “C,” and paired-end sequencing data for each:

$ cd data
$ touch seqs/zmays{A,B,C}_R{1,2}.fastq
$ ls seqs/
zmaysA_R1.fastq zmaysB_R1.fastq zmaysC_R1.fastq
zmaysA_R2.fastq zmaysB_R2.fastq zmaysC_R2.fastq

In this file naming scheme, the two variable parts of each filename indicate sample
name (zmaysA, zmaysB, zmaysC) and read pair (R1 and R2). Suppose that we wanted to
programmatically retrieve all files that have the sample name zmaysB (regardless of
the read pair) rather than having to manually specify each file. To do this, we can use
the Unix shell wildcard, the asterisk character (*):

$ ls seqs/zmaysB*
zmaysB_R1.fastq zmaysB_R2.fastq

Wildcards are expanded to all matching file or directory names (this process is
known as globbing). In the preceding example, your shell expanded the expression
zmaysB* to zmaysB_R1.fastq and zmaysB_R2.fastq, as these two files begin with
zmaysB. If this directory had contained hundreds of zmaysB files, all could be easily
referred to and handled with shell wildcards.

Wildcards and “Argument list too long”

OS X and Linux systems have a limit to the number of arguments
that can be supplied to a command (more technically, the limit is to
the total length of the arguments). We sometimes hit this limit
when using wildcards that match tens of thousands of files. When
this happens, you’ll see an “Argument list too long” error message
indicating you’ve hit the limit. Luckily, there’s a clever way around
this problem (see “Using find and xargs” on page 411 for the solu‐
tion).

In general, it’s best to be as restrictive as possible with wildcards. This protects against
accidental matches. For example, if a messy colleague created an Excel file named
zmaysB-interesting-SNPs-found.xls in this directory, this would accidentally match the
wildcard expression zmaysB*. If you needed to process all zmaysB FASTQ files, refer‐
ring to them with zmaysB* would include this Excel file and lead to problems. This is
why it’s best to be as restrictive as possible when using wildcards. Instead of zmaysB*,
use zmaysB*fastq or zmaysB_R?.fastq (the ? only matches a single character).
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There are other simple shell wildcards that are quite handy in programmatically
accessing files. Suppose a collaborator tells you that the C sample sequences are poor
quality, so you’ll have to work with just the A and B samples while C is resequenced.
You don’t want to delete zmaysC_R1.fastq and zmaysC_R2.fastq until the new samples
are received, so in the meantime you want to ignore these files. The folks that inven‐
ted wildcards foresaw problems like this, so they created shell wildcards that allow
you to match specific characters or ranges of characters. For example, we could
match the characters U, V, W, X, and Y with either [UVWXY] or [U-Y] (both are equiv‐
alent). Back to our example, we could exclude the C sample using either:

$ ls zmays[AB]_R1.fastq
zmaysA_R1.fastq zmaysB_R1.fastq
$ ls zmays[A-B]_R1.fastq
zmaysA_R1.fastq zmaysB_R1.fastq

Using a range between A and B isn’t really necessary, but if we had samples A through
I, using a range like zmays[C-I]_R1.fastq would be better than typing out
zmays[CDEFGHI]_R1.fastq. There’s one very important caveat: ranges operate on
character ranges, not numeric ranges like 13 through 30. This means that wildcards
like snps_[10-13].txt will not match files snps_10.txt, snps_11.txt, snps_12.txt, and
snps_13.txt.
However, the shell does offer an expansion solution to numeric ranges—through the
brace expansion we saw earlier. Before we see this shortcut, note that while wildcard
matching and brace expansion may seem to behave similarly, they are slightly differ‐
ent. Wildcards only expand to existing files that match them, whereas brace expansions
always expand regardless of whether corresponding files or directories exist or not. If we
knew that files snps_10.txt through snps_13.txt did exist, we could match them with
the brace expansion sequence expression like snps_{10..13}.txt. This expands to the
integer sequence 10 through 13 (but remember, whether these files exist or not is not
checked by brace expansion). Table 2-1 lists the common Unix wildcards.

Table 2-1. Common Unix filename wildcards
Wildcard What it matches

* Zero or more characters (but ignores hidden files starting with a period).

? One character (also ignores hidden files).

[A-Z] Any character between the supplied alphanumeric range (in this case, any
character between A and Z); this works for any alphanumeric character
range (e.g., [0-9] matches any character between 0 and 9).

By now, you should begin to see the utility of shell wildcards: they allow us to handle
multiple files with ease. Because lots of daily bioinformatics work involves file pro‐
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cessing, programmatically accessing files makes our job easier and eliminates mis‐
takes made from mistyping a filename or forgetting a sample. However, our ability to
programmatically access files with wildcards (or other methods in R or Python) is
only possible when our filenames are consistent. While wildcards are powerful,
they’re useless if files are inconsistently named. For example, processing a subset of
files with names like zmays sampleA - 1.fastq, zmays_sampleA-2.fastq, sampleB1.fastq,
sample-B2.fastq is needlessly more complex because of the inconsistency of these file‐
names. Unfortunately, inconsistent naming is widespread across biology, and is the
scourge of bioinformaticians everywhere. Collectively, bioinformaticians have proba‐
bly wasted thousands of hours fighting others’ poor naming schemes of files, genes,
and in code.

Leading Zeros and Sorting

Another useful trick is to use leading zeros (e.g., file-0021.txt rather
than file-21.txt) when naming files. This is useful because lexico‐
graphically sorting files (as ls does) leads to the correct ordering.
For example, if we had filenames such as gene-1.txt, gene-2.txt, …,
gene-14.txt, sorting these lexicographically would yield:

$ ls -l
-rw-r--r--  1 vinceb  staff  0 Feb 21 21:24 genes-1.txt
-rw-r--r--  1 vinceb  staff  0 Feb 21 21:24 genes-11.txt
-rw-r--r--  1 vinceb  staff  0 Feb 21 21:24 genes-12.txt
-rw-r--r--  1 vinceb  staff  0 Feb 21 21:24 genes-13.txt
-rw-r--r--  1 vinceb  staff  0 Feb 21 21:24 genes-14.txt
[...]

But if we use leading zeros (e.g., gene-001.txt, gene-002.txt, …,
gene-014.txt), the files sort in their correct order:

$ ls -l
-rw-r--r--  1 vinceb  staff  0 Feb 21 21:23 genes-001.txt
-rw-r--r--  1 vinceb  staff  0 Feb 21 21:23 genes-002.txt
[...]
-rw-r--r--  1 vinceb  staff  0 Feb 21 21:23 genes-013.txt
-rw-r--r--  1 vinceb  staff  0 Feb 21 21:23 genes-014.txt

Using leading zeros isn’t just useful when naming filenames; this is
also the best way to name genes, transcripts, and so on. Projects
like Ensembl use this naming scheme in naming their genes (e.g.,
ENSG00000164256).

In addition to simplifying working with files, consistent file naming is an often over‐
looked component of robust bioinformatics. Bad sample naming schemes can easily
lead to switched samples. Poorly chosen filenames can also cause serious errors when
you or collaborators think you’re working with the correct data, but it’s actually out‐
dated or the wrong file. I guarantee that out of all the papers published in the past
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decade, at least a few and likely many more contain erroneous results because of a file
naming issue.

Markdown for Project Notebooks
It’s very important to keep a project notebook containing detailed information about
the chronology of your computational work, steps you’ve taken, information about
why you’ve made decisions, and of course all pertinent information to reproduce
your work. Some scientists do this in a handwritten notebook, others in Microsoft
Word documents. As with README files, bioinformaticians usually like keeping
project notebooks in simple plain-text because these can be read, searched, and edited
from the command line and across network connections to servers. Plain text is also
a future-proof format: plain-text files written in the 1960s are still readable today,
whereas files from word processors only 10 years old can be difficult or impossible to
open and edit. Additionally, plain-text project notebooks can also be put under ver‐
sion control, which we’ll talk about in Chapter 5.

While plain-text is easy to write in your text editor, it can be inconvenient for collab‐
orators unfamiliar with the command line to read. A lightweight markup language
called Markdown is a plain-text format that is easy to read and painlessly incorpora‐
ted into typed notes, and can also be rendered to HTML or PDF.

Markdown originates from the simple formatting conventions used in plain-text
emails. Long before HTML crept into email, emails were embellished with simple
markup for emphasis, lists, and blocks of text. Over time, this became a de facto
plain-text email formatting scheme. This scheme is very intuitive: underscores or
asterisks that flank text indicate emphasis, and lists are simply lines of text beginning
with dashes.

Markdown is just plain-text, which means that it’s portable and programs to edit and
read it will exist. Anyone who’s written notes or papers in old versions of word pro‐
cessors is likely familiar with the hassle of trying to share or update out-of-date pro‐
prietary formats. For these reasons, Markdown makes for a simple and elegant
notebook format.

Markdown Formatting Basics
Markdown’s formatting features match all of the needs of a bioinformatics notebook:
text can be broken down into hierarchical sections, there’s syntax for both code blocks
and inline code, and it’s easy to embed links and images. While the Markdown format
is very simple, there are a few different variants. We’ll use the original Markdown for‐
mat, invented by John Gruber, in our examples. John Gruber’s full markdown syntax
specification is available on his website. Here is a basic Markdown document illus‐
trating the format:
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# *Zea Mays* SNP Calling

We sequenced three lines of *zea mays*, using paired-end
sequencing. This sequencing was done by our sequencing core and we
received the data on 2013-05-10. Each variety should have **two**
sequences files, with suffixes `_R1.fastq` and `_R2.fastq`, indicating
which member of the pair it is.

## Sequencing Files

All raw FASTQ sequences are in `data/seqs/`:

    $ find data/seqs -name "*.fastq"
    data/seqs/zmaysA_R1.fastq
    data/seqs/zmaysA_R2.fastq
    data/seqs/zmaysB_R1.fastq
    data/seqs/zmaysB_R2.fastq
    data/seqs/zmaysC_R1.fastq
    data/seqs/zmaysC_R2.fastq

## Quality Control Steps

After the sequencing data was received, our first stage of analysis
was to ensure the sequences were high quality. We ran each of the
three lines' two paired-end FASTQ files through a quality diagnostic
and control pipeline. Our planned pipeline is:

1. Create base quality diagnostic graphs.
2. Check reads for adapter sequences.
3. Trim adapter sequences.
4. Trim poor quality bases.

Recommended trimming programs:

 - Trimmomatic
 - Scythe

Figure 2-1 shows this example Markdown notebook rendered in HTML5 by Pandoc.
What makes Markdown a great format for lab notebooks is that it’s as easy to read in
unrendered plain-text as it is in rendered HTML. Next, let’s take a look at the Mark‐
down syntax used in this example (see Table 2-2 for a reference).
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Figure 2-1. HTML Rendering of the Markdown notebook

Table 2-2. Minimal Markdown inline syntax
Markdown syntax Result

*emphasis* emphasis

**bold** bold

`inline code` inline code

<http://website.com/link> Hyperlink to http://website.com/link

[link text](http://
website.com/link)

Hyperlink to http://website.com/link, with text “link
text”
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Markdown syntax Result

![alt text](path/to/
figure.png)

Image, with alternative text “alt text”

Block elements like headers, lists, and code blocks are simple. Headers of different
levels can be specified with varying numbers of hashes (#). For example:

# Header level 1
## Header level 2
### Header level 3

Markdown supports headers up to six levels deep. It’s also possible to use an alterna‐
tive syntax for headers up to two levels:

Header level 1
==============

Header level 2
--------------

Both ordered and unordered lists are easy too. For unordered lists, use dashes, aster‐
isks, or pluses as list element markers. For example, using dashes:

- Francis Crick
- James D. Watson
- Rosalind Franklin

To order your list, simply use numbers (i.e., 1., 2., 3., etc.). The ordering doesn’t
matter, as HTML will increment these automatically for you. However, it’s still a good
idea to clearly number your bullet points so the plain-text version is readable.

Code blocks are simple too—simply add four spaces or one tab before each code line:
I ran the following command:

    $ find seqs/ -name "*.fastq"

If you’re placing a code block within a list item, make this eight spaces, or two tabs:
1. I searched for all FASTQ files using:

        find seqs/ -name "*.fastq"

2. And finally, VCF files with:

        find vcf/ -name "*.vcf"

What we’ve covered here should be more than enough to get you started digitally
documenting your bioinformatics work. Additionally, there are extensions to Mark‐
down, such as MultiMarkdown and GitHub Flavored Markdown. These variations
add features (e.g., MultiMarkdown adds tables, footnotes, LaTeX math support, etc.)
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and change some of the default rendering options. There are also many specialized
Markdown editing applications if you prefer a GUI-based editor (see this chapter’s
README on GitHub for some suggestions).

Using Pandoc to Render Markdown to HTML
We’ll use Pandoc, a popular document converter, to render our Markdown docu‐
ments to valid HTML. These HTML files can then be shared with collaborators or
hosted on a website. See the Pandoc installation page for instructions on how to
install Pandoc on your system.

Pandoc can convert between a variety of different markup and output formats. Using
Pandoc is very simple—to convert from Markdown to HTML, use the --from mark
down and --to html options and supply your input file as the last argument:

$ pandoc --from markdown --to html notebook.md > output.html

By default, Pandoc writes output to standard out, which we can redirect to a file (we’ll
learn more about standard out and redirection in Chapter 3). We could also specify
the output file using --output output.html. Finally, note that Pandoc can convert
between many formats, not just Markdown to HTML. I’ve included some more
examples of this in this chapter’s README on GitHub, including how to convert
from HTML to PDF.
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CHAPTER 3

Remedial Unix Shell

The Unix shell is the foundational computing environment for bioinformatics. The
shell serves as our interface to large bioinformatics programs, as an interactive con‐
sole to inspect data and intermediate results, and as the infrastructure for our pipe‐
lines and workflows. This chapter will help you develop a proficiency with the
necessary Unix shell concepts used extensively throughout the rest of the book. This
will allow you to focus on the content of commands in future chapters, rather than be
preoccupied with understanding shell syntax.

This book assumes you’re familiar with basic topics such as what a terminal is, what
the shell is, the Unix filesystem hierarchy, moving about directories, file permissions,
executing commands, and working with a text editor. If these topics sound foreign to
you, it’s best to brush up on using more basic materials (see “Assumptions This Book
Makes” on page xvi for some resources). In this chapter, we’ll cover remedial concepts
that deeply underly how we use the shell in bioinformatics: streams, redirection,
pipes, working with running programs, and command substitution. Understanding
these shell topics will prepare you to use the shell to work with data (Chapter 7) and
build pipelines and workflows (Chapter 12). In this chapter, we’ll also see why the
Unix shell has such a prominent role in how we do modern bioinformatics. If you feel
comfortable with these shell topics already, I suggest reading the first section of this
chapter and then skipping to Chapter 4.

Why Do We Use Unix in Bioinformatics? Modularity and
the Unix Philosophy
Imagine rather than using the Unix shell as our bioinformatics computing environ‐
ment, we were to implement our entire project as single large program. We usually
don’t think of a bioinformatics project as a “program” but it certainly could be—we
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could write a single complex program that takes raw data as input, and after hours of
data processing, outputs publication figures and a final table of results. For a project
like variant calling, this program would include steps for raw sequence read process‐
ing, read mapping, variant calling, filtering variant calls, and final data analysis. This
program’s code would be massive—easily thousands of lines long.

While a program like this has the benefit of being customized to a particular variant
calling project, it would not be general enough to adapt to others. Given its immense
amount of code, this program would be impractical to adjust to each new project.
The large codebase would also make finding and fixing bugs difficult. To make mat‐
ters worse, unless our monolithic program was explicitly programmed to check that
data between steps looked error free, a step may go awry (unbeknownst to us) and it
would dutifully continue the analysis with incorrect data. While this custom program
might be more computationally efficient, this would come at the expense of being
fragile, difficult to modify, error prone (because it makes checking intermediate data
very difficult), and not generalizable to future projects.

Unix is the foundational computing environment in bioinformatics because its design
philosophy is the antithesis of this inflexible and fragile approach. The Unix shell was
designed to allow users to easily build complex programs by interfacing smaller mod‐
ular programs together. This approach is the Unix philosophy:

This is the Unix philosophy: Write programs that do one thing and do it well. Write
programs to work together. Write programs to handle text streams, because that is a
universal interface.

—Doug McIlory
The Unix shell provides a way for these programs to talk to each other (pipes) and
write to and read files (redirection). Unix’s core programs (which we’ll use to analyze
data on the command line in Chapter 7) are modular and designed to work well with
other programs. The modular approach of the Unix philosophy has many advantages
in bioinformatics:

• With modular workflows, it’s easier to spot errors and figure out where they’re
occurring. In a modular workflow, each component is independent, which makes
it easier to inspect intermediate results for inconsistencies and isolate problem‐
atic steps. In contrast, large nonmodular programs hide potential problems (all
you see is its final output data) and make isolating where problems originate dif‐
ficult.

• Modular workflows allow us to experiment with alternative methods and
approaches, as separate components can be easily swapped out with other com‐
ponents. For example, if you suspect a particular aligner is working poorly with
your data, it’s easy to swap this aligner out with another one. This is possible only
with modular workflows, where our alignment program is separate from down‐
stream steps like variant calling or RNA-seq analysis.
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• Modular components allow us to choose tools and languages that are appropriate
for specific tasks. This is another reason the Unix environment fits bioinformat‐
ics well: it allows us to combine command-line tools for interactively exploring
data (covered in more depth in Chapter 7), Python for more sophisticated script‐
ing, and R for statistical analysis. When programs are designed to work with
other programs, there’s no cost to choosing a specialized tool for a specific task—
something we quite often do in bioinformatics.

• Modular programs are reusable and applicable to many types of data. Well-
written modular programs can be recombined and applied to different problems
and datasets, as they are independent pieces. Most important, by remixing modu‐
lar components, novel problems can be solved with existing tools.

In addition to emphasizing the program modularity and interfacing, McIlroy’s quote
also mentions text streams. We’ll address Unix streams in this chapter, but the concept
of a stream is very important in how we process large data. Definitions of large data
may vary, and while a single lane of sequencing data may be big to one lab just getting
into sequencing, this is minuscule compared to what larger sequencing centers pro‐
cess each hour. Regardless, a lane of sequencing data is too big to fit in the memory of
most standard desktops. If I needed to search for the exact string “GTGAT‐
TAACTGCGAA” in this data, I couldn’t open up a lane of data in Notepad and use
the Find feature to pinpoint where it occurs—there simply isn’t enough memory to
hold all these nucleotides in memory. Instead, tools must rely on streams of data,
being read from a source and actively processed. Both general Unix tools and many
bioinformatics programs are designed to take input through a stream and pass output
through a different stream. It’s these text streams that allow us to both couple pro‐
grams together into workflows and process data without storing huge amounts of
data in our computers’ memory.
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The Many Unix Shells

Throughout this book, I’ll refer to the Unix shell in general, but
there’s no single Unix shell. Shells are computer programs, and
many programmers have designed and implemented their own
versions. These many versions can lead to frustrating problems for
new users, as some shells have features incompatible with others.
To avoid this frustration, make sure you’re using the Bourne-again
shell, or bash. Bash is widely available and the default shell on
operating systems like Apple’s OS X and Ubuntu Linux. You can
run echo $SHELL to verify you’re using bash as your shell (although
it’s best to also check what echo $0 says too, because even how you
identify your shell differs among shells!). I wouldn’t recommend
other shells like the C shell (csh), its descendant tcsh, and the
Korn shell (ksh), as these are less popular in bioinformatics and
may not be compatible with examples in this book. The Bourne
shell (sh) was the predecessor of the Bourne-again shell (bash); but
bash is newer and usually preferred.
It’s possible to change your shell with the command chsh. In my
daily bioinformatics work, I use Z shell (zsh) and have made this
my default shell. Z shell has more advanced features (e.g., better
autocomplete) that come in handy in bioinformatics. Everything in
this book is compatible between these two shells unless explicitly
noted otherwise. If you feel confident with general shell basics, you
may want to try Z shell. I’ve included resources about Z shell in this
chapter’s README file on GitHub.

The last point to stress about the Unix shell is that it’s incredibly powerful. With sim‐
ple features like wildcards, it’s trivial to apply a command to hundreds of files. But
with this power comes risk: the Unix shell does not care if commands are mistyped or
if they will destroy files; the Unix shell is not designed to prevent you from doing
unsafe things. A good analogy comes from Gary Bernhardt: Unix is like a chainsaw.
Chainsaws are powerful tools, and make many difficult tasks like cutting through
thick logs quite easy. Unfortunately, this power comes with danger: chainsaws can cut
just as easily through your leg (well, technically more easily). For example, consider:

$ rm -rf tmp-data/aligned-reads*  # deletes all old large files
$ # versus
$ rm -rf tmp-data/aligned-reads *  # deletes your entire current directory
rm: tmp-data/aligned-reads: No such file or directory

In Unix, a single space could mean the difference between cleaning out some old files
and finishing your project behind schedule because you’ve accidentally deleted every‐
thing. This isn’t something that should cause alarm—this is a consequence of working
with powerful tools. Rather, just adopt a cautious attitude when experimenting or try‐
ing a new command (e.g., work in a temporary directory, use fake files or data if
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you’re unsure how a command behaves, and always keep backups). That the Unix
shell has the power to allow you to do powerful (possibly unsafe) things is an impor‐
tant part of its design:

Unix was not designed to stop its users from doing stupid things, as that would also
stop them from doing clever things.

—Doug Gwyn
Tackling repetitive large data-processing tasks in clever ways is a large part of being a
skillful bioinformatician. Our shell is often the fastest tool for these tasks. In this
chapter, we’ll focus on some of these Unix shell primitives that allow us to build com‐
plex programs from simple parts: streams, redirection, pipes, working with processes,
and command substitution. We’ll learn more about automating tasks, another impor‐
tant part of the Unix shell, in Chapter 12.

Working with Streams and Redirection
Bioinformatics data is often text—for example, the As, Cs, Ts, and Gs in sequencing
read files or reference genomes, or tab-delimited files of gene coordinates. The text
data in bioinformatics is often large, too (gigabytes or more that can’t fit into your
computer’s memory at once). This is why Unix’s philosophy of handling text streams
is useful in bioinformatics: text streams allow us to do processing on a stream of data
rather than holding it all in memory.

For example, suppose we had two large files full of nucleotide sequences in a FASTA
file, a standard text format used to store sequence data (usually of DNA, but occa‐
sionally proteins, too). Even the simple task of combining these two large files into a
single file becomes tricky once these are a few gigabytes in size. How would this sim‐
ple task be accomplished without using the Unix shell? You could try to open one file,
select and copy all of its contents, and paste it into another file. However, not only
would this require loading both files in memory, but you’d also use additional mem‐
ory making another copy of one file when you select all, copy, and paste. Approaches
like this do not scale to the size of data we routinely work with in bioinformatics.
Additionally, pasting contents into a file doesn’t follow a recommendation from
Chapter 1: treat data as read-only. If something went wrong, one of the files (or both!)
could easily be corrupted. To make matters worse, copying and pasting large files uses
lots of memory, so it’s even more likely something could go awry with your computer.
Streams offer a scalable, robust solution to these problems.

Redirecting Standard Out to a File
The Unix shell simplifies tasks like combining large files by leveraging streams. Using
streams prevents us from unnecessarily loading large files into memory. Instead, we
can combine large files by printing their contents to the standard output stream and
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redirect this stream from our terminal to the file we wish to save the combined results
to. You’ve probably used the program cat to print a file’s contents to standard out
(which when not redirected is printed to your terminal screen). For example, we can
look at the tb1-protein.fasta file (available in this chapter’s directory on GitHub) by
using cat to print it to standard out:

$ cat tb1-protein.fasta
>teosinte-branched-1 protein
LGVPSVKHMFPFCDSSSPMDLPLYQQLQLSPSSPKTDQSSSFYCYPCSPP
FAAADASFPLSYQIGSAAAADATPPQAVINSPDLPVQALMDHAPAPATEL
GACASGAEGSGASLDRAAAAARKDRHSKICTAGGMRDRRMRLSLDVARKF
FALQDMLGFDKASKTVQWLLNTSKSAIQEIMADDASSECVEDGSSSLSVD
GKHNPAEQLGGGGDQKPKGNCRGEGKKPAKASKAAATPKPPRKSANNAHQ
VPDKETRAKARERARERTKEKHRMRWVKLASAIDVEAAAASVPSDRPSSN
NLSHHSSLSMNMPCAAA

cat also allows us to print multiple files’ contents to the standard output stream, in
the order as they appear to command arguments. This essentially concatenates these
files, as seen here with the tb1 and tga1 translated sequences:

$ cat tb1-protein.fasta tga1-protein.fasta
>teosinte-branched-1 protein
LGVPSVKHMFPFCDSSSPMDLPLYQQLQLSPSSPKTDQSSSFYCYPCSPP
FAAADASFPLSYQIGSAAAADATPPQAVINSPDLPVQALMDHAPAPATEL
GACASGAEGSGASLDRAAAAARKDRHSKICTAGGMRDRRMRLSLDVARKF
FALQDMLGFDKASKTVQWLLNTSKSAIQEIMADDASSECVEDGSSSLSVD
GKHNPAEQLGGGGDQKPKGNCRGEGKKPAKASKAAATPKPPRKSANNAHQ
VPDKETRAKARERARERTKEKHRMRWVKLASAIDVEAAAASVPSDRPSSN
NLSHHSSLSMNMPCAAA
>teosinte-glume-architecture-1 protein
DSDCALSLLSAPANSSGIDVSRMVRPTEHVPMAQQPVVPGLQFGSASWFP
RPQASTGGSFVPSCPAAVEGEQQLNAVLGPNDSEVSMNYGGMFHVGGGSG
GGEGSSDGGT

While these files have been concatenated, the results are not saved anywhere—these
lines are just printed to your terminal screen. In order to save these concatenated
results to a file, you need to redirect this standard output stream from your terminal
screen to a file. Redirection is an important concept in Unix, and one you’ll use fre‐
quently in bioinformatics.

We use the operators > or >> to redirect standard output to a file. The operator >
redirects standard output to a file and overwrites any existing contents of the file
(take note of this and be careful), whereas the latter operator >> appends to the file
(keeping the contents and just adding to the end). If there isn’t an existing file, both
operators will create it before redirecting output to it. To concatenate our two FASTA
files, we use cat as before, but redirect the output to a file:

$ cat tb1-protein.fasta tga1-protein.fasta > zea-proteins.fasta
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Note that nothing is printed to your terminal screen when you redirect standard out‐
put to a file. In our example, the entire standard output stream ends up in the zea-
proteins.fasta file. Redirection of a standard output stream to a file looks like
Figure 3-1 (b).

Figure 3-1. (a) Unredirected standard output, standard error, and standard input (the
gray box is what is printed to a user’s terminal); (b) standard output redirected to a file

We can verify that our redirect worked correctly by checking that the mostly recently
created file in this directory is the one we just created (i.e., zea-proteins.fasta):

ls -lrt
total 24
-rw-r--r--  1 vinceb  staff  353 Jan 20 21:24 tb1-protein.fasta
-rw-r--r--  1 vinceb  staff  152 Jan 20 21:24 tga1-protein.fasta
-rw-r--r--  1 vinceb  staff  505 Jan 20 21:35 zea-proteins.fasta

Adding -lrt to the ls lists files in this directory in list format (-l), in reverse (-r)
time (-t) order (see man ls for more details). Also, note how these flags have been
combined into -lrt; this is a common syntactic shortcut. If you wished to see the
newest files at the top, you could omit the r flag.

Redirecting Standard Error
Because many programs use the standard output stream for outputting data, a sepa‐
rate stream is needed for errors, warnings, and messages meant to be read by the user.
Standard error is a stream just for this purpose (depicted in Figure 3-1). Like standard
output, standard error is by default directed to your terminal. In practice, we often
want to redirect the standard error stream to a file so messages, errors, and warnings
are logged to a file we can check later.

To illustrate how we can redirect both standard output and standard error, we’ll use
the command ls -l to list both an existing file (tb1.fasta) and a file that does not
exist (leafy1.fasta). The output of ls -l for the existing file tb1.fasta will be sent to
standard output, while an error message saying leafy1.fasta does not exist will be out‐
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put to standard error. When you don’t redirect anything, both streams are output to
your terminal:

$ ls -l tb1.fasta leafy1.fasta
ls: leafy1.fasta: No such file or directory
-rw-r--r--  1 vinceb  staff  0 Feb 21 21:58 tb1.fasta

To redirect each stream to separate files, we combine the > operator from the previous
section with a new operator for redirecting the standard error stream, 2>:

$ ls -l tb1.fasta leafy1.fasta > listing.txt 2> listing.stderr
$ cat listing.txt
-rw-r--r--  1 vinceb  staff  152 Jan 20 21:24 tb1.fasta
$ cat listing.stderr
ls: leafy1.fasta: No such file or directory

Additionally, 2> has 2>>, which is analogous to >> (it will append to a file rather than
overwrite it).

File Descriptors

The 2> notation may seem rather cryptic (and difficult to memo‐
rize), but there’s a reason why standard error’s redirect operator has
a 2 in it. All open files (including streams) on Unix systems are
assigned a unique integer known as a file descriptor. Unix’s three
standard streams—standard input (which we’ll see in a bit), stan‐
dard output, and standard error—are given the file descriptors 0, 1,
and 2, respectively. It’s even possible to use 1> as the redirect opera‐
tor for standard output, though this is not common in practice and
may be confusing to collaborators.

Occasionally a program will produce messages we don’t need or care about. Redirec‐
tion can be a useful way to silence diagnostic information some programs write to
standard out: we just redirect to a logfile like stderr.txt. However, in some cases, we
don’t need to save this output to a file and writing output to a physical disk can slow
programs down. Luckily, Unix-like operating systems have a special “fake” disk
(known as a pseudodevice) to redirect unwanted output to: /dev/null. Output written
to /dev/null disappears, which is why it’s sometimes jokingly referred to as a “black‐
hole” by nerds.
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Using tail -f to Monitor Redirected Standard Error

We often need to redirect both the standard output and standard
error for large bioinformatics programs that could run for days (or
maybe weeks, or months!). With both these streams redirected,
nothing will be printed to your terminal, including useful diagnos‐
tic messages you may want to keep an eye on during long-running
tasks. If you wish to follow these messages, the program tail can
be used to look at the last lines of an output file by calling tail
filename.txt. For example, running tail stderr.txt will print
the last 10 lines of the file stderr.txt. You can set the exact number
of lines tail will print with the -n option.
Tail can also be used to constantly monitor a file with -f (-f for
follow). As the monitored file is updated, tail will display the new
lines to your terminal screen, rather than just display 10 lines and
exiting as it would without this option. If you wish to stop the
monitoring of a file, you can use Control-C to interrupt the tail
process. The process writing to the file will not be interrupted
when you close tail.

Using Standard Input Redirection
The Unix shell also provides a redirection operator for standard input. Normally
standard input comes from your keyboard, but with the < redirection operator you
can read standard input directly from a file. Though standard input redirection is less
common than >, >>, and 2>, it is still occasionally useful:

$ program < inputfile > outputfile

In this example, the artificial file inputfile is provided to program through standard
input, and all of program’s standard output is redirected to the file outputfile.

It’s a bit more common to use Unix pipes (e.g., cat inputfile | program > output
file) than <. Many programs we’ll see later (like grep, awk, sort) also can take a file
argument in addition to input through standard input. Other programs (common
especially in bioinformatics) use a single dash argument (-) to indicate that they
should use standard input, but this is a convention rather than a feature of Unix.

The Almighty Unix Pipe: Speed and Beauty in One
We should have some ways of connecting programs like [a] garden hose—screw in
another segment when it becomes necessary to massage data in another way.

—Doug McIlory (1964)
In “Why Do We Use Unix in Bioinformatics? Modularity and the Unix Philosophy”
on page 37 McIlroy’s quote included the recommendation, “write programs to work
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together.” This is easy thanks to the Unix pipe, a concept that McIlroy himself inven‐
ted. Unix pipes are similar to the redirect operators we saw earlier, except rather than
redirecting a program’s standard output stream to a file, pipes redirect it to another
program’s standard input. Only standard output is piped to the next command; stan‐
dard error still is printed to your terminal screen, as seen in Figure 3-2.

Figure 3-2. Piping standard output from program1 to program2; standard error is still
printed to the user’s terminal

You may be wondering why we would pipe a program’s standard output directly into
another program’s standard input, rather than writing output to a file and then read‐
ing this file into the next program. In many cases, creating a file would be helpful in
checking intermediate results and possibly debugging steps of your workflow—so
why not do this every time?

The answer is that it often comes down to computational efficiency—reading and
writing to the disk is very slow. We use pipes in bioinformatics (quite compulsively)
not only because they are useful way of building pipelines, but because they’re faster
(in some cases, much faster). Modern disks are orders of magnitude slower than
memory. For example, it only takes about 15 microseconds to read 1 megabyte of
data from memory, but 2 milliseconds to read 1 megabyte from a disk. These 2 milli‐
seconds are 2,000 microseconds, making reading from the disk more than 100 times
slower (this is an estimate; actual numbers will vary according to your disk type and
speed).

In practice, writing or reading from a disk (e.g., during redirection of standard out‐
put to a file) is often a bottleneck in data processing. For large next-generation
sequencing data, this can slow things down quite considerably. If you implement a
clever algorithm that’s twice as fast as an older version, you may not even notice the
difference if the true bottleneck is reading or writing to the disk. Additionally, unnec‐
essarily redirecting output to a file uses up disk space. With large next-generation
data and potentially many experimental samples, this can be quite a problem.

Passing the output of one program directly into the input of another program with
pipes is a computationally efficient and simple way to interface Unix programs. This
is another reason why bioinformaticians (and software engineers in general) like
Unix. Pipes allow us to build larger, more complex tools from smaller modular parts.
It doesn’t matter what language a program is written in, either; pipes will work
between anything as long as both programs understand the data passed between
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them. As the lowest common denominator between most programs, plain-text
streams are often used—a point that McIlroy makes in his quote about the Unix phi‐
losophy.

Pipes in Action: Creating Simple Programs with Grep and Pipes
The Golden Rule of Bioinformatics is to not trust your tools or data. This skepticism
requires constant sanity checking of intermediate results, which ensures your meth‐
ods aren’t biasing your data, or problems in your data aren’t being exacerbated by
your methods. However, writing custom scripts to check every bit of your intermedi‐
ate data can be costly, even if you’re a fast programmer who can write bug-free code
the first go. Unix pipes allow us to quickly and iteratively build tiny command-line
programs to inspect and manipulate data—an approach we’ll explore in much more
depth in Chapter 7. Pipes also are used extensively in larger bioinformatics workflows
(Chapter 12), as they avoid latency issues from writing unnecessary files to disk. We’ll
learn the basics of pipes in this section, preparing you to use them throughout the
rest of the book.

Let’s look at how we can chain processes together with pipes. Suppose we’re working
with a FASTA file and a program warns that it contains non-nucleotide characters in
sequences. You’re surprised by this, as the sequences are only DNA. We can check for
non-nucleotide characters easily with a Unix one-liner using pipes and the grep. The
grep Unix tool searches files or standard input for strings that match patterns. These
patterns can be simple strings, or regular expressions (there are actually two flavors of
regular expressions, basic and extended; see man grep for more details). If you’re
unfamiliar with regular expressions, see the book’s GitHub repository’s README for
resources.

Our pipeline would first remove all header lines (those that begin with >) from the
FASTA files, as we only care if sequences have non-nucleotide characters. The
remaining sequences of the FASTA file could then be piped to another instance of
grep, which would only print lines containing non-nucleotide characters. To make
these easier to spot in our terminal, we could also color these matching characters.
The entire command would look like:

$ grep -v "^>" tb1.fasta | \  
  grep --color -i "[^ATCG]"   
CCCCAAAGACGGACCAATCCAGCAGCTTCTACTGCTAYCCATGCTCCCCTCCCTTCGCCGCCGCCGACGC

First, we remove the FASTA header lines, which begin with the > character. Our
regular expression pattern is ^>, which matches all lines that start with a > char‐
acter. The caret symbol has two meanings in regular expressions, but in this con‐
text, it’s used to anchor a pattern to the start of a line. Because we want to exclude
lines starting with >, we invert the matching lines with the grep option -v.
Finally, we pipe the standard output to the next command with the pipe charac‐
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ter (|). The backslash (\) character simply means that we’re continuing the com‐
mand on the next line, and is used above to improve readability.

Second, we want to find any characters that are not A, T, C, or G. It’s easiest to
construct a regular expression pattern that doesn’t match A, T, C, or G. To do
this, we use the caret symbol’s second meaning in regular expressions. When
used in brackets, a caret symbol matches anything that’s not one of the characters
in these brackets. So the pattern [^ATCG] matches any character that’s not A, T, C,
or G. Also, we ignore case with -i, because a, t, c, and g are valid nucleotides
(lowercase characters are often used to indicate masked repeat or low-complexity
sequences). Finally, we add grep’s --color option to color the matching non-
nucleotide characters.

When run in a terminal window, this would highlight “Y”. Interestingly, Y is actually a
valid extended ambiguous nucleotide code according to a standard set by IUPAC. Y
represents the pYrimidine bases: C or T. Other single-letter IUPAC codes can repre‐
sent uncertainty in sequence data. For example, puRine bases are represented by R,
and a base that’s either A, G, or T has the code D.

Let’s discuss a few additional points about this simple Unix pipe. First, note that both
regular expressions are in quotes, which is a good habit to get into. Also, if instead we
had used grep -v > tb1.fasta, your shell would have interpreted the > as a redirect
operator rather than a pattern supplied to grep. Unfortunately, this would mistakenly
overwrite your tb1.fasta file! Most bioinformaticians have made this mistake at some
point and learned the hard way (by losing the FASTA file they were hoping to grep),
so beware.

This simple Unix one-liner takes only a few seconds to write and run, and works
great for this particular task. We could have written a more complex program that
explicitly parses the FASTA format, counts the number of occurrences, and outputs a
list of sequence names with non-nucleotide characters. However, for our task—seeing
why a program isn’t working—building simple command-line tools on the fly is fast
and sufficient. We’ll see many more examples of how to build command line tools
with Unix data programs and pipes in Chapter 7.

Combining Pipes and Redirection
Large bioinformatics programs like aligners, assemblers, and SNP callers will often
use multiple streams simultaneously. Results (e.g., aligned reads, assembled contigs,
or SNP calls) are output via the standard output stream while diagnostic messages,
warnings, or errors are output to the standard error stream. In such cases, we need to
combine pipes and redirection to manage all streams from a running program.
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For example, suppose we have two imaginary programs: program1 and program2.
Our first program, program1, does some processing on an input file called input.txt
and outputs results to the standard output stream and diagnostic messages to the
standard error stream. Our second program, program2, takes standard output from
program1 as input and processes it. program2 also outputs its own diagnostic mes‐
sages to standard error, and results to standard output. The tricky part is that we now
have two processes outputting to both standard error and standard output. If we
didn’t capture both program1’s and program2’s standard error streams, we’d have a
jumbled mess of diagnostic messages on our screen that scrolls by too quickly for us
to read. Luckily, we can can combine pipes and redirects easily:

$ program1 input.txt 2> program1.stderr  | \   
     program2 2> program2.stderr > results.txt 

program1 processes the input.txt input file and then outputs its results to stan‐
dard output. program1’s standard error stream is redirected to the pro‐
gram1.stderr logfile. As before, the backslash is used to split these commands
across multiple lines to improve readability (and is optional in your own work).

Meanwhile, program2 uses the standard output from program1 as its standard
input. The shell redirects program2’s standard error stream to the program2.stderr
logfile, and program2’s standard output to results.txt.

Occasionally, we need to redirect a standard error stream to standard output. For
example, suppose we wanted to use grep to search for “error” in both the standard
output and standard error streams of program1. Using pipes wouldn’t work, because
pipes only link the standard output of one program to the standard input of the next.
Pipes ignore standard error. We can get around this by first redirecting standard error
to standard output, and then piping this merged stream to grep:

$ program1 2>&1 | grep "error"

The 2>&1 operator is what redirects standard error to the standard output stream.

Even More Redirection: A tee in Your Pipe
As mentioned earlier, pipes prevent unnecessary disk writing and reading operations
by connecting the standard output of one process to the standard input of another.
However, we do occasionally need to write intermediate files to disk in Unix pipe‐
lines. These intermediate files can be useful when debugging a pipeline or when you
wish to store intermediate files for steps that take a long time to complete. Like a
plumber’s T joint, the Unix program tee diverts a copy of your pipeline’s standard
output stream to an intermediate file while still passing it through its standard out‐
put:

$ program1 input.txt | tee intermediate-file.txt | program2 > results.txt
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Here, program1’s standard output is both written to intermediate-file.txt and piped
directly into program2’s standard input.

Managing and Interacting with Processes
When we run programs through the Unix shell, they become processes until they suc‐
cessfully finish or terminate with an error. There are multiple processes running on
your machine simultaneously—for example, system processes, as well as your web
browser, email application, bioinformatics programs, and so on. In bioinformatics,
we often work with processes that run for a large amount of time, so it’s important we
know how to work with and manage processes from the Unix shell. In this section,
we’ll learn the basics of manipulating processes: running and managing processes in
the background, killing errant processes, and checking process exit status.

Background Processes
When we type a command in the shell and press Enter, we lose access to that shell
prompt for however long the command takes to run. This is fine for short tasks, but
waiting for a long-running bioinformatics program to complete before continuing
work in the shell would kill our productivity. Rather than running your programs in
the foreground (as you do normally when you run a command), the shell also gives
you the option to run programs in the background. Running a process in the back‐
ground frees the prompt so you can continue working.

We can tell the Unix shell to run a program in the background by appending an
ampersand (&) to the end of our command. For example:

$ program1 input.txt > results.txt &
[1] 26577

The number returned by the shell is the process ID or PID of program1. This is a
unique ID that allows you to identify and check the status of program1 later on. We
can check what processes we have running in the background with jobs:

$ jobs
[1]+  Running       program1 input.txt > results.txt

To bring a background process into the foreground again, we can use fg (for fore‐
ground). fg will bring the most recent process to the foreground. If you have many
processes running in the background, they will all appear in the list output by the
program jobs. The numbers like [1] are job IDs (which are different than the process
IDs your system assigns your running programs). To return a specific background
job to the foreground, use fg %<num> where <num> is its number in the job list. If we
wanted to return program1 to the foreground, both fg and fg %1 would do the same
thing, as there’s only one background process:
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$ fg
program1 input.txt > results.txt

Background Processes and Hangup Signals

There’s a slight gotcha with background processes: although they
run in the background and seem disconnected from our terminal,
closing our terminal window would cause these processes to be kil‐
led. Unfortunately, a lot of long-running important jobs have been
accidentally killed this way.
Whenever our terminal window closes, it sends a hangup signal.
Hangup signals (also know as SIGHUP) are from the era in which
network connections were much less reliable. A dropped connec‐
tion could prevent a user from stopping an aberrant, resource-
hungry process. To address this, the hangup signal is sent to all
processes started from closed terminal. Nearly all Unix command-
line programs stop running as soon as they receive this signal.
So beware—running a process in the background does not guaran‐
tee that it won’t die when your terminal closes. To prevent this, we
need to use the tool nohup or run it from within Tmux, two topics
we’ll cover in much more detail in Chapter 4.

It’s also possible to place a process already running in the foreground into the back‐
ground. To do this, we first need to suspend the process, and then use the bg com‐
mand to run it in the background. Suspending a process temporarily pauses it,
allowing you to put it in the background. We can suspend processes by sending a stop
signal through the key combination Control-z. With our imaginary program1, we
would accomplish this as follows:

$ program1 input.txt > results.txt # forgot to append ampersand
$ # enter control-z
[1]+  Stopped                  program1 input.txt > results.txt
$ bg
[1]+ program1 input.txt > results.txt

As with fg earlier, we could also use jobs to see the suspended process’s job ID. If we
have multiple running processes, we can specify which one to move to the back‐
ground with bg %<num> (where <num> is the job ID).

Killing Processes
Occasionally we need to kill a process. It’s not uncommon for a process to demand
too many of our computer’s resources or become nonresponsive, requiring that we
send a special signal to kill the process. Killing a process ends it for good, and unlike
suspending it with a stop signal, it’s unrecoverable. If the process is currently running
in your shell, you can kill it by entering Control-C. This only works if this process is
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running in the foreground, so if it’s in the background you’ll have to use the fg dis‐
cussed earlier.

More advanced process management (including monitoring and finding processes
with top and ps, and killing them with the kill command) is out of the scope of this
chapter. However, there’s a lot of information about process and resource manage‐
ment in this chapter’s README on GitHub.

Exit Status: How to Programmatically Tell Whether Your
Command Worked
One concern with long-running processes is that you’re probably not going to wait
around to monitor them. How do you know when they complete? How do you know
if they successfully finished without an error? Unix programs exit with an exit status, 
which indicates whether a program terminated without a problem or with an error.
By Unix standards, an exit status of 0 indicates the process ran successfully, and any
nonzero status indicates some sort of error has occurred (and hopefully the program
prints an understandable error message, too).

Warning Exit Statuses

Unfortunately, whether a program returns a nonzero status when it
encounters an error is up to program developers. Occasionally,
programmers forget to handle errors well (and this does indeed
happen in bioinformatics programs), and programs can error out
and still return a zero-exit status. This is yet another reason why it’s
crucial to follow The Golden Rule (i.e., don’t trust your tools) and
to always check your intermediate data.

The exit status isn’t printed to the terminal, but your shell will set its value to a vari‐
able in your shell (aptly named a shell variable) named $?. We can use the echo com‐
mand to look at this variable’s value after running a command:

$ program1 input.txt > results.txt
$ echo $?
0

Exit statuses are incredibly useful because they allow us to programmatically chain
commands together in the shell. A subsequent command in a chain is run condition‐
ally on the last command’s exit status. The shell provides two operators that imple‐
ment this: one operator that runs the subsequent command only if the first command
completed successfully (&&), and one operator that runs the next command only if the
first completed unsuccessfully (||). If you’re familiar with concept of short-circuit
evaluation, you’ll understand that these operators are short-circuiting and and or,
respectively.
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It’s best to see these operators in an example. Suppose we wanted to run program1,
have it write its output to file, and then have program2 read this output. To avoid the
problem of program2 reading a file that’s not complete because program1 terminated
with an error, we want to start program2 only after program1 returns a zero (success‐
ful) exit code. The shell operator && executes subsequent commands only if previous
commands have completed with a nonzero exit status:

$ program1 input.txt > intermediate-results.txt && \
    program2 intermediate-results.txt > results.txt

Using the || operator, we can have the shell execute a command only if the previous
command has failed (exited with a nonzero status). This is useful for warning mes‐
sages:

$ program1 input.txt > intermediate-results.txt || \
    echo "warning: an error occurred"

If you want to test && and ||, there are two Unix commands that do nothing but
return either exit success (true) or exit failure (false). For example, think about why
the following lines are printed:

$ true
$ echo $?
0
$ false
$ echo $?
1
$ true && echo "first command was a success"
first command was a success
$ true || echo "first command was not a success"
$ false || echo "first command was not a success"
first command was not a success
$ false && echo "first command was a success"

Additionally, if you don’t care about the exit status and you just wish to execute two
commands sequentially, you can use a single semicolon (;):

$ false; true; false; echo "none of the previous mattered"
none of the previous mattered

If you’ve only known the shell as something that you interacted with through a termi‐
nal, you may start to notice that it has many elements of a full programming lan‐
guage. This is because it is! In fact, you can write and execute shell scripts just as you
do Python scripts. Keeping your bioinformatics shell work in a commented shell
script kept under version control is the best way to ensure that your work is reprodu‐
cible. We will discuss shell scripts in Chapter 12.
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Command Substitution
Unix users like to have the Unix shell do work for them—this is why shell expansions
like wildcards and brace expansion exist (if you need a refresher, refer back to Chap‐
ter 2). Another type of useful shell expansion is command substitution. Command
substitution runs a Unix command inline and returns the output as a string that can
be used in another command. This opens up a lot of useful possibilities.

A good example of when this is useful is in those early days of the New Year when we
haven’t yet adjusted to using the new date. For example, five days into 2013, I shared
with my collaborators a directory of new results named snp-sim-01-05-2012 (in mm-
dd-yyyy format). After the embarrassment subsided, the Unix solution presented
itself: the date command is there to programmatically return the current date as a
string. We can use this string to automatically give our directories names containing
the current date. We use command substitution to run the date program and replace
this command with its output (the string). This is easier to understand through a
simpler example:

$ grep -c '^>' input.fasta 
416
$ echo "There are $(grep -c '^>' input.fasta) entries in my FASTA file." 
There are 416 entries in my FASTA file.

This command uses grep to count (the -c option stands for count) the number
of lines matching the pattern. In this case, our pattern ^> matches FASTA header
lines. Because each FASTA file entry has a header like “>sequence-a” that begins
with “>”, this command matches each of these headers and counts the number of
FASTA entries.

Now suppose we wanted to take the output of the grep command and insert it
into another command—this is what command substitution is all about. In this
case, we want echo to print a message containing how many FASTA entries there
are to standard output. Using command substitution, we can calculate and return
the number of FASTA entries directly into this string!

Using this command substitution approach, we can easily create dated directories
using the command date +%F, where the argument +%F simply tells the date program
to output the date in a particular format. date has multiple formatting options, so
your European colleagues can specify a date as “19 May 2011” whereas your Ameri‐
can colleagues can specify “May 19, 2011:”

$ mkdir results-$(date +%F)
$ ls results-2015-04-13
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In general, the format returned by date +%F is a really good one for dated directories,
because when results are sorted by name, directories in this format also sort chrono‐
logically:

$ ls -l
drwxr-xr-x  2 vinceb  staff  68 Feb  3 23:23 1999-07-01
drwxr-xr-x  2 vinceb  staff  68 Feb  3 23:22 2000-12-19
drwxr-xr-x  2 vinceb  staff  68 Feb  3 23:22 2011-02-03
drwxr-xr-x  2 vinceb  staff  68 Feb  3 23:22 2012-02-13
drwxr-xr-x  2 vinceb  staff  68 Feb  3 23:23 2012-05-26
drwxr-xr-x  2 vinceb  staff  68 Feb  3 23:22 2012-05-27
drwxr-xr-x  2 vinceb  staff  68 Feb  3 23:23 2012-07-04
drwxr-xr-x  2 vinceb  staff  68 Feb  3 23:23 2012-07-05

The cleverness behind this is what makes this date format, known as ISO 8601, useful.

Storing Your Unix Tricks

In Chapter 2, we made a project directory with mkdir -p and brace
expansions. If you find yourself making the same project structures
a lot, it’s worthwhile to store it rather than typing it out each time.
Why repeat yourself?
Early Unix users were a clever (or lazy) bunch and devised a tool
for storing repeated command combinations: alias. If you’re run‐
ning a clever one-liner over and over again, use add alias to add it
to your ~/.bashrc (or ~/.profile if on OS X). alias simply aliases
your command to a shorter name alias. For example, if you always
create project directories with the same directory structure, add a
line like the following:

alias mkpr="mkdir -p {data/seqs,scripts,analysis}"

For small stuff like this, there’s no point writing more complex
scripts; adopt the Unix way and keep it simple. Another example is
that we could alias our date +%F command to today:

alias today="date +%F"

Now, entering mkdir results-$(today) will create a dated results
directory.
A word of warning, though: do not use your aliased command in
project-level shell scripts! These reside in your shell’s startup file
(e.g., ~/.profile or ~/.bashrc), which is outside of your project direc‐
tory. If you distribute your project directory, any shell programs
that require alias definitions will not work. In computing, we say
that such a practice is not portable—if it moves off your system, it
breaks. Writing code to be portable, even if it’s not going to run
elsewhere, will help in keeping projects reproducible.
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Like all good things, Unix tricks like command substitution are best used in modera‐
tion. Once you’re a bit more familiar with these tricks, they’re very quick and easy
solutions to routine annoyances. In general, however, it’s best to keep things simple
and know when to reach for the quick Unix solution and when to use another tool
like Python or R. We’ll discuss this in more depth in Chapters 7 and 8.
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CHAPTER 4

Working with Remote Machines

Most data-processing tasks in bioinformatics require more computing power than we
have on our workstations, which means we must work with large servers or comput‐
ing clusters. For some bioinformatics projects, it’s likely you’ll work predominantly
over a network connection with remote machines. Unsurprisingly, working with
remote machines can be quite frustrating for beginners and can hobble the produc‐
tivity of experienced bioinformaticians. In this chapter, we’ll learn how to make
working with remote machines as effortless as possible so you can focus your time
and efforts on the project itself.

Connecting to Remote Machines with SSH
There are many ways to connect to another machine over a network, but by far the
most common is through the secure shell (SSH). We use SSH because it’s encrypted
(which makes it secure to send passwords, edit private files, etc.), and because it’s on
every Unix system. How your server, SSH, and your user account are configured is
something you or your system administrator determines; this chapter won’t cover
these system administration topics. The material covered in this section should help
you answer common SSH questions a sysadmin may ask (e.g., “Do you have an SSH
public key?”). You’ll also learn all of the basics you’ll need as a bioinformatician to
SSH into remote machines.

To initialize an SSH connection to a host (in this case, biocluster.myuniversity.edu), we
use the ssh command:

$ ssh biocluster.myuniversity.edu
Password: 
Last login: Sun Aug 11 11:57:59 2013 from fisher.myisp.com
wsobchak@biocluster.myuniversity.edu$ 
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When connecting to a remote host with SSH, you’ll be prompted for your remote
user account’s password.

After logging in with your password, you’re granted a shell prompt on the remote
host. This allows you to execute commands on the remote host just as you’d exe‐
cute them locally.

SSH also works with IP addresses—for example, you could connect to a machine with
ssh 192.169.237.42. If your server uses a different port than the default (port 22),
or your username on the remote machine is different from your local username,
you’ll need to specify these details when connecting:

$ ssh -p 50453 cdarwin@biocluster.myuniversity.edu

Here, we’ve specified the port with the flag -p and the username by using the syntax
user@domain. If you’re unable to connect to a host, using ssh -v (-v for verbose) can
help you spot the issue. You can increase the verbosity by using -vv or -vvv; see man
ssh for more details.

Storing Your Frequent SSH Hosts

Bioinformaticians are constantly having to SSH to servers, and typ‐
ing out IP addresses or long domain names can become quite tedi‐
ous. It’s also burdensome to remember and type out additional
details like the remote server’s port or your remote username. The
developers behind SSH created a clever alternative: the SSH config
file. SSH config files store details about hosts you frequently con‐
nect to. This file is easy to create, and hosts stored in this file work
not only with ssh, but also with two programs we’ll learn about in
Chapter 6: scp and rsync.
To create a file, just create and edit the file at ~/.ssh/config. Each
entry takes the following form:

Host bio_serv
     HostName 192.168.237.42
     User cdarwin
     Port 50453

You won’t need to specify Port and User unless these differ from
the remote host’s defaults. With this file saved, you can SSH into
192.168.236.42 using the alias ssh bio_serv rather than typing out
ssh -p 50453 cdarwin@192.169.237.42.

If you’re working with many remote machine connections in many terminal tabs, it’s
sometimes useful to be make sure you’re working on the host you think you are. You
can always access the hostname with the command hostname:
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$ hostname
biocluster.myuniversity.edu

Similarly, if you maintain multiple accounts on a server (e.g., a user account for anal‐
ysis and a more powerful administration account for sysadmin tasks), it can be useful
to check which account you’re using. The command whoami returns your username:

$ whoami
cdarwin

This is especially useful if you do occasionally log in with an administrator account
with more privileges—the potential risks associated with making a mistake on an
account with administrator privileges are much higher, so you should always be away
when you’re on this account (and minimize this time as much as possible).

Quick Authentication with SSH Keys
SSH requires that you type your password for the account on the remote machine.
However, entering a password each time you login can get tedious, and not always
safe (e.g., keyboard input could be monitored). A safer, easier alternative is to use an
SSH public key. Public key cryptography is a fascinating technology, but the details are
outside the scope of this book. To use SSH keys to log in into remote machines
without passwords, we first need to generate a public/private key pair. We do this
with the command ssh-keygen. It’s very important that you note the difference
between your public and private keys: you can distribute your public key to other
servers, but your private key must be kept safe and secure and never shared.

Let’s generate an SSH key pair using ssh-keygen:
$ ssh-keygen -b 2048
Generating public/private rsa key pair.
Enter file in which to save the key (/Users/username/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/username/.ssh/id_rsa.
Your public key has been saved in /Users/username/.ssh/id_rsa.pub.
The key fingerprint is:
e1:1e:3d:01:e1:a3:ed:2b:6b:fe:c1:8e:73:7f:1f:f0
The key's randomart image is:
+--[ RSA 2048]----+
|.o... ...        |
|  .  .   o       |
| .        *      |
|  .      o +     |
| .      S .      |
|  o    . E       |
|   +    .        |
|oo+..  . .       |
|+=oo... o.       |
+-----------------+
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This creates a private key at ~/.ssh/id_rsa and a public key at ~/.ssh/id_rsa.pub. ssh-
keygen gives you the option to use an empty password, but it’s generally recom‐
mended that you use a real password. If you’re wondering, the random art ssh-
keygen creates is a way of validating your keys (there are more details about this in
man ssh if you’re curious).

To use password-less authentication using SSH keys, first SSH to your remote host
and log in with your password. Change directories to ~/.ssh, and append the contents
of your public key file (id_rsa.pub, not your private key!) to ~/.ssh/authorized_keys
(note that the ~ may be expanded to /home/username or /Users/username depending
on the remote operating system). You can append this file by copying your public key
from your local system, and pasting it to the ~/.ssh/authorized_keys file on the remote
system. Some systems have an ssh-copy-id command that automatically does this
for you.

Again, be sure you’re using your public key, and not the private key. If your private
key ever is accidentally distributed, this compromises the security of the machines
you’ve set up key-based authentication on. The ~/.ssh/id_rsa private key has read/
write permissions only for the creator, and these restrictive permissions should be
kept this way.

After you’ve added your public key to the remote host, try logging in a few times.
You’ll notice that you keep getting prompted for your SSH key’s password. If you’re
scratching your head wondering how this saves time, there’s one more trick to know:
ssh-agent. The ssh-agent program runs in the background on your local machine,
and manages your SSH key(s). ssh-agent allows you to use your keys without enter‐
ing their passwords each time—exactly what we want when we frequently connect to
servers. SSH agent is usually already running on Unix-based systems, but if not, you
can use eval ssh-agent to start it. Then, to tell ssh-agent about our key, we use ssh-
add:

$ ssh-add
Enter passphrase for /Users/username/.ssh/id_rsa:
Identity added: /Users/username/.ssh/id_rsa

Now, the background ssh-agent process manages our key for us, and we won’t have
to enter our password each time we connect to a remote machine. I once calculated
that I connect to different machines about 16 times a day, and it takes me about two
seconds to enter my password on average (accounting for typing mistakes). If we
were to assume I didn’t work on weekends, this works out to about 8,320 seconds, or
2.3 hours a year of just SSH connections. After 10 years, this translates to nearly an
entire day wasted on just connecting to machines. Learning these tricks may take an
hour or so, but over the course of a career, this really saves time.
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Maintaining Long-Running Jobs with nohup and tmux
In Chapter 3, we briefly discussed how processes (whether running in the foreground
or background) will be terminated when we close our terminal window. Processes are
also terminated if we disconnect from our servers or if our network connection tem‐
porarily drops out. This behavior is intentional—your program will receive the
hangup signal (referred to more technically as SIGHUP), which will in almost all cases
cause your application to exit immediately. Because we’re perpetually working with
remote machines in our daily bioinformatics work, we need a way to prevent hangups
from stopping long-running applications. Leaving your local terminal’s connection to
a remote machine open while a program runs is a fragile solution—even the most
reliable networks can have short outage blips. We’ll look at two preferable solutions:
nohup and Tmux. If you use a cluster, there are better ways to deal with hangups (e.g.,
submitting batch jobs to your cluster’s software), but these depend on your specific
cluster configuration. In this case, consult your system administrator.

nohup
nohup is simple command that executes a command and catches hangup signals sent
from the terminal. Because the nohup command is catching and ignoring these
hangup signals, the program you’re running won’t be interrupted. Running a com‐
mand with nohup is as easy as adding nohup before your command:

$ nohup program1 > output.txt & 
[1] 10900 

We run the command with all options and arguments as we would normally, but
by adding nohup this program will not be interrupted if your terminal were to
close or the remote connection were to drop. Additionally, it’s a good idea to
redirect standard output and standard error just as we did in Chapter 3 so you
can check output later.

nohup returns the process ID number (or PID), which is how you can monitor or
terminate this process if you need to (covered in “Killing Processes” on page 51).
Because we lose access to this process when we run it through nohup, our only
way of terminating it is by referring to it by its process ID.

Working with Remote Machines Through Tmux
An alternative to nohup is to use a terminal multiplexer. In addition to solving the
hangup problem, using a terminal multiplexer will greatly increase your productivity
when working over a remote connection. We’ll use a terminal multiplexer called
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Tmux, but a popular alternative is GNU Screen. Tmux and Screen have similar func‐
tionality, but Tmux is more actively developed and has some additional nice features.

Tmux (and terminal multiplexers in general) allow you to create a session containing
multiple windows, each capable of running their own processes. Tmux’s sessions are
persistent, meaning that all windows and their processes can easily be restored by
reattaching the session.

When run on a remote machine, Tmux allows you to maintain a persistent session
that won’t be lost if your connection drops or you close your terminal window to go
home (or even quit your terminal program). Rather, all of Tmux’s sessions can be
reattached to whatever terminal you’re currently on—just SSH back into the remote
host and reattach the Tmux session. All windows will be undisturbed and all pro‐
cesses still running.

Installing and Configuring Tmux
Tmux is available through most package/port managers. On OS X, Tmux can be
installed through Homebrew and on Ubuntu it’s available through apt-get. After
installing Tmux, I strongly suggest you go to this chapter’s directory on GitHub and
download the .tmux.conf file to your home directory. Just as your shell loads configu‐
rations from ~/.profile or ~/.bashrc, Tmux will load its configurations from
~/.tmux.conf. The minimal settings in .tmux.conf make it easier to learn Tmux by giv‐
ing you a useful display bar at the bottom and changing some of Tmux’s key bindings
to those that are more common among Tmux users.

Creating, Detaching, and Attaching Tmux Sessions
Tmux allows you to have multiple sessions, and within each session have multiple
windows. Each Tmux session is a separate environment. Normally, I use a session for
each different project I’m working on; for example, I might have a session for maize
SNP calling, one for developing a new tool, and another for writing R code to analyze
some Drosophila gene expression data. Within each of these sessions, I’d have multi‐
ple windows. For example, in my maize SNP calling project, I might have three win‐
dows open: one for interacting with the shell, one with a project notebook open in my
text editor, and another with a Unix manual page open. Note that all of these win‐
dows are within Tmux; your terminal program’s concept of tabs and windows is
entirely different from Tmux’s. Unlike Tmux, your terminal cannot maintain persis‐
tent sessions.

Let’s create a new Tmux session. To make our examples a bit easier, we’re going to do
this on our local machine. However, to manage sessions on a remote host, we’d need
to start Tmux on that remote host (this is often confusing for beginners). Running
Tmux on a remote host is no different; we just SSH in to our host and start Tmux
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there. Suppose we wanted to create a Tmux session corresponding to our earlier
Maize SNP calling example:

$ tmux new-session -s maize-snps

Tmux uses subcommands; the new-session subcommand just shown creates new
sessions. The -s option simply gives this session a name so it’s easier to identify later.
If you’re following along and you’ve correctly placed the .tmux.conf file in your home
directory, your Tmux session should look like Figure 4-1.

Figure 4-1. Tmux using the provided .tmux.conf file

Tmux looks just like a normal shell prompt except for the status bar it has added at
the bottom of the screen (we’ll talk more about this in a bit). When Tmux is open, we
interact with Tmux through keyboard shortcuts. These shortcuts are all based on first
pressing Control and a, and then adding a specific key after (releasing Control-a
first). By default, Tmux uses Control-b rather than Control-a, but this is a change
we’ve made in our .tmux.conf to follow the configuration preferred by most Tmux
users.

The most useful feature of Tmux (and terminal multiplexers in general) is the ability
to detach and reattach sessions without losing our work. Let’s see how this works in
Tmux. Let’s first enter something in our blank shell so we can recognize this session
later: echo "hello, tmux". To detach a session, we use Control-a, followed by d (for
detach). After entering this, you should see Tmux close and be returned to your regu‐
lar shell prompt.
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After detaching, we can see that Tmux has kept our session alive by calling tmux with
the list-sessions subcommand:

$ tmux list-sessions
maize-snps: 1 windows (created Mon Feb 10 00:06:00 2014) [180x41]

Now, let’s reattach our session. We reattach sessions with the attach-session sub‐
command, but the shorter attach also works:

$ tmux attach

Note that because we only have one session running (our maize-snps session) we
don’t have to specify which session to attach. Had there been more than one session
running, all session names would have been listed when we executed list-sessions
and we could reattach a particular session using -t <session-name>. With only one
Tmux session running, tmux attach is equivalent to tmux attach-session -t
maize-snps.

Managing remote sessions with Tmux is no different than managing sessions locally
as we did earlier. The only difference is that we create our sessions on the remote host
after we connect with SSH. Closing our SSH connection (either intentionally or unin‐
tentionally due to a network drop) will cause Tmux to detach any active sessions.

Working with Tmux Windows
Each Tmux session can also contain multiple windows. This is especially handy when
working on remote machines. With Tmux’s windows, a single SSH connection to a
remote host can support multiple activities in different windows. Tmux also allows
you to create multiple panes within a window that allow you to split your windows
into parts, but to save space I’ll let the reader learn this functionality on their own.
Consult the Tmux manual page (e.g., with man tmux) or read one of the many excel‐
lent Tmux tutorials on the Web.

Like other Tmux key sequences, we create and switch windows using Control-a and
then another key. To create a window, we use Control-a c, and we use Control-a n
and Control-a p to go to the next and previous windows, respectively. Table 4-1 lists
the most commonly used Tmux key sequences. See man tmux for a complete list, or
press Control-a ? from within a Tmux session.

Table 4-1. Common Tmux key sequences
Key sequence Action

Control-a d Detach

Control-a c Create new window
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Key sequence Action

Control-a n Go to next window

Control-a p Go to previous window

Control-a & Kill current window (exit in shell also works)

Control-a , Rename current window

Control-a ? List all key sequences

Table 4-2 lists the most commonly used Tmux subcommands.

Table 4-2. Common Tmux subcommands
Subcommand Action

tmux list-sessions List all sessions.

tmux new-session -s session-name Create a new session named “session-name”.

tmux attach-session -t session-
name

Attach a session named “session-name”.

tmux attach-session -d -t 
session-name

Attach a session named “session-name”,
detaching it first.

If you use Emacs as your text editor, you’ll quickly notice that the key binding
Control-a may get in the way. To enter a literal Control-a (as used to go to the begin‐
ning of the line in Emacs or the Bash shell), use Control-a a. 

Working with Remote Machines Through Tmux | 65





CHAPTER 5

Git for Scientists

In Chapter 2, we discussed organizing a bioinformatics project directory and how
this helps keep your work tidy during development. Good organization also facilitates
automating tasks, which makes our lives easier and leads to more reproducible work.
However, as our project changes over time and possibly incorporates the work of our
collaborators, we face an additional challenge: managing different file versions.

It’s likely that you already use some sort of versioning system in your work. For exam‐
ple, you may have files with names such as thesis-vers1.docx, thesis-
vers3_CD_edits.docx, analysis-vers6.R, and thesis-vers8_CD+GM+SW_edits.docx.
Storing these past versions is helpful because it allows us to go back and restore whole
files or sections if we need to. File versions also help us differentiate our copies of a
file from those edited by a collaborator. However, this ad hoc file versioning system
doesn’t scale well to complicated bioinformatics projects—our otherwise tidy project
directories would be muddled with different versioned scripts, R analyses, README
files, and papers.

Project organization only gets more complicated when we work collaboratively. We
could share our entire directory with a colleague through a service like Dropbox or
Google Drive, but we run the risk of something getting deleted or corrupted. It’s also
not possible to drop an entire bioinformatics project directory into a shared direc‐
tory, as it likely contains gigabytes (or more) of data that may be too large to share
across a network. These tools are useful for sharing small files, but aren’t intended to
manage large collaborative projects involving changing code and data.

Luckily, software engineers have faced these same issues in modern collaborative soft‐
ware development and developed version control systems (VCS) to manage different
versions of collaboratively edited code. The VCS we’ll use in this chapter was written
by Linus Torvalds and is called Git. Linus wrote Git to manage the Linux kernel
(which he also wrote), a large codebase with thousands of collaborators simultane‐
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ously changing and working on files. As you can imagine, Git is well suited for
project version control and collaborative work.

Admittedly, Git can be tricky to learn at first. I highly recommend you take the time
to learn Git in this chapter, but be aware that understanding Git (like most topics in
this book, and arguably everything in life) will take time and practice. Throughout
this chapter, I will indicate when certain sections are especially advanced; you can
revisit these later without problems in continuity with the rest of the book. Also, I
recommend you practice Git with the example projects and code from the book to get
the basic commands in the back of your head. After struggling in the beginning with
Git, you’ll soon see how it’s the best version control system out there.

Why Git Is Necessary in Bioinformatics Projects
As a longtime proponent of Git, I’ve suggested it to many colleagues and offered to
teach them the basics. In most cases, I find the hardest part is actually in convincing
scientists they should adopt version control in their work. Because you may be won‐
dering whether working through this chapter is worth it, I want to discuss why learn‐
ing Git is definitely worth the effort. If you’re already 100% convinced, you can dive
into learning Git in the next section.

Git Allows You to Keep Snapshots of Your Project
With version control systems, you create snapshots of your current project at specific
points in its development. If anything goes awry, you can rewind to a past snapshot of
your project’s state (called a commit) and restore files. In the fast pace of bioinformat‐
ics work, having this safeguard is very useful.

Git also helps fix a frustrating type of bug known as software regression, where a
piece of code that was once working mysteriously stops working or gives different
results. For example, suppose that you’re working on an analysis of SNP data. You
find in your analysis that 14% of your SNPs fall in coding regions in one stretch of a
chromosome. This is relevant to your project, so you cite this percent in your paper
and make a commit.

Two months later, you’ve forgotten the details of this analysis, but need to revisit the
14% statistic. Much to your surprise, when you rerun the analysis code, this changes
to 26%! If you’ve been tracking your project’s development by making commits (e.g.,
taking snapshots), you’ll have an entire history of all of your project’s changes and can
pinpoint when your results changed.

Git commits allow you to easily reproduce and rollback to past versions of analysis.
It’s also easy to look at every commit, when it was committed, what has changed
across commits, and even compare the difference between any two commits. Instead
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of redoing months of work to find a bug, Git can give you line-by-line code differ‐
ences across versions.

In addition to simplifying bug finding, Git is an essential part of proper documenta‐
tion. When your code produces results, it’s essential that this version of code is fully
documented for reproducibility. A good analogy comes from my friend and colleague
Mike Covington: imagine you keep a lab notebook in pencil, and each time you run a
new PCR you erase your past results and jot down the newest ones. This may sound
extreme, but is functionally no different than changing code and not keeping a record
of past versions.

Git Helps You Keep Track of Important Changes to Code
Most software changes over time as new features are added or bugs are fixed. It’s
important in scientific computing to follow the development of software we use, as a
fixed bug could mean the difference between correct and incorrect results in our own
work. Git can be very helpful in helping you track changes in code—to see this, let’s
look at a situation I’ve run into (and I suspect happens in labs all over the world).

Suppose a lab has a clever bioinformatician who has written a script that trims poor
quality regions from reads. This bioinformatician then distributes this to all members
of his lab. Two members of his lab send it to friends in other labs. About a month
later, the clever bioinformatician realizes there’s a bug that leads to incorrect results in
certain cases. The bioinformatician quickly emails everyone in his lab the new ver‐
sion and warns them of the potential for incorrect results. Unfortunately, members of
the other lab may not get the message and could continue using the older buggy ver‐
sion of the script.

Git helps solve this problem by making it easy to stay up to date with software devel‐
opment. With Git, it’s easy to both track software changes and download new soft‐
ware versions. Furthermore, services like GitHub and Bitbucket host Git repositories
on the Web, which makes sharing and collaborating on code across labs easy.

Git Helps Keep Software Organized and Available After People Leave
Imagine another situation: a postdoc moves to start her own lab, and all of her differ‐
ent software tools and scripts are scattered in different directories, or worse, com‐
pletely lost. Disorderedly code disrupts and inconveniences other lab members; lost
code leads to irreproducible results and could delay future research.

Git helps maintain both continuity in work and a full record of a project’s history.
Centralizing an entire project into a repository keeps it organized. Git stores every
committed change, so the entire history of a project is available even if the main
developer leaves and isn’t around for questions. With the ability to roll back to past
versions, modifying projects is less risky, making it easier to build off existing work.
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Installing Git
If you’re on OS X, install Git through Homebrew (e.g., brew install git); on Linux,
use apt-get (e.g., apt-get install git). If your system does not have a package
manager, the Git website has both source code and executable versions of Git.

Basic Git: Creating Repositories, Tracking Files, and
Staging and Committing Changes
Now that we’ve seen some Git concepts and how Git fits into your bioinformatics
workflow, let’s explore the most basic Git concepts of creating repositories, telling Git
which files to track, and staging and committing changes.

Git Setup: Telling Git Who You Are
Because Git is meant to help with collaborative editing of files, you need to tell Git
who you are and what your email address is. To do this, use:

$ git config --global user.name "Sewall Wright"
$ git config --global user.email "swright@adaptivelandscape.org"

Make sure to use your own name and email, or course. We interact with Git through
subcommands, which are in the format git <subcommand>. Git has loads of subcom‐
mands, but you’ll only need a few in your daily work.

Another useful Git setting to enable now is terminal colors. Many of Git’s subcom‐
mands use terminal colors to visually indicate changes (e.g., red for deletion and
green for something new or modified). We can enable this with:

$ git config --global color.ui true

git init and git clone: Creating Repositories
To get started with Git, we first need to initialize a directory as a Git repository. A
repository is a directory that’s under version control. It contains both your current
working files and snapshots of the project at certain points in time. In version control
lingo, these snapshots are known as commits. Working with Git is fundamentally
about creating and manipulating these commits: creating commits, looking at past
commits, sharing commits, and comparing different commits.

With Git, there are two primary ways to create a repository: by initializing one from
an existing directory, or cloning a repository that exists elsewhere. Either way, the
result is a directory that Git treats as a repository. Git only manages the files and sub‐
directories inside the repository directory—it cannot manage files outside of your
repository.
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Let’s start by initializing the zmays-snps/ project directory we created in Chapter 2 as
a Git repository. Change into the zmays-snps/ directory and use the Git subcommand
git init:

$ git init
Initialized empty Git repository in /Users/vinceb/Projects/zmays-snps/.git/

git init creates a hidden directory called .git/ in your zmays-snps/ project directory
(you can see it with ls -a). This .git/ directory is how Git manages your repository
behind the scenes. However, don’t modify or remove anything in this directory—it’s
meant to be manipulated by Git only. Instead, we interact with our repository
through Git subcommands like git init.

The other way to create a repository is through cloning an existing repository. You
can clone repositories from anywhere: somewhere else on your filesystem, from your
local network, or across the Internet. Nowadays, with repository hosting services like
GitHub and Bitbucket, it’s most common to clone Git repositories from the Web.

Let’s practice cloning a repository from GitHub. For this example, we’ll clone the
Seqtk code from Heng Li’s GitHub page. Seqtk is short for SEQuence ToolKit, and
contains a well-written and useful set of tools for processing FASTQ and FASTA files.
First, visit the GitHub repository and poke around a bit. All of GitHub’s repositories
have this URL syntax: user/repository. Note on this repository’s page that clone URL
on the righthand side—this is where you can copy the link to clone this repository.

Now, let’s switch to a directory outside of zmays-snps/. Whichever directory you
choose is fine; I use a ~/src/ directory for cloning and compiling other developers’
tools. From this directory, run:

$ git clone git://github.com/lh3/seqtk.git
Cloning into 'seqtk'...
remote: Counting objects: 92, done.
remote: Compressing objects: 100% (47/47), done.
remote: Total 92 (delta 56), reused 80 (delta 44)
Receiving objects: 100% (92/92), 32.58 KiB, done.
Resolving deltas: 100% (56/56), done.

git clone clones seqtk to your local directory, mirroring the original repository on
GitHub. Note that you won’t be able to directly modify Heng Li’s original GitHub
repository—cloning this repository only gives you access to retrieve new updates
from the GitHub repository as they’re released.

Now, if you cd into seqtk/ and run ls, you’ll see seqtk’s source:
$ cd seqtk
$ ls
Makefile  README.md khash.h   kseq.h    seqtk.c

Basic Git: Creating Repositories, Tracking Files, and Staging and Committing Changes | 71

http://github.com/lh3/seqtk


Despite originating through different methods, both zmays-snps/ and seqtk/ are Git
repositories.

Tracking Files in Git: git add and git status Part I
Although you’ve initialized the zmays-snps/ as a Git repository, Git doesn’t automati‐
cally begin tracking every file in this directory. Rather, you need to tell Git which files
to track using the subcommand git add. This is actually a useful feature of Git—bio‐
informatics projects contain many files we don’t want to track, including large data
files, intermediate results, or anything that could be easily regenerated by rerunning a
command.

Before tracking a file, let’s use the command git status to check Git’s status of the
files in our repository (switch to the zmays-snps/ directory if you are elsewhere):

$ git status
# On branch master 
#
# Initial commit
#
# Untracked files: 
#   (use "git add <file>..." to include in what will be committed)
#
# README
# data/
nothing added to commit but untracked files present (use "git add" to track)

git status tell us:

We’re on branch master, which is the default Git branch. Branches allow you to
work on and switch between different versions of your project simultaneously.
Git’s simple and powerful branches are a primary reason it’s such a popular ver‐
sion control system. We’re only going to work with Git’s default master branch
for now, but we’ll learn more about branches later in this chapter.

We have a list of “Untracked files,” which include everything in the root project
directory. Because we haven’t told Git to track anything, Git has nothing to put in
a commit if we were to try.

It’s good to get git status under your fingers, as it’s one of the most frequently used
Git commands. git status describes the current state of your project repository:
what’s changed, what’s ready to be included in the next commit, and what’s not being
tracked. We’ll use it extensively throughout the rest of this chapter.

Let’s use git add to tell Git to track the README and data/README files in our
zmays-snps/ directory:

$ git add README data/README
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Now, Git is tracking both data/README and README. We can verify this by run‐
ning git status again:

$ ls
README   analysis data     scripts
$ git status
# On branch master
#
# Initial commit
#
# Changes to be committed:
#   (use "git rm --cached <file>..." to unstage)
#
# new file:   README 
# new file:   data/README
#
# Untracked files:
#   (use "git add <file>..." to include in what will be committed)
#
# data/seqs/ 

Note now how Git lists README and data/README as new files, under the sec‐
tion “changes to be committed.” If we made a commit now, our commit would
take a snapshot of the exact version of these files as they were when we added
them with git add.

There are also untracked directories like data/seqs/, as we have not told Git to
track these yet. Conveniently, git status reminds us we could use git add to
add these to a commit.

The scripts/ and analysis/ directories are not included in git status because they are
empty. The data/seqs/ directory is included because it contains the empty sequence
files we created with touch in Chapter 2.

Staging Files in Git: git add and git status Part II
With Git, there’s a difference between tracked files and files staged to be included in
the next commit. This is a subtle difference, and one that often causes a lot of confu‐
sion for beginners learning Git. A file that’s tracked means Git knows about it. A
staged file is not only tracked, but its latest changes are staged to be included in the
next commit (see Figure 5-1).

A good way to illustrate the difference is to consider what happens when we change
one of the files we started tracking with git add. Changes made to a tracked file will
not automatically be included in the next commit. To include these new changes, we
would need to explicitly stage them—using git add again. Part of the confusion lies
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in the fact that git add both tracks new files and stages the changes made to tracked
files. Let’s work through an example to make this clearer.

Figure 5-1. Git’s separation of the working tree (all files in your repository), the staging
area (files to be included in the next commit), and committed changes (a snapshot of a
version of your project at some point in time); git add on an untracked file begins track‐
ing it and stages it, while git add on a tracked file just stages it for the next commit

From the git status output from the last section, we see that both the data/
README and README files are ready to be committed. However, look what hap‐
pens when we make a change to one of these tracked files and then call git status:

$ echo "Zea Mays SNP Calling Project" >> README    # change file README
$ git status
# On branch master
#
# Initial commit
#
# Changes to be committed:
#   (use "git rm --cached <file>..." to unstage)
#
# new file:   README
# new file:   data/README
#
# Changes not staged for commit:
#   (use "git add <file>..." to update what will be committed)
#   (use "git checkout -- <file>..." to discard changes in working directory)
#
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# modified:   README
#
# Untracked files:
#   (use "git add <file>..." to include in what will be committed)
#
# data/seqs/

After modifying README, git status lists README under “changes not staged for
commit.” This is because we’ve made changes to this file since initially tracking and
staging README with git add (when first tracking a file, its current version is also
staged). If we were to make a commit now, our commit would include the previous
version of README, not this newly modified version.

To add these recent modifications to README in our next commit, we stage them
using git add. Let’s do this now and see what git status returns:

$ git add README
$ git status
# On branch master
#
# Initial commit
#
# Changes to be committed:
#   (use "git rm --cached <file>..." to unstage)
#
# new file:   README
# new file:   data/README
#
# Untracked files:
#   (use "git add <file>..." to include in what will be committed)
#
# data/seqs/
# notebook.md

Now, README is listed under “Changes to be committed” again, because we’ve
staged these changes with git add. Our next commit will include the most recent
version.

Again, don’t fret if you find this confusing. The difference is subtle, and it doesn’t help
that we use git add for both operations. Remember the two roles of git add:

• Alerting Git to start tracking untracked files (this also stages the current version
of the file to be included in the next commit)

• Staging changes made to an already tracked file (staged changes will be included
in the next commit)

It’s important to be aware that any modifications made to a file since the last time it
was staged will not be included in the next commit unless they are staged with git
add. This extra step may seem like an inconvenience but actually has many benefits.
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Suppose you’ve made changes to many files in a project. Two of these files’ changes
are complete, but everything else isn’t quite ready. Using Git’s staging, you can stage
and commit only these two complete files and keep other incomplete files out of your
commit. Through planned staging, your commits can reflect meaningful points in
development rather than random snapshots of your entire project directory (which
would likely include many files in a state of disarray). When we learn about commit‐
ting in the next section, we’ll see a shortcut to stage and commit all modified files.

git commit: Taking a Snapshot of Your Project
We’ve spoken a lot about commits, but haven’t actually made one yet. When first
learning Git, the trickiest part of making a commit is understanding staging. Actually
committing your staged commits is quite easy:

$ git commit -m "initial import"
 2 files changed, 1 insertion(+)
 create mode 100644 README
 create mode 100644 data/README

This command commits your staged changes to your repository with the commit
message “initial import.” Commit messages are notes to your collaborators (and your‐
self in the future) about what a particular commit includes. Optionally, you can omit
the -m option, and Git will open up your default text editor. If you prefer to write
commit messages in a text editor (useful if they are multiline messages), you can
change the default editor Git uses with:

$ git config --global core.editor emacs

where emacs can be replaced by vim (the default) or another text editor of your
choice.

Some Advice on Commit Messages

Commit messages may seem like an inconvenience, but it pays off
in the future to have a description of how a commit changes code
and what functionality is affected. In three months when you need
to figure out why your SNP calling analyses are returning unexpec‐
ted results, it’s much easier to find relevant commits if they have
messages like “modifying SNP frequency function to fix singleton
bug, refactored coverage calculation” rather than “cont” (that’s an
actual commit I’ve seen in a public project). For an entertaining
take on this, see xkcd’s “Git Commit” comic.

Earlier, we staged our changes using git add. Because programmers like shortcuts,
there’s an easy way to stage all tracked files’ changes and commit them in one com‐
mand: git commit -a -m "your commit message". The option -a tells git commit
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to automatically stage all modified tracked files in this commit. Note that while this
saves time, it also will throw all changes to tracked files in this commit. Ideally com‐
mits should reflect helpful snapshots of your project’s development, so including
every slightly changed file may later be confusing when you look at your repository’s
history. Instead, make frequent commits that correspond to discrete changes to your
project like “new counting feature added” or “fixed bug that led to incorrect transla‐
tion.”

We’ve included all changes in our commit, so our working directory is now “clean”:
no tracked files differ from the version in the last commit. Until we make modifica‐
tions, git status indicates there’s nothing to commit:

$ git status
# On branch master
# Untracked files:
#   (use "git add <file>..." to include in what will be committed)
#
# data/seqs/

Untracked files and directories will still remain untracked (e.g., data/seqs/), and any
unstaged changes to tracked files will not be included in the next commit unless
added. Sometimes a working directory with unstaged changes is referred to as
“messy,” but this isn’t a problem.

Seeing File Differences: git diff
So far we’ve seen the Git tools needed to help you stage and commit changes in your
repository. We’ve used the git status subcommand to see which files are tracked,
which have changes, and which are staged for the next commit. Another subcom‐
mand is quite helpful in this process: git diff.

Without any arguments, git diff shows you the difference between the files in your
working directory and what’s been staged. If none of your changes have been staged,
git diff shows us the difference between your last commit and the current versions
of your files. For example, if I add a line to README.md and run git diff:

$ echo "Project started 2013-01-03" >> README
$ git diff
diff --git a/README b/README
index 5483cfd..ba8d7fc 100644
--- a/README 
+++ b/README
@@ -1 +1,2 @@ 
 Zea Mays SNP Calling Project
+Project started 2013-01-03 
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This format (called a unified diff) may seem a bit cryptic at first. When Git’s terminal
colors are enabled, git diff’s output is easier to read, as added lines will be green
and deleted lines will be red.

This line (and the one following it) indicate there are two versions of the
README file we are comparing, a and b. The --- indicates the original file—in
our case, the one from our last commit. +++ indicates the changed version.

This denotes the start of a changed hunk (hunk is diff ’s term for a large changed
block), and indicates which line the changes start on, and how long they are.
Diffs try to break your changes down into hunks so that you can easily identify
the parts that have been changed. If you’re curious about the specifics, see Wiki‐
pedia’s page on the diff utility.

Here’s the meat of the change. Spaces before the line (e.g., the line that begins Zea
Mays… indicates nothing was changed (and just provide context). Plus signs indi‐
cate a line addition (e.g., the line that begins Project…), and negative signs indi‐
cate a line deletion (not shown in this diff because we’ve only added a line).
Changes to a line are represented as a deletion of the original line and an addi‐
tion of the new line.

After we stage a file, git diff won’t show any changes, because git diff compares
the version of files in your working directory to the last staged version. For example:

$ git add README
$ git diff # shows nothing

If we wanted to compare what’s been staged to our last commit (which will show us
exactly what’s going into the next commit), we can use git diff --staged (in old
versions of Git this won’t work, so upgrade if it doesn’t). Indeed, we can see the
change we just staged:

$ git diff --staged
diff --git a/README b/README
index 5483cfd..ba8d7fc 100644
--- a/README
+++ b/README
@@ -1 +1,2 @@
 Zea Mays SNP Calling Project
+Project started 2013-01-03

git diff can also be used to compare arbitrary objects in our Git commit history, a
topic we’ll see in “More git diff: Comparing Commits and Files” on page 100.
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Seeing Your Commit History: git log
Commits are like chains (more technically, directed acyclic graphs), with each com‐
mit pointing to its parent (as in Figure 5-2).

Figure 5-2. Commits in Git take discrete snapshots of your project at some point in time,
and each commit (except the first) points to its parent commit; this chain of commits is
your set of connected snapshots that show how your project repository evolves

We can use git log to visualize our chain of commits:
$ git log
commit 3d7ffa6f0276e607dcd94e18d26d21de2d96a460 
Author: Vince Buffalo <vsbuffaloAAAAAA@gmail.com>
Date:   Mon Sep 23 23:55:08 2013 -0700

    initial import

This strange looking mix of numbers and characters is a SHA-1 checksum. Each
commit will have one of these, and they will depend on your repository’s past
commit history and the current files. SHA-1 hashes act as a unique ID for each
commit in your repository. You can always refer to a commit by its SHA-1 hash.

git log and Your Terminal Pager

git log opens up your repository’s history in your default pager
(usually either the program more or less). If you’re unfamiliar with
pagers, less, and more, don’t fret. To exit and get back to your
prompt, hit the letter q. You can move forward by pressing the
space bar, and move backward by pressing b. We’ll look at less in
more detail in Chapter 7.

Let’s commit the change we made in the last section:
$ git commit -a -m "added information about project to README"
[master 94e2365] added information about project to README
 1 file changed, 1 insertion(+)

Now, if we look at our commit history with git log, we see:
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$ git log
commit 94e2365dd66701a35629d29173d640fdae32fa5c
Author: Vince Buffalo <vsbuffaloAAAAAA@gmail.com>
Date:   Tue Sep 24 00:02:11 2013 -0700

    added information about project to README

commit 3d7ffa6f0276e607dcd94e18d26d21de2d96a460
Author: Vince Buffalo <vsbuffaloAAAAAA@gmail.com>
Date:   Mon Sep 23 23:55:08 2013 -0700

    initial import

As we continue to make and commit changes to our repository, this chain of commits
will grow. If you want to see a nice example of a longer Git history, change directories
to the seqtk repository we cloned earlier and call git log.

Moving and Removing Files: git mv and git rm
When Git tracks your files, it wants to be in charge. Using the command mv to move a
tracked file will confuse Git. The same applies when you remove a file with rm. To
move or remove tracked files in Git, we need to use Git’s version of mv and rm: git mv
and git rm.

For example, our README file doesn’t have an extension. This isn’t a problem, but
because the README file might later contain Markdown, it’s not a bad idea to change
its extension to .md. You can do this using git mv:

$ git mv README README.md
$ git mv data/README data/README.md

Like all changes, this isn’t stored in your repository until you commit it. If you ls
your files, you can see your working copy has been renamed:

$ ls
README.md   analysis    data        notebook.md scripts

Using git status, we see this change is staged and ready to be committed:
$ git status
# On branch master
# Changes to be committed:
#   (use "git reset HEAD <file>..." to unstage)
#
# renamed:    README -> README.md
# renamed:    data/README -> data/README.md
#
# Untracked files:
#   (use "git add <file>..." to include in what will be committed)
#
# data/seqs/
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git mv already staged these commits for us; git add is only necessary for staging
modifications to the contents of files, not moving or removing files. Let’s commit
these changes:

$ git commit -m "added markdown extensions to README files"
[master e4feb22] added markdown extensions to README files
 2 files changed, 0 insertions(+), 0 deletions(-)
 rename README => README.md (100%)
 rename data/{README => README.md} (100%)

Note that even if you change or remove a file and commit it, it still exists in past
snapshots. Git does its best to make everything recoverable. We’ll see how to recover
files later on in this chapter.

Telling Git What to Ignore: .gitignore
You may have noticed that git status keeps listing which files are not tracked. As
the number of files in your bioinformatics project starts to increase (this happens
quickly!) this long list will become a burden.

Many of the items in this untracked list may be files we never want to commit.
Sequencing data files are a great example: they’re usually much too large to include in
a repository. If we were to commit these large files, collaborators cloning your reposi‐
tory would have to download these enormous data files. We’ll talk about other ways
of managing these later, but for now, let’s just ignore them.

Suppose we wanted to ignore all FASTQ files (with the extension .fastq) in the data/
seqs/ directory. To do this, create and edit the file .gitignore in your zmays-snps/ repos‐
itory directory, and add:

data/seqs/*.fastq

Now, git status gives us:
$ git status
# On branch master
# Untracked files:
#   (use "git add <file>..." to include in what will be committed)
#
# .gitignore

It seems we’ve gotten rid of one annoyance (the data/seqs/ directory in “Untracked
files”) but added another (the new .gitignore). Actually, the best way to resolve this is
to add and commit your .gitignore file. It may seem counterintuitive to contribute a
file to a project that’s merely there to tell Git what to ignore. However, this is a good
practice; it saves collaborators from seeing a listing of untracked files Git should
ignore. Let’s go ahead and stage the .gitignore file, and commit this and the filename
changes we made earlier:
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$ git add .gitignore
$ git commit -m "added .gitignore"
[master c509f63] added .gitignore
 1 file changed, 1 insertion(+)
 create mode 100644 .gitignore

What should we tell .gitignore to ignore? In the context of a bioinformatics project,
here are some guidelines:

Large files
These should be ignored and managed by other means, as Git isn’t designed to
manage really large files. Large files slow creating, pushing, and pulling commits.
This can lead to quite a burden when collaborators clone your repository.

Intermediate files
Bioinformatics projects are often filled with intermediate files. For example, if
you align reads to a genome, this will create SAM or BAM files. Even if these
aren’t large files, these should probably be ignored. If a data file can easily be
reproduced by rerunning a command (or better yet, a script), it’s usually prefera‐
ble to just store how it was created. Ultimately, recording and storing how you
created an intermediate file in Git is more important than the actual file. This
also ensures reproducibility.

Text editor temporary files
Text editors like Emacs and Vim will sometimes create temporary files in your
directory. These can look like textfile.txt~ or #textfile.txt#. There’s no point in
storing these in Git, and they can be an annoyance when viewing progress with
git status. These files should always be added to .gitignore. Luckily, .gitignore
takes wildcards, so these can be ignored with entries like *~ and \#*\#.

Temporary code files
Some language interpreters (e.g., Python) produce temporary files (usually with
some sort of optimized code). With Python, these look like overlap.pyc.

We can use a global .gitignore file to universally ignore a file across all of our projects.
Good candidates of files to globally ignore are our text editor’s temporary files or files
your operating system creates (e.g., OS X will sometimes create hidden files
named .DS_Store in directories to store details like icon position). GitHub maintains
a useful repository of global .gitignore suggestions.

You can create a global .gitignore file in ~/.gitignore_global and then configure Git to
use this with the following:

git config --global core.excludesfile ~/.gitignore_global

A repository should store everything required to replicate a project except large data‐
sets and external programs. This includes all scripts, documentation, analysis, and
possibly even a final manuscript. Organizing your repository this way means that all

82 | Chapter 5: Git for Scientists

http://bit.ly/git_ignore


of your project’s dependencies are in one place and are managed by Git. In the long
run, it’s far easier to have Git keep track of your project’s files, than try to keep track
of them yourself.

Undoing a Stage: git reset
Recall that one nice feature of Git is that you don’t have to include messy changes in a
commit—just don’t stage these files. If you accidentally stage a messy file for a com‐
mit with git add, you can unstage it with git reset. For example, suppose you add
a change to a file, stage it, but decide it’s not ready to be committed:

$ echo "TODO: ask sequencing center about adapters" >> README.md
$ git add README.md
$ git status
# On branch master
# Changes to be committed:
#   (use "git reset HEAD <file>..." to unstage)
#
# new file:   README.md
#

With git status, we can see that our change to README.md is going to be included
in the next commit. To unstage this change, follow the directions git status pro‐
vides:

$ git reset HEAD README.md
$ git status
# On branch master
# Changes not staged for commit:
#   (use "git add <file>..." to update what will be committed)
#   (use "git checkout -- <file>..." to discard changes in working
directory)
#
# modified:   README.md
#

The syntax seems a little strange, but all we’re doing is resetting our staging area
(which Git calls the index) to the version at HEAD for our README.md file. In Git’s
lingo, HEAD is an alias or pointer to the last commit on the current branch (which is,
as mentioned earlier, the default Git branch called master). Git’s reset command is a
powerful tool, but its default action is to just reset your index. We’ll see additional
ways to use git reset when we learn about working with commit histories.

Collaborating with Git: Git Remotes, git push, and git pull
Thus far, we’ve covered the very basics of Git: tracking and working with files, staging
changes, making commits, and looking at our commit history. Commits are the foun‐
dation of Git—they are the snapshots of our project as it evolves. Commits allow you
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to go back in time and look at, compare, and recover past versions, which are all top‐
ics we look at later in this chapter. In this section, we’re going to learn how to collabo‐
rate with Git, which at its core is just about sharing commits between your repository
and your collaborators’ repositories.

The basis of sharing commits in Git is the idea of a remote repository, which is just a
version of your repository hosted elsewhere. This could be a shared departmental
server, your colleague’s version of your repository, or on a repository hosting service
like GitHub or Bitbucket. Collaborating with Git first requires we configure our local
repository to work with our remote repositories. Then, we can retrieve commits from
a remote repository (a pull) and send commits to a remote repository (a push).

Note that Git, as a distributed version control system, allows you to work with remote
repositories any way you like. These workflow choices are up to you and your collabo‐
rators. In this chapter, we’ll learn an easy common workflow to get started with: col‐
laborating over a shared central repository.

Let’s take a look at an example: suppose that you’re working on a project you wish to
share with a colleague. You start the project in your local repository. After you’ve
made a few commits, you want to share your progress by sharing these commits with
your collaborator. Let’s step through the entire workflow before seeing how to execute
it with Git:

1. You create a shared central repository on a server that both you and your collab‐
orator have access to.

2. You push your project’s initial commits to this repository (seen in (a) in
Figure 5-3).

3. Your collaborator then retrieves your initial work by cloning this central reposi‐
tory (seen in (b) in Figure 5-3).

4. Then, your collaborator makes her changes to the project, commits them to her
local repository, and then pushes these commits to the central repository (seen in
(a) in Figure 5-4).

5. You then pull in the commits your collaborator pushed to the central repository
(seen in (b) in Figure 5-4). The commit history of your project will be a mix of
both you and your collaborator’s commits.
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Figure 5-3. After creating a new shared central repository, you push your project’s com‐
mits (a); your collaborator can retrieve your project and its commits by cloning this cen‐
tral repository (b)

Figure 5-4. After making and committing changes, your collaborator pushes them to the
central repository (a); to retrieve your collaborator’s new commits, you pull them from
the central repository (b)

This process then repeats: you and your collaborator work independently in your
own local repositories, and when either of you have commits to share, you push them
to the central repository. In many cases, if you and your collaborator work on differ‐
ent files or different sections of the same file, Git can automatically figure out how
best to merge these changes. This is an amazing feature of collaborating with Git: you
and your collaborator can work on the same project simultaneously. Before we dive
into how to do this, there is one caveat to discuss.

It’s important to note that Git cannot always automatically merge code and docu‐
ments. If you and your collaborator are both editing the same section of the same file
and both of you commit these changes, this will create a merge conflict. Unfortunately,
one of you will have to resolve the conflicting files manually. Merge conflicts occur
when you (or your collaborator) pull in commits from the central repository and
your collaborator’s (or your) commits conflict with those in the local repository. In
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these cases, Git just isn’t smart enough to figure out how to reconcile you and your
collaborator’s conflicting versions.

Most of us are familiar with this process when we collaboratively edit manuscripts in
a word processor. If you write a manuscript and send it to all your collaborators to
edit, you will need to manually settle sections with conflicting edits. Usually, we get
around this messy situation through planning and prioritizing which coauthors will
edit first, and gradually incorporating changes. Likewise, good communication and
planning with your collaborators can go far in preventing Git merge conflicts, too.
Additionally, it’s helpful to frequently push and pull commits to the central reposi‐
tory; this keeps all collaborators synced so everyone’s working with the newest ver‐
sions of files.

Creating a Shared Central Repository with GitHub
The first step of our workflow is to create a shared central repository, which is what
you and your collaborator(s) share commits through. In our examples, we will use
GitHub, a web-based Git repository hosting service. Bitbucket is another Git reposi‐
tory hosting service you and your collaborators could use. Both are excellent; we’ll
use GitHub because it’s already home to many large bioinformatics projects like Bio‐
python and Samtools.

Navigate to http://github.com and sign up for an account. After your account is set up,
you’ll be brought to the GitHub home page, which is a newsfeed for you to follow
project development (this newsfeed is useful to follow how bioinformatics software
you use changes over time). On the main page, there’s a link to create a new reposi‐
tory. After you’ve navigated to the Create a New Repository page, you’ll see you need
to provide a repository name, and you’ll have the choice to initialize with a
README.md file (GitHub plays well with Markdown), a .gitignore file, and a license
(to license your software project). For now, just create a repository named zmays-
snps. After you’ve clicked the “Create repository” button, GitHub will forward you to
an empty repository page—the public frontend of your project.

There are a few things to note about GitHub:

• Public repositories are free, but private repositories require you to pay. Luckily,
GitHub has a special program for educational users. If you need private reposito‐
ries without cost, Bitbucket has a different pricing scheme and provides some for
free. Or, you can set up your own internal Git repository on your network if you
have shared server space. Setting up your own Git server is out of the scope of
this book, but see “Git on the Server - Setting Up the Server” in Scott Chacon and
Ben Straub’s free online book Pro Git for more information. If your repository is
public, anyone can see the source (and even clone and develop their own ver‐
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sions of your repository). However, other users don’t have access to modify your
GitHub repository unless you grant it to them.

• If you’re going to use GitHub for collaboration, all participating collaborators
need a GitHub account.

• By default, you are the only person who has write (push) access to the repository
you created. To use your remote repository as a shared central repository, you’ll
have to add collaborators in your GitHub repository’s settings. Collaborators are
GitHub users who have access to push their changes to your repository on Git‐
Hub (which modifies it).

• There are other common GitHub workflows. For example, if you manage a lab or
other group, you can set up an organization account. You can create repositories
and share them with collaborators under the organization’s name. We’ll discuss
other GitHub workflows later in this chapter.

Authenticating with Git Remotes
GitHub uses SSH keys to authenticate you (the same sort we generated in “Quick
Authentication with SSH Keys” on page 59). SSH keys prevent you from having to
enter a password each time you push or pull from your remote repository. Recall in
“Quick Authentication with SSH Keys” on page 59 we generated two SSH keys: a pub‐
lic key and a private key. Navigate to your account settings on GitHub, and in account
settings, find the SSH keys tab. Here, you can enter your public SSH key (remember,
don’t share your private key!) by using cat ~/.ssh/id_rsa.pub to view it, copying it
to your clipboard, and pasting it into GitHub’s form. You can then try out your SSH
public key by using:

$ ssh -T git@github.com
Hi vsbuffalo! You've successfully authenticated, but
 GitHub does not provide shell access.

If you’re having troubles with this, consult GitHub’s “Generating SSH Keys” article.

GitHub allows you to use to HTTP as a protocol, but this is typically only used if your
network blocks SSH. By default, HTTP asks for passwords each time you try to pull
and push (which gets tiresome quickly), but there are ways around this—see GitHub’s
“Caching Your GitHub Password in Git” article.

Connecting with Git Remotes: git remote
Now, let’s configure our local repository to use the GitHub repository we’ve just cre‐
ated as a remote repository. We can do this with git remote add:

$ git remote add origin git@github.com:username/zmays-snps.git
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In this command, we specify not only the address of our Git repository (git@git‐
hub.com:username/zmays-snps.git), but also a name for it: origin. By convention, ori‐
gin is the name of your primary remote repository. In fact, earlier when we cloned
Seqtk from GitHub, Git automatically added the URL we cloned from as a remote
named origin.

Now if you enter git remote -v (the -v makes it more verbose), you see that our
local Git repository knows about the remote repository:

$ git remote -v
origin git@github.com:username/zmays-snps.git (fetch)
origin git@github.com:username/zmays-snps.git (push)

Indeed, origin is now a repository we can push commits to and fetch commits from.
We’ll see how to do both of these operations in the next two sections.

It’s worth noting too that you can have multiple remote repositories. Earlier, we men‐
tioned that Git is a distributed version control system; as a result, we can have many
remote repositories. We’ll come back to how this is useful later on. For now, note that
you can add other remote repositories with different names. If you ever need to delete
an unused remote repository, you can with git remote rm <repository-name>.

Pushing Commits to a Remote Repository with git push
With our remotes added, we’re ready to share our work by pushing our commits to a
remote repository. Collaboration on Git is characterized by repeatedly pushing your
work to allow your collaborators to see and work on it, and pulling their changes into
your own local repository. As you start collaborating, remember you only share the
commits you’ve made.

Let’s push our initial commits from zmays-snps into our remote repository on Git‐
Hub. The subcommand we use here is git push <remote-name> <branch>. We’ll
talk more about using branches later, but recall from “Tracking Files in Git: git add
and git status Part I” on page 72 that our default branch name is master. Thus, to
push our zmays-snps repository’s commits, we do this:

$ git push origin master
Counting objects: 14, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (9/9), done.
Writing objects: 100% (14/14), 1.24 KiB | 0 bytes/s, done.
Total 14 (delta 0), reused 0 (delta 0)
To git@github.com:vsbuffalo/zmays-snps.git
 * [new branch]      master -> master

That’s it—your collaborator now has access to all commits that were on your master
branch through the central repository. Your collaborator retrieves these commits by
pulling them from the central repository into her own local repository.
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Pulling Commits from a Remote Repository with git pull
As you push new commits to the central repository, your collaborator’s repository
will go out of date, as there are commits on the shared repository she doesn’t have in
her own local repository. She’ll need to pull these commits in before continuing with
her work. Collaboration on Git is a back-and-forth exchange, where one person
pushes their latest commits to the remote repository, other collaborators pull changes
into their local repositories, make their own changes and commits, and then push
these commits to the central repository for others to see and work with.

To work through an example of this exchange, we will clone our own repository to a
different directory, mimicking a collaborator’s version of the project. Let’s first clone
our remote repository to a local directory named zmay-snps-barbara/. This directory
name reflects that this local repository is meant to represent our colleague Barbara’s
repository. We can clone zmays-snps from GitHub to a local directory named zmays-
snps-barbara/ as follows:

$ git clone git@github.com:vsbuffalo/zmays-snps.git zmays-snps-barbara
Cloning into 'zmays-snps-barbara'...
remote: Counting objects: 14, done.
remote: Compressing objects: 100% (9/9), done.
remote: Total 14 (delta 0), reused 14 (delta 0)
Receiving objects: 100% (14/14), done.
Checking connectivity... done

Now, both repositories have the same commits. You can verify this by using git log
and seeing that both have the same commits. Now, in our original zmay-snps/ local
repository, let’s modify a file, make a commit, and push to the central repository:

$ echo "Samples expected from sequencing core 2013-01-10" >> README.md
$ git commit -a -m "added information about samples"
[master 46f0781] added information about samples
 1 file changed, 1 insertion(+)
$ git push origin master
Counting objects: 5, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 415 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To git@github.com:vsbuffalo/zmays-snps.git
   c509f63..46f0781  master -> master

Now, Barbara’s repository (zmays-snps-barbara) is a commit behind both our local
zmays-snps repository and the central shared repository. Barbara can pull in this
change as follows:

$ # in zmays-snps-barbara/
$ git pull origin master
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (3/3), done.
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remote: Total 3 (delta 0), reused 3 (delta 0)
Unpacking objects: 100% (3/3), done.
From github.com:vsbuffalo/zmays-snps
 * branch            master     -> FETCH_HEAD
   c509f63..46f0781  master     -> origin/master
Updating c509f63..46f0781
Fast-forward
 README.md | 1 +
 1 file changed, 1 insertion(+)

We can verify that Barbara’s repository contains the most recent commit using git
log. Because we just want a quick image of the last few commits, I will use git log
with some helpful formatting options:

$ # in zmays-snps-barbara/
$ git log --pretty=oneline --abbrev-commit
46f0781 added information about samples
c509f63 added .gitignore
e4feb22 added markdown extensions to README files
94e2365 added information about project to README
3d7ffa6 initial import

Now, our commits are in both the central repository and Barbara’s repository.

Working with Your Collaborators: Pushing and Pulling
Once you grow a bit more acquainted with pushing and pulling commits, it will
become second nature. I recommend practicing this with fake repositories with a lab‐
mate or friend to get the hang of it. Other than merge conflicts (which we cover in
the next section), there’s nothing tricky about pushing and pulling. Let’s go through a
few more pushes and pulls so it’s extremely clear.

In the last section, Barbara pulled our new commit into her repository. But she will
also create and push her own commits to the central repository. To continue our
example, let’s make a commit from Barbara’s local repository and push it to the cen‐
tral repository. Because there is no Barbara (Git is using the account we made at the
beginning of this chapter to make commits), I will modify git log’s output to show
Barbara as the collaborator. Suppose she adds the following line to the README.md:

$ # in zmays-snps-barbara/ -- Barbara's version
$ echo "\n\nMaize reference genome version: refgen3" >> README.md
$ git commit -a -m "added reference genome info"
[master 269aa09] added reference genome info
 1 file changed, 3 insertions(+)
$ git push origin master
Counting objects: 5, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 390 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
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To git@github.com:vsbuffalo/zmays-snps.git
   46f0781..269aa09  master -> master

Now Barbara’s local repository and the central repository are two commits ahead of
our local repository. Let’s switch to our zmays-snps repository, and pull these new
commits in. We can see how Barbara’s commits changed README.md with cat:

$ # in zmays-snps/ -- our version
$ git pull origin master
From github.com:vsbuffalo/zmays-snps
 * branch            master     -> FETCH_HEAD
Updating 46f0781..269aa09
Fast-forward
 README.md | 3 +++
 1 file changed, 3 insertions(+)

$ cat README.md
Zea Mays SNP Calling Project
Project started 2013-01-03
Samples expected from sequencing core 2013-01-10

Maize reference genome version: refgen3

If we were to look at the last two log entries, they would look as follows:
$ git log -n 2
commit 269aa09418b0d47645c5d077369686ff04b16393
Author: Barbara <barbara@barbarasmaize.com>
Date:   Sat Sep 28 22:58:55 2013 -0700

    added reference genome info

commit 46f0781e9e081c6c9ee08b2d83a8464e9a26ae1f
Author: Vince Buffalo <vsbuffaloAAAAAA@gmail.com>
Date:   Tue Sep 24 00:31:31 2013 -0700

    added information about samples

This is what collaboration looks like in Git’s history: a set of sequential commits made
by different people. Each is a snapshot of their repository and the changes they made
since the last commit. All commits, whether they originate from your collaborator’s
or your repository, are part of the same history and point to their parent commit.

Because new commits build on top of the commit history, it’s helpful to do the fol‐
lowing to avoid problems:

• When pulling in changes, it helps to have your project’s changes committed. Git
will error out if a pull would change a file that you have uncommitted changes to,
but it’s still helpful to commit your important changes before pulling.
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• Pull often. This complements the earlier advice: planning and communicating
what you’ll work on with your collaborators. By pulling in your collaborator’s
changes often, you’re in a better position to build on your collaborators’ changes.
Avoid working on older, out-of-date commits.

Merge Conflicts
Occasionally, you’ll pull in commits and Git will warn you there’s a merge conflict.
Resolving merge conflicts can be a bit tricky—if you’re struggling with this chapter so
far, you can bookmark this section and return to it when you encounter a merge con‐
flict in your own work.

Merge conflicts occur when Git can’t automatically merge your repository with the
commits from the latest pull—Git needs your input on how best to resolve a conflict
in the version of the file. Merge conflicts seem scary, but the strategy to solve them is
always the same:

1. Use git status to find the conflicting file(s).
2. Open and edit those files manually to a version that fixes the conflict.
3. Use git add to tell Git that you’ve resolved the conflict in a particular file.
4. Once all conflicts are resolved, use git status to check that all changes are

staged. Then, commit the resolved versions of the conflicting file(s). It’s also wise
to immediately push this merge commit, so your collaborators see that you’ve
resolved a conflict and can continue their work on this new version accordingly.

As an example, let’s create a merge conflict between our zmays-snps repository and
Barbara’s zmays-snps-barbara repository. One common situation where merge con‐
flicts arise is to pull in a collaborator’s changes that affect a file you’ve made and com‐
mitted changes to. For example, suppose that Barbara changed README.md to
something like the following (you’ll have to do this in your text editor if you’re fol‐
lowing along):

Zea Mays SNP Calling Project
Project started 2013-01-03
Samples expected from sequencing core 2013-01-10

Maize reference genome version: refgen3, downloaded 2013-01-04 from
http://maizegdb.org into `/share/data/refgen3/`.

After making these edits to README.md, Barbara commits and pushes these
changes. Meanwhile, in your repository, you also changed the last line:

Zea Mays SNP Calling Project
Project started 2013-01-03
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Samples expected from sequencing core 2013-01-10

We downloaded refgen3 on 2013-01-04.

You commit this change, and then try to push to the shared central repository. To
your surprise, you get the following error message:

$ git push origin master
To git@github.com:vsbuffalo/zmays-snps.git
 ! [rejected]        master -> master (fetch first)
error: failed to push some refs to 'git@github.com:vsbuffalo/zmays-snps.git'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Git rejects your push attempt because Barbara has already updated the central reposi‐
tory’s master branch. As Git’s message describes, we need to resolve this by integrat‐
ing the commits Barbara has pushed into our own local repository. Let’s pull in
Barbara’s commit, and then try pushing as the message suggests (note that this error
is not a merge conflict—rather, it just tells us we can’t push to a remote that’s one or
more commits ahead of our local repository):

$ git pull origin master
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 1), reused 3 (delta 1)
Unpacking objects: 100% (3/3), done.
From github.com:vsbuffalo/zmays-snps
 * branch            master     -> FETCH_HEAD
   269aa09..dafce75  master     -> origin/master
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Automatic merge failed; fix conflicts and then commit the result.

This is the merge conflict. This message isn’t very helpful, so we follow the first step
of the merge strategy by checking everything with git status:

$ git status
# On branch master
# You have unmerged paths.
#   (fix conflicts and run "git commit")
#
# Unmerged paths:
#   (use "git add <file>..." to mark resolution)
#
# both modified:      README.md
#
no changes added to commit (use "git add" and/or "git commit -a")

Collaborating with Git: Git Remotes, git push, and git pull | 93



git status tells us that there is only one file with a merge conflict, README.md
(because we both edited it). The second step of our strategy is to look at our conflict‐
ing file(s) in our text editor:

Zea Mays SNP Calling Project
Project started 2013-01-03
Samples expected from sequencing core 2013-01-10

<<<<<<< HEAD 
We downloaded refgen3 on 2013-01-04.
======= 
Maize reference genome version: refgen3, downloaded 2013-01-04 from
http://maizegdb.org into `/share/data/refgen3/`.
>>>>>>> dafce75dc531d123922741613d8f29b894e605ac 

Notice Git has changed the content of this file in indicating the conflicting lines.

This is the start of our version, the one that’s HEAD in our repository. HEAD is Git’s
lingo for the latest commit (technically, HEAD points to the latest commit on the
current branch).

Indicates the end of HEAD and beginning of our collaborator’s changes.

This final delimiter indicates the end of our collaborator’s version, and the differ‐
ent conflicting chunk. Git does its best to try to isolate the conflicting lines, so
there can be many of these chunks.

Now we use step two of our merge conflict strategy: edit the conflicting file to resolve
all conflicts. Remember, Git raises merge conflicts when it can’t figure out what to do,
so you’re the one who has to manually resolve the issue. Resolving merge conflicts in
files takes some practice. After resolving the conflict in README.md, the edited file
would appear as follows:

Zea Mays SNP Calling Project
Project started 2013-01-03
Samples expected from sequencing core 2013-01-10

We downloaded the B73 reference genome (refgen3) on 2013-01-04 from
http://maizegdb.org into `/share/data/refgen3/`.

I’ve edited this file so it’s a combination of both versions. We’re happy now with our
changes, so we continue to the third step of our strategy—using git add to declare
this conflict has been resolved:

$ git add README.md

Now, the final step in our strategy—check git status to ensure all conflicts are
resolved and ready to be merged, and commit them:
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$ git status
git status
# On branch master
# All conflicts fixed but you are still merging.
#   (use "git commit" to conclude merge)
#
# Changes to be committed:
#
# modified:   README.md
#

$ git commit -a -m "resolved merge conflict in README.md"
[master 20041ab] resolved merge conflict in README.md

That’s it: our merge conflict is resolved! With our local repository up to date, our last
step is to share our merge commit with our collaborator. This way, our collaborators
know of the merge and can continue their work from the new merged version of the
file.

After pushing our merge commit to the central repository with git push, let’s switch
to Barbara’s local repository and pull in the merge commit:

$ git pull origin master
remote: Counting objects: 10, done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 6 (delta 2), reused 5 (delta 2)
Unpacking objects: 100% (6/6), done.
From github.com:vsbuffalo/zmays-snps
 * branch            master     -> FETCH_HEAD
   dafce75..20041ab  master     -> origin/master
Updating dafce75..20041ab
Fast-forward
 README.md | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

Using git log we see that this is a special commit—a merge commit:
commit cd72acf0a81cdd688cb713465cb774320caeb2fd
Merge: f9114a1 d99121e
Author: Vince Buffalo <vsbuffaloAAAAAA@gmail.com>
Date:   Sat Sep 28 20:38:01 2013 -0700

    resolved merge conflict in README.md

Merge commits are special, in that they have two parents. This happened because
both Barbara and I committed changes to the same file with the same parent commit.
Graphically, this situation looks like Figure 5-5.
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Figure 5-5. A merge commit has two parents—in this case, Barbara’s version and our
version; merge commits resolve conflicts between versions

We can also see the same story through git log with the option --graph, which
draws a plain-text graph of your commits:

*   commit 20041abaab156c39152a632ea7e306540f89f706
|\  Merge: 08ccd3b dafce75
| | Author: Vince Buffalo <vsbuffaloAAAAAA@gmail.com>
| | Date:   Sat Sep 28 23:13:07 2013 -0700
| |
| |     resolved merge conflict in README.md
| |
| * commit dafce75dc531d123922741613d8f29b894e605ac
| | Author: Vince Buffalo <vsbuffaloAAAAAA@gmail.com>
| | Date:   Sat Sep 28 23:09:01 2013 -0700
| |
| |     added ref genome download date and link
| |
* | commit 08ccd3b056785513442fc405f568e61306d62d4b
|/  Author: Vince Buffalo <vsbuffaloAAAAAA@gmail.com>
|   Date:   Sat Sep 28 23:10:39 2013 -0700
|
|       added reference download date

Merge conflicts are intimidating at first, but following the four-step strategy intro‐
duced at the beginning of this section will get you through it. Remember to repeat‐
edly check git status to see what needs to be resolved, and use git add to stage
edited files as you resolve the conflicts in them. At any point, if you’re overwhelmed,
you can abort a merge with git merge --abort and start over (but beware: you’ll
lose any changes you’ve made).

There’s one important caveat to merging: if your project’s code is spread out across a
few files, resolving a merge conflict does not guarantee that your code works. Even if
Git can fast-forward your local repository after a pull, it’s still possible your collabora‐
tor’s changes may break something (such is the danger when working with collabora‐
tors!). It’s always wise to do some sanity checks after pulling in code.

For complex merge conflicts, you may want to use a merge tool. Merge tools help vis‐
ualize merge conflicts by placing both versions side by side, and pointing out what’s
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different (rather than using Git’s inline notation that uses inequality and equal signs).
Some commonly used merge tools include Meld and Kdiff.

More GitHub Workflows: Forking and Pull Requests
While the shared central repository workflow is the easiest way to get started collabo‐
rating with Git, GitHub suggests a slightly different workflow based on forking reposi‐
tories. When you visit a repository owned by another user on GitHub, you’ll see a
“fork” link. Forking is an entirely GitHub concept—it is not part of Git itself. By fork‐
ing another person’s GitHub repository, you’re copying their repository to your own
GitHub account. You can then clone your forked version and continue development
in your own repository. Changes you push from your local version to your remote
repository do not interfere with the main project. If you decide that you’ve made
changes you want to share with the main repository, you can request that your com‐
mits are pulled using a pull request (another feature of GitHub).

This is the workflow GitHub is designed around, and it works very well with projects
with many collaborators. Development primarily takes place in contributors’ own
repositories. A developer’s contributions are only incorporated into the main project
when pulled in. This is in contrast to a shared central repository workflow, where col‐
laborators can push their commits to the main project at their will. As a result, lead
developers can carefully control what commits are added to the project, which pre‐
vents the hassle of new changes breaking functionality or creating bugs.

Using Git to Make Life Easier: Working with Past Commits
So far in this chapter we’ve created commits in our local repository and shared these
commits with our collaborators. But our commit history allows us to do much more
than collaboration—we can compare different versions of files, retrieve past versions,
and tag certain commits with helpful messages.

After this point, the material in this chapter becomes a bit more advanced. Readers
can skip ahead to Chapter 6 without a loss of continuity. If you do skip ahead, book‐
mark this section, as it contains many tricks used to get out of trouble (e.g., restoring
files, stashing your working changes, finding bugs by comparing versions, and editing
and undoing commits). In the final section, we’ll also cover branching, which is a
more advanced Git workflow—but one that can make your life easier.

Getting Files from the Past: git checkout
Anything in Git that’s been committed is easy to recover. Suppose you accidentally
overwrite your current version of README.md by using > instead of >>. You see this
change with git status:
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$ echo "Added an accidental line" > README.md
$ cat README.md
Added an accidental line
$ git status
# On branch master
# Changes not staged for commit:
#   (use "git add <file>..." to update what will be committed)
#   (use "git checkout -- <file>..." to discard changes in working
directory)
#
# modified:   README.md
#
no changes added to commit (use "git add" and/or "git commit -a")

This mishap accidentally wiped out the previous contents of README.md! However,
we can restore this file by checking out the version in our last commit (the commit
HEAD points to) with the command git checkout -- <file>. Note that you don’t
need to remember this command, as it’s included in git status messages. Let’s
restore README.md:

$ git checkout -- README.md
$ cat README.md
Zea Mays SNP Calling Project
Project started 2013-01-03
Samples expected from sequencing core 2013-01-10

We downloaded the B72 reference genome (refgen3) on 2013-01-04 from
http://maizegdb.org into `/share/data/refgen3/`.

But beware: restoring a file this way erases all changes made to that file since the last
commit! If you’re curious, the cryptic -- indicates to Git that you’re checking out a
file, not a branch (git checkout is also used to check out branches; commands with
multiple uses are common in Git).

By default, git checkout restores the file version from HEAD. However, git checkout
can restore any arbitrary version from commit history. For example, suppose we want
to restore the version of README.md one commit before HEAD. The past three com‐
mits from our history looks like this (using some options to make git log more con‐
cise):

$ git log --pretty=oneline --abbrev-commit -n 3
20041ab resolved merge conflict in README.md
08ccd3b added reference download date
dafce75 added ref genome download date and link

Thus, we want to restore README.md to the version from commit 08ccd3b. These
SHA-1 IDs (even the abbreviated one shown here) function as absolute references to
your commits (similar to absolute paths in Unix like /some/dir/path/file.txt). We can
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always refer to a specific commit by its SHA-1 ID. So, to restore README.md to the
version from commit 08ccd3b, we use:

$ git checkout 08ccd3b -- README.md
$ cat README.md
Zea Mays SNP Calling Project
Project started 2013-01-03
Samples expected from sequencing core 2013-01-10

We downloaded refgen3 on 2013-01-04.

If we restore to get the most recent commit’s version, we could use:
$ git checkout 20041ab -- README.md
$ git status
# On branch master
nothing to commit, working directory clean

Note that after checking out the latest version of the README.md file from commit
20041ab, nothing has effectively changed in our working directory; you can verify
this using git status.

Stashing Your Changes: git stash
One very useful Git subcommand is git stash, which saves any working changes
you’ve made since the last commit and restores your repository to the version at
HEAD. You can then reapply these saved changes later. git stash is handy when we
want to save our messy, partial progress before operations that are best performed
with a clean working directory—for example, git pull or branching (more on
branching later).

Let’s practice using git stash by first adding a line to README.md:
$ echo "\\nAdapter file: adapters.fa" >> README.md
$ git status
# On branch master
# Changes not staged for commit:
#   (use "git add <file>..." to update what will be committed)
#   (use "git checkout -- <file>..." to discard changes in working
directory)
#
# modified:   README.md
#
no changes added to commit (use "git add" and/or "git commit -a")

Then, let’s stash this change using git stash:
$ git stash
Saved working directory and index state WIP on master: 20041ab
resolved merge conflict in README.md
HEAD is now at 20041ab resolved merge conflict in README.md
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Stashing our working changes sets our directory to the same state it was in at the last
commit; now our project directory is clean.

To reapply the changes we stashed, use git stash pop:
$ git stash pop
# On branch master
# Changes not staged for commit:
#   (use "git add <file>..." to update what will be committed)
#   (use "git checkout -- <file>..." to discard changes in working
# directory)
#
# modified:   README.md
#
no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@{0} (785dad46104116610d5840b317f05465a5f07c8b)

Note that the changes stored with git stash are not committed; git stash is a sepa‐
rate way to store changes outside of your commit history. If you start using git
stash a lot in your work, check out other useful stash subcommands like git stash
apply and git stash list.

More git diff: Comparing Commits and Files
Earlier, we used git diff to look at the difference between our working directory
and our staging area. But git diff has many other uses and features; in this section,
we’ll look at how we can use git diff to compare our current working tree to other
commits.

One use for git diff is to compare the difference between two arbitrary commits.
For example, if we wanted to compare what we have now (at HEAD) to commit
dafce75:

$ git diff dafce75
diff --git a/README.md b/README.md
index 016ed0c..9491359 100644
--- a/README.md
+++ b/README.md
@@ -3,5 +3,7 @@ Project started 2013-01-03
 Samples expected from sequencing core 2013-01-10

-Maize reference genome version: refgen3, downloaded 2013-01-04 from
+We downloaded the B72 reference genome (refgen3) on 2013-01-04 from
 http://maizegdb.org into `/share/data/refgen3/`.
+
+Adapter file: adapters.fa
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Specifying Revisions Relative to HEAD
Like writing out absolute paths in Unix, referring to commits by their full SHA-1 ID
is tedious. While we can reduce typing by using the abbreviated commits (the first
seven characters of the full SHA-1 ID), there’s an easier way: relative ancestry refer‐
ences. Similar to using relative paths in Unix like ./ and ../, Git allows you to specify
commits relative to HEAD (or any other commit, with SHA-1 IDs).

The caret notation (^) represents the parent commit of a commit. For example, to
refer to the parent of the most recent commit on the current branch (HEAD), we’d use
HEAD^ (commit 08ccd3b in our examples).

Similarly, if we’d wanted to refer to our parent’s parent commit (dafce75 in our exam‐
ple), we use HEAD^^. Our example repository doesn’t have enough commits to refer to
the parent of this commit, but if it did, we could use HEAD^^^. At a certain point, using
this notation is no easier than copying and pasting a SHA-1, so a succinct alternative
syntax exists: git HEAD~<n>, where <n> is the number of commits back in the ances‐
try of HEAD (including the last one). Using this notation, HEAD^^ is the same as HEAD~2.

Specifying revisions becomes more complicated with merge commits, as these have
two parents. Git has an elaborate language to specify these commits. For a full specifi‐
cation, enter git rev-parse --help and see the “Specifying Revisions” section of
this manual page.

Using git diff, we can also view all changes made to a file between two commits. To
do this, specify both commits and the file’s path as arguments (e.g., git diff <com
mit> <commit> <path>). For example, to compare our version of README.md
across commits 269aa09 and 46f0781, we could use either:

$ git diff 46f0781 269aa09 README.md
# or
$ git diff HEAD~3 HEAD~2 README.md

This second command utilizes the relative ancestry references explained in “Specify‐
ing Revisions Relative to HEAD” on page 101.

How does this help? Git’s ability to compare the changes between two commits allows
you to find where and how a bug entered your code. For example, if a modified script
produces different results from an earlier version, you can use git diff to see exactly
which lines differ across versions. Git also has a tool called git bisect to help devel‐
opers find where exactly bugs entered their commit history. git bisect is out of the
scope of this chapter, but there are some good examples in git bisect --help.
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Undoing and Editing Commits: git commit --amend
At some point, you’re bound to accidentally commit changes you didn’t mean to or
make an embarrassing typo in a commit message. For example, suppose we were to
make a mistake in a commit message:

$ git commit -a -m "added adpters file to readme"
[master f4993e3] added adpters file to readme
 1 file changed, 2 insertions(+)

We could easily amend our commit with:
$ git commit --amend

git commit --amend opens up your last commit message in your default text editor,
allowing you to edit it. Amending commits isn’t limited to just changing the commit
message though. You can make changes to your file, stage them, and then amend
these staged changes with git commit --amend. In general, unless you’ve made a
mistake, it’s best to just use separate commits.

It’s also possible to undo commits using either git revert or the more advanced git
reset (which if used improperly can lead to data loss). These are more advanced top‐
ics that we don’t have space to cover in this chapter, but I’ve listed some resources on
this issue in this chapter’s README file on GitHub.

Working with Branches
Our final topic is probably Git’s greatest feature: branching. If you’re feeling over‐
whelmed so far by Git (I certainly did when I first learned it), you can move forward
to Chapter 6 and work through this section later.

Branching is much easier with Git than in other version control systems—in fact, I
switched to Git after growing frustrated with another version control system’s
branching model. Git’s branches are virtual, meaning that branching doesn’t require
actually copying files in your repository. You can create, merge, and share branches
effortlessly with Git. Here are some examples of how branches can help you in your
bioinformatics work:

• Branches allow you to experiment in your project without the risk of adversely
affecting the main branch, master. For example, if in the middle of a variant call‐
ing project you want to experiment with a new pipeline, you can create a new
branch and implement the changes there. If the new variant caller doesn’t work
out, you can easily switch back to the master branch—it will be unaffected by
your experiment.

• If you’re developing software, branches allow you to develop new features or bug
fixes without affecting the working production version, the master branch. Once
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the feature or bug fix is complete, you can merge it into the master branch, incor‐
porating the change into your production version.

• Similarly, branches simplify working collaboratively on repositories. Each collab‐
orator can work on their own separate branches, which prevents disrupting the
master branch for other collaborators. When a collaborator’s changes are ready to
be shared, they can be merged into the master branch.

Creating and Working with Branches: git branch and git checkout
As a simple example, let’s create a new branch called readme-changes. Suppose we
want to make some edits to README.md, but we’re not sure these changes are ready
to be incorporated into the main branch, master.

To create a Git branch, we use git branch <branchname>. When called without any
arguments, git branch lists all branches. Let’s create the readme-changes branch and
check that it exists:

$ git branch readme-changes
$ git branch
* master
  readme-changes

The asterisk next to master is there to indicate that this is the branch we’re currently
on. To switch to the readme-changes branch, use git checkout readme-changes:

$ git checkout readme-changes
Switched to branch 'readme-changes'
$ git branch
  master
* readme-changes

Notice now that the asterisk is next to readme-changes, indicating this is our current
branch. Now, suppose we edit our README.md section extensively, like so:

# Zea Mays SNP Calling Project
Project started 2013-01-03.

## Samples
Samples downloaded 2013-01-11 into `data/seqs`:

 data/seqs/zmaysA_R1.fastq
 data/seqs/zmaysA_R2.fastq
 data/seqs/zmaysB_R1.fastq
 data/seqs/zmaysB_R2.fastq
 data/seqs/zmaysC_R1.fastq
 data/seqs/zmaysC_R2.fastq

## Reference
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We downloaded the B72 reference genome (refgen3) on 2013-01-04 from
http://maizegdb.org into `/share/data/refgen3/`.

Now if we commit these changes, our commit is added to the readme-changes branch.
We can verify this by switching back to the master branch and seeing that this com‐
mit doesn’t exist:

$ git commit -a -m "reformatted readme, added sample info" 
[readme-changes 6e680b6] reformatted readme, added sample info
 1 file changed, 12 insertions(+), 3 deletions(-)
$ git log --abbrev-commit --pretty=oneline -n 3 
6e680b6 reformatted readme, added sample info
20041ab resolved merge conflict in README.md
08ccd3b added reference download date
$ git checkout master 
Switched to branch 'master'
$ git log --abbrev-commit --pretty=oneline -n 3 
20041ab resolved merge conflict in README.md
08ccd3b added reference download date
dafce75 added ref genome download date and link

Our commit, made on the branch readme-changes.

The commit we just made (6e680b6).

Switching back to our master branch.

Our last commit on master is 20041ab. Our changes to README.md are only on
the readme-changes branch, and when we switch back to master, Git swaps our
files out to those versions on that branch.

Back on the master branch, suppose we add the adapters.fa file, and commit this
change:

$ git branch
* master
  readme-changes
$ echo ">adapter-1\\nGATGATCATTCAGCGACTACGATCG" >> adapters.fa
$ git add adapters.fa
$ git commit -a -m "added adapters file"
[master dd57e33] added adapters file
 1 file changed, 2 insertions(+)
 create mode 100644 adapters.fa

Now, both branches have new commits. This situation looks like Figure 5-6.

104 | Chapter 5: Git for Scientists



Figure 5-6. Our two branches (within Git, branches are represented as pointers at com‐
mits, as depicted here), the master and readme-changes branches have diverged, as they
point to different commits (our HEAD points to master, indicating this is the current
branch we’re on)

Another way to visualize this is with git log. We’ll use the --branches option to
specify we want to see all branches, and -n 2 to only see these last commits:

$ git log --abbrev-commit --pretty=oneline --graph --branches -n2
* dd57e33 added adapters file
| * 6e680b6 reformatted readme, added sample info
|/

Merging Branches: git merge
With our two branches diverged, we now want to merge them together. The strategy
to merge two branches is simple. First, use git checkout to switch to the branch we
want to merge the other branch into. Then, use git merge <otherbranch> to merge
the other branch into the current branch. In our example, we want to merge the
readme-changes branch into master, so we switch to master first. Then we use:

$ git merge readme-changes
Merge made by the 'recursive' strategy.
 README.md | 15 ++++++++++++---
 1 file changed, 12 insertions(+), 3 deletions(-)

There wasn’t a merge conflict, so git merge opens our text editor and has us write a
merge commit message. Once again, let’s use git log to see this:

$ git log --abbrev-commit --pretty=oneline --graph --branches -n 3
*   e9a81b9 Merge branch 'readme-changes'
|\
| * 6e680b6 reformatted readme, added sample info
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* | dd57e33 added adapters file
|/

Bear in mind that merge conflicts can occur when merging branches. In fact, the
merge conflict we encountered in “Merge Conflicts” on page 92 when pulling in
remote changes was a conflict between two branches; git pull does a merge
between a remote branch and a local branch (more on this in “Branches and
Remotes” on page 106). Had we encountered a merge conflict when running git
merge, we’d follow the same strategy as in “Merge Conflicts” on page 92 to resolve it.

When we’ve used git log to look at our history, we’ve only been looking a few com‐
mits back—let’s look at the entire Git history now:

$ git log --abbrev-commit --pretty=oneline --graph --branches
*   e9a81b9 Merge branch 'readme-changes'
|\
| * 6e680b6 reformatted readme, added sample info
* | dd57e33 added adapters file
|/
*   20041ab resolved merge conflict in README.md
|\
| * dafce75 added ref genome download date and link
* | 08ccd3b added reference download date
|/
* 269aa09 added reference genome info
* 46f0781 added information about samples
* c509f63 added .gitignore
* e4feb22 added markdown extensions to README files
* 94e2365 added information about project to README
* 3d7ffa6 initial import

Note that we have two bubbles in our history: one from the merge conflict we
resolved after git pull, and the other from our recent merge of the readme-changes
branch.

Branches and Remotes
The branch we created in the previous section was entirely local—so far, our collabo‐
rators are unable to see this branch or its commits. This is a nice feature of Git: you
can create and work with branches to fit your workflow needs without having to
share these branches with collaborators. In some cases, we do want to share our local
branches with collaborators. In this section, we’ll see how Git’s branches and remote
repositories are related, and how we can share work on local branches with collabora‐
tors.

Remote branches are a special type of local branch. In fact, you’ve already interacted
with these remote branches when you’ve pushed to and pulled from remote reposito‐
ries. Using git branch with the option --all, we can see these hidden remote
branches:
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$ git branch --all
* master
  readme-changes
  remotes/origin/master

remotes/origin/master is a remote branch—we can’t do work on it, but it can be
synchronized with the latest commits from the remote repository using git fetch.
Interestingly, a git pull is nothing more than a git fetch followed by a git merge.
Though a bit technical, understanding this idea will greatly help you in working with
remote repositories and remote branches. Let’s step through an example.

Suppose that Barbara is starting a new document that will detail all the bioinformatics
methods of your project. She creates a new-methods branch, makes some commits,
and then pushes these commits on this branch to our central repository:

$ git push origin new-methods
Counting objects: 4, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 307 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
To git@github.com:vsbuffalo/zmays-snps.git
 * [new branch]      new-methods -> new-methods

Back in our repository, we can fetch Barbara’s latest branches using git fetch <remo
tename>. This creates a new remote branch, which we can see with git branch --
all:

$ git fetch origin
remote: Counting objects: 4, done.
remote: Compressing objects: 100% (1/1), done.
remote: Total 3 (delta 1), reused 3 (delta 1)
Unpacking objects: 100% (3/3), done.
From github.com:vsbuffalo/zmays-snps
 = [up to date]      master     -> origin/master
 * [new branch]      new-methods -> origin/new-methods
$ git branch --all
* master
  new-methods
  remotes/origin/master
  remotes/origin/new-methods

git fetch doesn’t change any of your local branches; rather, it just synchronizes your
remote branches with the newest commits from the remote repositories. If after a git
fetch we wanted to incorporate the new commits on our remote branch into our
local branch, we would use a git merge. For example, we could merge Barbara’s new-
methods branch into our master branch with git merge origin/new-methods, which
emulates a git pull.
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However, Barbara’s branch is just getting started—suppose we want to develop on the
new-methods branch before merging it into our master branch. We cannot develop on
remote branches (e.g., our remotes/origin/new-methods), so we need to make a new
branch that starts from this branch:

$ git checkout -b new-methods origin/new-methods
Branch new-methods set up to track remote branch new-methods from origin.
Switched to a new branch 'new-methods'

Here, we’ve used git checkout to simultaneously create and switch a new branch
using the -b option. Note that Git notified us that it’s tracking this branch. This means
that this local branch knows which remote branch to push to and pull from if we
were to just use git push or git pull without arguments. If we were to commit a
change on this branch, we could then push it to the remote with git push:

$ echo "\\n(1) trim adapters\\n(2) quality-based trimming" >> methods.md
$ git commit -am "added quality trimming steps"
[new-methods 5f78374] added quality trimming steps
 1 file changed, 3 insertions(+)
$ git push
Counting objects: 5, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 339 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
To git@github.com:vsbuffalo/zmays-snps.git
   6364ebb..9468e38  new-methods -> new-methods

Development can continue on new-methods until you and your collaborator decide to
merge these changes into master. At this point, this branch’s work has been incorpo‐
rated into the main part of the project. If you like, you can delete the remote branch
with git push origin :new-methods and your local branch with git branch -d
new-methods.

Continuing Your Git Education
Git is a massively powerful version control system. This chapter has introduced the
basics of version control and collaborating through pushing and pulling, which is
enough to apply to your daily bioinformatics work. We’ve also covered some basic
tools and techniques that can get you out of trouble or make working with Git easier,
such as git checkout to restore files, git stash to stash your working changes, and
git branch to work with branches. After you’ve mastered all of these concepts, you
may want to move on to more advanced Git topics such as rebasing (git rebase),
searching revisions (git grep), and submodules. However, none of these topics are
required in daily Git use; you can search out and learn these topics as you need them.
A great resource for these advanced topics is Scott Chacon and Ben Straub’s Pro Git
book.
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CHAPTER 6

Bioinformatics Data

Thus far, we’ve covered many of the preliminaries to get started in bioinformatics:
organizing a project directory, intermediate Unix, working with remote machines,
and using version control. However, we’ve ignored an important component of a new
bioinformatics project: data.

Data is a requisite of any bioinformatics project. We further our understanding of
complex biological systems by refining a large amount of data to a point where we
can extract meaning from it. Unfortunately, many tasks that are simple with small or
medium-sized datasets are a challenge with the large and complex datasets common
in genomics. These challenges include:

Retrieving data
Whether downloading large sequencing datasets or accessing a web application
hundreds of times to download specific files, retrieving data in bioinformatics
can require special tools and skills.

Ensuring data integrity
Transferring large datasets across networks creates more opportunities for data
corruption, which can later lead to incorrect analyses. Consequently, we need to
ensure data integrity with tools before continuing with analysis. The same tools
can also be used to verify we’re using the correct version of data in an analysis.

Compression
The data we work with in bioinformatics is large enough that it often needs to be
compressed. Consequently, working with compressed data is an essential skill in
bioinformatics.
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Retrieving Bioinformatics Data
Suppose you’ve just been told the sequencing for your project has been completed:
you have six lanes of Illumina data to download from your sequencing center. Down‐
loading this amount of data through your web browser is not feasible: web browsers
are not designed to download such large datasets. Additionally, you’d need to down‐
load this sequencing data to your server, not the local workstation where you browse
the Internet. To do this, you’d need to SSH into your data-crunching server and
download your data directly to this machine using command-line tools. We’ll take a
look at some of these tools in this section.

Downloading Data with wget and curl
Two common command-line programs for downloading data from the Web are wget
and curl. Depending on your system, these may not be already installed; you’ll have
to install them with a package manager (e.g., Homebrew or apt-get). While curl
and wget are similar in basic functionality, their relative strengths are different
enough that I use both frequently.

wget
wget is useful for quickly downloading a file from the command line—for example,
human chromosome 22 from the GRCh37 (also known as hg19) assembly version:

$ wget http://hgdownload.soe.ucsc.edu/goldenPath/hg19/chromosomes/chr22.fa.gz
--2013-06-30 00:15:45--  http://[...]/goldenPath/hg19/chromosomes/chr22.fa.gz
Resolving hgdownload.soe.ucsc.edu... 128.114.119.163
Connecting to hgdownload.soe.ucsc.edu|128.114.119.163|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 11327826 (11M) [application/x-gzip]
Saving to: ‘chr22.fa.gz’

17% [======>                                ] 1,989,172    234KB/s  eta 66s

wget downloads this file to your current directory and provides a useful progress
indicator. Notice that the link to chromosome 22 begins with “http” (short for Hyper‐
Text Transfer Protocol). wget can also handle FTP links (which start with “ftp,” short
for File Transfer Protocol). In general, FTP is preferable to HTTP for large files (and
is often recommended by websites like the UCSC Genome Browser).

Because UCSC generously provides the human reference genome publicly, we don’t
need any authentication to gain access to this file. However, if you’re downloading
data from a Lab Information Management System (LIMS), you may need to first
authenticate with a username and password. For simple HTTP or FTP authentica‐
tion, you can authenticate using wget’s --user= and --ask-password options. Some
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sites use more elaborate authentication procedures; in these cases, you’ll need to con‐
tact the site administrator.

One of wget’s strengths is that it can download data recursively. When run with the
recursive option (--recursive or -r), wget will also follow and download the pages
linked to, and even follow and download links on these pages, and so forth. By default
(to avoid downloading the entire Internet), wget limits itself to only follow five links
deep (but this can be customized using the option --level or -l).

Recursive downloading can be useful for downloading all files of a certain type from a
page. For example, if another lab has a web page containing many GTF files we wish
to download, we could use:

$ wget --accept "*.gtf" --no-directories --recursive --no-parent \
     http://genomics.someuniversity.edu/labsite/annotation.html

But beware! wget’s recursive downloading can be quite aggressive. If not constrained,
wget will download everything it can reach within the maximum depth set by --
level. In the preceding example, we limited wget in two ways: with --no-parent to
prevent wget from downloading pages higher in the directory structure, and with --
accept "*.gtf", which only allows wget to download filenames matching this pat‐
tern.

Exercise caution when using wget’s recursive option; it can utilize a lot of network
resources and overload the remote server. In some cases, the remote host may block
your IP address if you’re downloading too much too quickly. If you plan on down‐
loading a lot of data from a remote host, it’s best to inquire with the website’s sysad‐
min about recommended download limits so your IP isn’t blocked. wget’s --limit-
rate option can be used to limit how quickly wget downloads files.

wget is an incredibly powerful tool; the preceding examples have only scraped the
surface of its capabilities. See Table 6-1 for some commonly used options, or man
wget for an exhaustive list.

Table 6-1. Useful wget options
Option Values Use

-A, --accept Either a suffix like “.fastq” or
a pattern with *, ?, or [
and ], optionally comma-
separated list

Only download files matching this criteria.

-R, --reject Same as with --accept Don’t download files matching this; for example, to download all
files on a page except Excel files, use --reject ".xls".
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Option Values Use

-nd, --no-
directory

No value Don’t place locally downloaded files in same directory hierarchy as
remote files.

-r, --recursive No value Follow and download links on a page, to a maximum depth of five
by default.

-np, --no-parent No value Don’t move above the parent directory.

--limit-rate number of bytes to allow per
second

Throttle download bandwidth.

--user=user FTP or HTTP username Username for HTTP or FTP authentication.

--ask-password No value Prompt for password for HTTP of FTP authentication; --
password= could also be used, but then your password is in
your shell’s history.

-O Output filename Download file to filename specified; useful if link doesn’t have an
informative name (e.g., http://lims.sequencingcen
ter.com/seqs.html?id=sample_A_03).

Curl
curl serves a slightly different purpose than wget. wget is great for downloading files
via HTTP or FTP and scraping data from a web page using its recursive option. curl
behaves similarly, although by default writes the file to standard output. To download
chromosome 22 as we did with wget, we’d use:

$ curl http://[...]/goldenPath/hg19/chromosomes/chr22.fa.gz > chr22.fa.gz
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
 14 10.8M   14 1593k    0     0   531k      0  0:00:20  0:00:02  0:00:18  646k

Note that I’ve had to truncate the URL so this example fits within a page; the URL is
the same as we used with wget earlier.

If you prefer not to redirect curl’s output, use -O <filename> to write the results to
<filename>. If you omit the filename argument, curl will use same filename as the
remote host.

curl has the advantage that it can transfer files using more protocols than wget,
including SFTP (secure FTP) and SCP (secure copy). One especially nice feature of
curl is that it can follow page redirects if the -L/--location option is enabled. With
this enabled, curl will download the ultimate page the link redirects to, not the redi‐
rect page itself. Finally, Curl itself is also a library, meaning in addition to the
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command-line curl program, Curl’s functionality is wrapped by software libraries
like RCurl and pycurl.

Rsync and Secure Copy (scp)
wget and curl are appropriate for quickly downloading files from the command line,
but are not optimal for some heavier-duty tasks. For example, suppose a colleague
needs all large sequencing datasets in your project directory that are ignored by Git
(e.g., in your .gitignore). A better tool for synchronizing these entire directories across
a network is Rsync.

Rsync is a superior option for these types of tasks for a few reasons. First, Rsync is
often faster because it only sends the difference between file versions (when a copy
already exists or partially exists) and it can compress files during transfers. Second,
Rsync has an archive option that preserves links, modification timestamps, permis‐
sions, ownership, and other file attributes. This makes Rsync an excellent choice for
network backups of entire directories. Rsync also has numerous features and options
to handle different backup scenarios, such as what to do if a file exists on the remote
host.

rsync’s basic syntax is rsync source destination, where source is the source of the
files or directories you’d like to copy, and destination is the destination you’d like to
copy these files to. Either source or destination can be a remote host specified in
the format user@host:/path/to/directory/.

Let’s look at an example of how we can use rsync to copy over an entire directory to
another machine. Suppose you’d like to copy all of your project’s data in zea_mays/
data to your colleague’s directory /home/deborah/zea_mays/data on the host
192.168.237.42. The most common combination of rsync options used to copy an
entire directory are -avz. The option -a enables wrsync’s archive mode, -z enables
file transfer compression, and -v makes rsync’s progress more verbose so you can see
what’s being transferred. Because we’ll be connecting to the remote host through SSH,
we also need to use -e ssh. Our directory copying command would look as follows:

$ rsync -avz -e ssh zea_mays/data/ vinceb@[...]:/home/deborah/zea_mays/data
building file list ... done
zmaysA_R1.fastq
zmaysA_R2.fastq
zmaysB_R1.fastq
zmaysB_R2.fastq
zmaysC_R1.fastq
zmaysC_R2.fastq
sent 2861400 bytes  received 42 bytes  107978.94 bytes/sec
total size is 8806085  speedup is 3.08

One subtle yet important behavior of rsync is that trailing slashes (e.g., data/ versus
data) are meaningful when specifying paths in rsync. A trailing slash in the source
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path means copy the contents of the source directory, whereas no trailing slash means
copy the entire directory itself. Because we’d like to copy all contents of zea_mays/data/
to /home/deborah/zea_mays/data in our example, we use a trailing slash. If the data/
directory didn’t already exist on the remote destination host, we’d want to copy it and
its contents by using zea_mays/data (e.g., omitting the trailing slash).

Because rsync only transmits files if they don’t exist or they’ve changed, you can (and
should) run rsync again after your files have transferred. This operates as a simple
check to ensure everything is synchronized between the two directories. It’s also a
good idea to check the exit status of rsync when calling it in scripts; rsync will exit 
with a nonzero status if it runs into problems transferring files. Lastly, rsync can use
host aliases specified in an SSH config file (see the first Tip in “Connecting to Remote
Machines with SSH” on page 57). You can omit -e ssh if you connect to a host
through an SSH host alias.

Occasionally, we just need to quickly copy a single file over SSH—for tasks where
Unix’s cp would be sufficient, but needs to work over an SSH connection. rsync
would work, but it’s a bit overkill. Secure copy (scp) is perfect for this purpose. Secure
copy works just like cp, except we need to specify both host and path (using the same
user@host:/path/to/file notation as wget). For example, we could transfer a single
GTF file to 192.168.237.42:/home/deborah/zea_mays/data/ using:

$ scp Zea_mays.AGPv3.20.gtf 192.168.237.42:/home/deborah/zea_mays/data/

Zea_mays.AGPv3.20.gtf                            100%   55     0.1KB/s   00:00

Data Integrity
Data we download into our project directory is the starting point of all future analy‐
ses and conclusions. Although it may seem improbable, the risk of data corruption
during transfers is a concern when transferring large datasets. These large files take a
long time to transfer, which translates to more opportunities for network connections
to drop and bits to be lost. In addition to verifying your transfer finished without
error, it’s also important to explicitly check the transferred data’s integrity with check‐
sums. Checksums are very compressed summaries of data, computed in a way that
even if just one bit of the data is changed, the checksum will be different.

Data integrity checks are also helpful in keeping track of data versions. In collabora‐
tive projects, our analyses may depend on our colleagues’ intermediate results. When
these intermediate results change, all downstream analyses that depend on these
results need to be rerun. With many intermediate files, it’s not always clear which data
has changed and which steps need to be rerun. The checksums would differ if the
data changed even the tiniest bit, so we can use them to calculate the version of the
data. Checksums also facilitate reproducibility, as we can link a particular analysis
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and set of results to an exact version of data summarized by the data’s checksum
value.

SHA and MD5 Checksums
The two most common checksum algorithms for ensuring data integrity are MD5
and SHA-1. We’ve already encountered SHA-1 in Chapter 4, as this is what Git uses
for its commit IDs. MD5 is an older checksum algorithm, but one that is still com‐
monly used. Both MD5 and SHA-1 behave similarly, but SHA-1 is newer and gener‐
ally preferred. However, MD5 is more common; it’s likely to be what you encounter if
a server has precomputed checksums on a set of files.

Let’s get acquainted with checksums using SHA-1. We can pass arbitrary strings to
the program shasum (on some systems, it’s sha1sum) through standard in:

$ echo "bioinformatics is fun" | shasum
f9b70d0d1b0a55263f1b012adab6abf572e3030b  -
$ echo "bioinformatic is fun" | shasum
e7f33eedcfdc9aef8a9b4fec07e58f0cf292aa67  -

The long string of numbers and letters is the SHA-1 checksum. Checksums are
reported in hexadecimal format, where each digit can be one of 16 characters: digits 0
through 9, and the letters a, b, c, d, e, and f. The trailing dash indicates this is the
SHA-1 checksum of input from standard in. Note that when we omitted the “s” in
“bioinformatics” and calculate the SHA-1 checksum, the checksum value has entirely
changed. This is the strength of using checksums: they change when the tiniest part
of the input changes. Checksums are completely deterministic, meaning that regard‐
less of the time the checksum is calculated or the system used, checksum values will
only differ if the input differs.

We can also use checksums with file input (note that the content of Csyrichta_TAG‐
GACT_L008_R1_001.fastq is fake example data):

$ shasum Csyrichta_TAGGACT_L008_R1_001.fastq
fea7d7a582cdfb64915d486ca39da9ebf7ef1d83  Csyrichta_TAGGACT_L008_R1_001.fastq

If our sequencing center says the checksum of the Csyrichta_TAG‐
GACT_L008_R1_001.fastq.gz sequencing file is
“069bf5894783db241e26f4e44201bd12f2d5aa42” and our local SHA checksum is
“fea7d7a582cdfb64915d486ca39da9ebf7ef1d83,” we know our file differs somehow
from the original version.

When downloading many files, it can get rather tedious to check each checksum indi‐
vidually. The program shasum has a convenient solution—it can create and validate
against a file containing the checksums of files. We can create a SHA-1 checksum file
for all FASTQ files in the data/ directory as follows:
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$ shasum data/*fastq > fastq_checksums.sha
$ cat fastq_checksums.sha
524d9a057c51b1[...]d8b1cbe2eaf92c96a9    data/Csyrichta_TAGGACT_L008_R1_001.fastq
d2940f444f00c7[...]4f9c9314ab7e1a1b16    data/Csyrichta_TAGGACT_L008_R1_002.fastq
623a4ca571d572[...]1ec51b9ecd53d3aef6    data/Csyrichta_TAGGACT_L008_R1_003.fastq
f0b3a4302daf7a[...]7bf1628dfcb07535bb    data/Csyrichta_TAGGACT_L008_R1_004.fastq
53e2410863c36a[...]4c4c219966dd9a2fe5    data/Csyrichta_TAGGACT_L008_R1_005.fastq
e4d0ccf541e90c[...]5db75a3bef8c88ede7    data/Csyrichta_TAGGACT_L008_R1_006.fastq

Then, we can use shasum’s check option (-c) to validate that these files match the
original versions:

$ shasum -c fastq_checksums.sha
data/Csyrichta_TAGGACT_L008_R1_001.fastq: OK
data/Csyrichta_TAGGACT_L008_R1_002.fastq: OK
data/Csyrichta_TAGGACT_L008_R1_003.fastq: OK
data/Csyrichta_TAGGACT_L008_R1_004.fastq: OK
data/Csyrichta_TAGGACT_L008_R1_005.fastq: OK
data/Csyrichta_TAGGACT_L008_R1_006.fastq: FAILED
shasum: WARNING: 1 computed checksum did NOT match

In the event that the checksums of a file disagree, shasum will show you which file
failed validation and exit with a nonzero error status.

The program md5sum (or md5 on OS X) calculates MD5 hashes and is similar in opera‐
tion to shasum. However, note that on OS X, the md5 command doesn’t have the -c
option, so you’ll need to install the GNU version for this option. Also, some servers
use an antiquated checksum implementation such as sum or chsum. How we use these
older command-line checksum programs is similar to using shasum and md5sum.

Finally, you may be curious how all files can be summarized by a 40-character-long
SHA-1 checksum. They can’t—there are only 1640 possible different checksums. How‐
ever, 1640 is a huge number so the probability of a checksum collision is very, very
small. For the purposes of checking data integrity, the risk of a collision is negligible.

Looking at Differences Between Data
While checksums are a great method to check if files are different, they don’t tell us
how files differ. One approach to this is to compute the diff between two files using
the Unix tool diff. Unix’s diff works line by line, and outputs blocks (called hunks)
that differ between files (resembling Git’s git diff command we saw in Chapter 4).

Suppose you notice a collaborator was working with a different version of a file than
the one you’re using. Her version is gene-2.bed, and your version is gene-1.bed (these
files are on GitHub if you’d like to follow along). Because downstream results depend
on this dataset, you want to check if the files are indeed different. After comparing
the SHA-1 checksums, you find the files aren’t identical. Before rerunning your analy‐
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sis using your collaborator’s version, you’d like to check whether the files differ signif‐
icantly. We can do this by computing the diff between gene-1.bed and gene-2.bed:

$ diff -u gene-1.bed gene-2.bed

--- gene-1.bed 2014-02-22 12:53:14.000000000 -0800 
+++ gene-2.bed 2015-03-10 01:55:01.000000000 -0700
@@ -1,22 +1,19 @@ 
 1 6206197 6206270 GENE00000025907
 1 6223599 6223745 GENE00000025907 
 1 6227940 6228049 GENE00000025907
+1 6222341 6228319 GENE00000025907 
 1 6229959 6230073 GENE00000025907
-1 6230003 6230005 GENE00000025907 
 1 6233961 6234087 GENE00000025907
 1 6234229 6234311 GENE00000025907
 1 6206227 6206270 GENE00000025907
 1 6227940 6228049 GENE00000025907
 1 6229959 6230073 GENE00000025907
-1 6230003 6230073 GENE00000025907 
+1 6230133 6230191 GENE00000025907
 1 6233961 6234087 GENE00000025907
 1 6234229 6234399 GENE00000025907
 1 6238262 6238384 GENE00000025907
-1 6214645 6214957 GENE00000025907
 1 6227940 6228049 GENE00000025907
 1 6229959 6230073 GENE00000025907
-1 6230003 6230073 GENE00000025907
 1 6233961 6234087 GENE00000025907
 1 6234229 6234399 GENE00000025907
-1 6238262 6238464 GENE00000025907
 1 6239952 6240378 GENE00000025907

The option -u tells diff to output in unified diff format, which is a format nearly
identical to the one used by git diff. I’ve chosen to use unified diffs rather than
diff’s default diff format because unified diffs provide more context.

Unified diffs are broken down into hunks that differ between the two files. Let’s step
through the key parts of this format:

These two lines are the header of the unified diff. The original file gene-1.bed is
prefixed by ---, and the modified file gene-2.bed is prefixed by +++. The date and
time in these two lines are the modification times of these files.

This line indicates the start of a changed hunk. The pairs of integers between @@
and @@ indicate where the hunk begins, and how long it is, in the original file
(-1,22) and modified file (+1,19), respectively.

Lines in the diff that begin with a space indicate the modified file’s line hasn’t
changed.
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Lines in the diff that begin with a + indicate a line has been added to the modified
file.

Similarly, - indicates lines removed in the modified file.

An adjacent line deletion and line addition indicates that this line was changed in
the modified file.

Diff files appear very cryptic at first, but you’ll grow familiar with them over time.
diff’s output can also be redirected to a file, which creates a patch file. Patch files act
as instructions on how to update a plain-text file, making the changes contained in
the diff file. The Unix tool patch can apply changes to a file needed to be patched.
Patches are used more commonly in software development than bioinformatics, so
we won’t cover them in detail. Lastly, it’s important to note that diffs can be computa‐
tionally expensive to compute on large files, so be cautious when running diff on
large datasets.

Compressing Data and Working with Compressed Data
Data compression, the process of condensing data so that it takes up less space (on
disk drives, in memory, or across network transfers), is an indispensable technology
in modern bioinformatics. For example, sequences from a recent Illumina HiSeq run
when compressed with Gzip take up 21,408,674,240 bytes, which is a bit under 20
gigabytes. Uncompressed, this file is a whopping 63,203,414,514 bytes (around 58
gigabytes). This FASTQ file has 150 million 200bp reads, which is 10x coverage of the
human genome, 190x coverage of the Arabidopsis genome, or a measly 2x coverage
of the hexaploid wheat genome. The compression ratio (uncompressed size/
compressed size) of this data is approximately 2.95, which translates to a significant
space saving of about 66%. Your own bioinformatics projects will likely contain much
more data, especially as sequencing costs continue to drop and it’s possible to
sequence genomes to higher depth, include more biological replicates or time points
in expression studies, or sequence more individuals in genotyping studies.

For the most part, data can remain compressed on the disk throughout processing
and analyses. Most well-written bioinformatics tools can work natively with com‐
pressed data as input, without requiring us to decompress it to disk first. Using pipes
and redirection (covered in Chapter 3), we can stream compressed data and write
compressed files directly to the disk. Additionally, common Unix tools like cat, grep,
and less all have variants that work with compressed data, and Python’s gzip module
allows us to read and write compressed data from within Python. So while working
with large datasets in bioinformatics can be challenging, using the compression tools
in Unix and software libraries make our lives much easier.
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gzip
The two most common compression systems used on Unix are gzip and bzip2. Both
have their advantages: gzip compresses and decompresses data faster than bzip2, but
bzip2 has a higher compression ratio (the previously mentioned FASTQ file is only
about 16 GB when compressed with bzip2). Generally, gzip is used in bioinformatics
to compress most sizable files, while bzip2 is more common for long-term data
archiving. We’ll focus primarily on gzip, but bzip2’s tools behave very similarly to
gzip.

The command-line tool gzip allows you to compress files in a few different ways.
First, gzip can compress results from standard input. This is quite useful, as we can
compress results directly from another bioinformatics program’s standard output. For
example, suppose we have a program that removes low-quality bases from FASTQ
files called trimmer (this is an imaginary program). Our trimmer program can handle
gzipped input files natively, but writes uncompressed trimmed FASTQ results to stan‐
dard output. Using gzip, we can compress trimmer’s output in place, before writing
to the disk:

$ trimmer in.fastq.gz | gzip > out.fastq.gz

gzip takes input from standard in, compresses it, and writes this compressed output
to standard out.

gzip also can compress files on disk in place. If our in.fastq.gz file weren’t com‐
pressed, we could compress it as follows:

$ ls
in.fastq
$ gzip in.fastq
$ ls
in.fastq.gz

gzip will compress this file in place, replacing the original uncompressed version
with the compressed file (appending the extension .gz to the original filename). Simi‐
larly, we can decompress files in place with the command gunzip:

$ gunzip in.fastq.gz
$ ls
in.fastq

Note that this replaces our in.fastq.gz file with the decompressed version (removing
the .gz suffix, too). Both gzip and gunzip can also output their results to standard out
(rather than changing files in place). This can be enabled using the -c option:

$ gzip -c in.fastq > in.fastq.gz
$ gunzip -c in.fastq.gz > duplicate_in.fastq
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A nice feature of the gzip compression algorithm is that you can concatenate gzip
compressed output directly to an existing gzip file. For example, if we wanted to com‐
press the in2.fastq file and append it to our compressed in.fastq.gz file, we wouldn’t
have to decompress in.fastq.gz first, concatenate the two files, and then compress the
concatenated file. Instead, we can do the following:

$ ls
in.fastq.gz in2.fastq
$ gzip -c in2.fastq >> in.fastq.gz

Importantly, note that the redirection operator we use is >>; had we used >, we would
overwrite our compressed version of in2.fastq to in.fastq.gz (rather than append to it).
Always exercise caution when using redirection, and make sure you’re using the
appropriate operator (and keep file backups!). You may get a slightly better compres‐
sion ratio by compressing everything together (e.g., with cat in.fastq in2.fastq |
gzip > in.fastq.gz), but the convenience of appending to an existing gzipped file is
useful. Also, note that gzip does not separate these compressed files: files compressed
together are concatenated. If you need to compress multiple separate files into a single
archive, use the tar utility (see the examples section of man tar for details).

Working with Gzipped Compressed Files
Perhaps the greatest advantage of gzip (and bzip2) is that many common Unix and
bioinformatics tools can work directly with compressed files. For example, we can
search compressed files using grep’s analog for gzipped files, zgrep. Likewise, cat has
zcat (on some systems like OS X, this is gzcat), diff has zdiff, and less has zless. 
If programs cannot handle compressed input, you can use zcat and pipe output
directly to the standard input of another program.

These programs that handle compressed input behave exactly like their standard
counterpart. For example, all options available in grep are available in zgrep:

$ zgrep --color -i -n "AGATAGAT" Csyrichta_TAGGACT_L008_R1_001.fastq.gz
2706: ACTTCGGAGAGCCCATATATACACACTAAGATAGATAGCGTTAGCTAATGTAGATAGATT

There can be a slight performance cost in working with gzipped files, as your CPU
must decompress input first. Usually, the convenience of z-tools like zgrep, zless,
and zcat and the saved disk space outweigh any potential performance hits.

Case Study: Reproducibly Downloading Data
Downloading data reproducibly can be deceptively complex. We usually download
genomic resources like sequence and annotation files from remote servers over the
Internet, which may change in the future. Furthermore, new versions of sequence
and annotation data may be released, so it’s imperative that we document everything
about how data was acquired for full reproducibility. As a demonstration of this, let’s
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step through a case study. We’ll download a few genomic and sequence resources for
mouse (Mus musculus) and document how we acquired them.

For this example, we’ll download the GRCm38 mouse reference genome and accom‐
panying annotation. Note that this case study involves downloading large files, so you
may not want to follow along with these examples. The mouse, human (Homo sapi‐
ens), and zebrafish (Danio rerio) genomes releases are coordinated through the
Genome Reference Consortium. The “GRC” prefix in GRCm38 refers to the Genome
Reference Consortium. We can download GRCm38 from Ensembl (a member of the
consortium) using wget. For this and other examples in this section, I’ve had to trun‐
cate the URLs so they fit within a book’s page width; see this chapter’s README.md
on GitHub for the full links for copying and pasting if you’re following along.

$ wget ftp://ftp.ensembl.org/[...]/Mus_musculus.GRCm38.74.dna.toplevel.fa.gz

Ensembl’s website provides links to reference genomes, annotation, variation data,
and other useful files for many organisms. This FTP link comes from navigating to
http://www.ensembl.org, clicking the mouse project page, and then clicking the
“Download DNA sequence” link. If we were to document how we downloaded this
file, our Markdown README.md might include something like:

Mouse (*Mus musculus*) reference genome version GRCm38 (Ensembl
release 74) was downloaded on Sat Feb 22 21:24:42 PST 2014, using:

    wget ftp://ftp.ensembl.org/[...]/Mus_musculus.GRCm38.74.dna.toplevel.fa.gz

We might want to look at the chromosomes, scaffolds, and contigs this files contains
as a sanity check. This file is a gzipped FASTA file, so we can take a quick peek at all
sequence headers by grepping for the regular expression "^>", which matches all lines
beginning with > (a FASTA header). We can use the zgrep program to extract the
FASTA headers on this gzipped file:

$ zgrep "^>" Mus_musculus.GRCm38.74.dna.toplevel.fa.gz | less

Ensembl also provides a checksum file in the parent directory called CHECKSUMS.
This checksum file contains checksums calculated using the older Unix tool sum. We
can compare our checksum values with those in CHECKSUMS using the sum pro‐
gram:

$ wget ftp://ftp.ensembl.org/pub/release-74/fasta/mus_musculus/dna/CHECKSUMS
$ sum Mus_musculus.GRCm38.74.dna.toplevel.fa.gz
53504 793314

The checksum 53504 agrees with the entry in the CHECKSUMS file for the entry
Mus_musculus.GRCm38.74.dna.toplevel.fa.gz. I also like to include the SHA-1 sums of
all important data in my data README.md file, so future collaborators can verify
their data files are exactly the same as those I used. Let’s calculate the SHA-1 sum
using shasum:
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$ shasum Mus_musculus.GRCm38.74.dna.toplevel.fa.gz
01c868e22a981[...]c2154c20ae7899c5f  Mus_musculus.GRCm38.74.dna.toplevel.fa.gz

Then, we can copy and paste this SHA-1 sum into our README.md. Next, we can
download an accompanying GTF from Ensembl and the CHECKSUMS file for this
directory:

$ wget ftp://ftp.ensembl.org/[...]/Mus_musculus.GRCm38.74.gtf.gz
$ wget ftp://ftp.ensembl.org/[...]/CHECKSUMS

Again, let’s ensure that our checksums match those in the CHECKSUMS file and run
shasum on this file for our own documentation:

$ sum Mus_musculus.GRCm38.74.gtf.gz
00985 15074
$ shasum cf5bb5f8bda2803410bb04b708bff59cb575e379  Mus_musculus.GRCm38.74.gtf.gz

And again, we copy the SHA-1 into our README.md. So far, our README.md
might look as follows:

## Genome and Annotation Data

Mouse (*Mus musculus*) reference genome version GRCm38 (Ensembl
release 74) was downloaded on Sat Feb 22 21:24:42 PST 2014, using:

    wget ftp://ftp.ensembl.org/[...]/Mus_musculus.GRCm38.74.dna.toplevel.fa.gz

Gene annotation data (also Ensembl release 74) was downloaded from Ensembl on
Sat Feb 22 23:30:27 PST 2014, using:

    wget ftp://ftp.ensembl.org/[...]/Mus_musculus.GRCm38.74.gtf.gz

## SHA-1 Sums

 - `Mus_musculus.GRCm38.74.dna.toplevel.fa.gz`: 01c868e22a9815c[...]c2154c20ae7899c5f
 - `Mus_musculus.GRCm38.74.gtf.gz`: cf5bb5f8bda2803[...]708bff59cb575e379

Although this isn’t a lot of documentation, this is infinitely better than not document‐
ing how data was acquired. As this example demonstrates, it takes very little effort to
properly track the data that enters your project, and thereby ensure reproducibility.
The most important step in documenting your work is that you’re consistent and
make it a habit.
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CHAPTER 7

Unix Data Tools

We often forget how science and engineering function. Ideas come from previous
exploration more often than from lightning strokes.

—John W. Tukey
In Chapter 3, we learned the basics of the Unix shell: using streams, redirecting out‐
put, pipes, and working with processes. These core concepts not only allow us to use
the shell to run command-line bioinformatics tools, but to leverage Unix as a modu‐
lar work environment for working with bioinformatics data. In this chapter, we’ll see
how we can combine the Unix shell with command-line data tools to explore and
manipulate data quickly.

Unix Data Tools and the Unix One-Liner Approach: Lessons
from Programming Pearls
Understanding how to use Unix data tools in bioinformatics isn’t only about learning
what each tool does, it’s about mastering the practice of connecting tools together—
creating programs from Unix pipelines. By connecting data tools together with pipes,
we can construct programs that parse, manipulate, and summarize data. Unix pipe‐
lines can be developed in shell scripts or as “one-liners”—tiny programs built by con‐
necting Unix tools with pipes directly on the shell. Whether in a script or as a one-
liner, building more complex programs from small, modular tools capitalizes on the
design and philosophy of Unix (discussed in “Why Do We Use Unix in Bioinformat‐
ics? Modularity and the Unix Philosophy” on page 37). The pipeline approach to
building programs is a well-established tradition in Unix (and bioinformatics)
because it’s a fast way to solve problems, incredibly powerful, and adaptable to a vari‐
ety of a problems. An illustrative example of the power of simple Unix pipelines
comes from a famous exchange between two brilliant computer scientists: Donald
Knuth and Doug McIlroy (recall from Chapter 3 that McIlroy invented Unix pipes).
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In a 1986 “Programming Pearls” column in the Communications of the ACM maga‐
zine, columnist Jon Bentley had computer scientist Donald Knuth write a simple pro‐
gram to count and print the k most common words in a file alongside their counts, in
descending order. Knuth was chosen to write this program to demonstrate literate
programming, a method of programming that Knuth pioneered. Literate programs
are written as a text document explaining how to solve a programming problem (in
plain English) with code interspersed throughout the document. Code inside this
document can then be “tangled” out of the document using literate programming
tools (this approach might be recognizable to readers familiar with R’s knitr or
Sweave—both are modern descendants of this concept). Knuth’s literate program was
seven pages long, and also highly customized to this particular programming prob‐
lem; for example, Knuth implemented a custom data structure for the task of count‐
ing English words. Bentley then asked that McIlroy critique Knuth’s seven-page-long
solution. McIlroy commended Knuth’s literate programming and novel data struc‐
ture, but overall disagreed with his engineering approach. McIlroy replied with a six-
line Unix script that solved the same programming problem:

tr -cs A-Za-z '\n' | 
tr A-Z a-z | 
sort | 
uniq -c | 
sort -rn | 
sed ${1}q 

While you shouldn’t worry about fully understanding this now (we’ll learn these tools
in this chapter), McIlroy’s basic approach was:

Translate all nonalphabetical characters (-c takes the complement of the first
argument) to newlines and squeeze all adjacent characters together (-s) after
translating. This creates one-word lines for the entire input stream.

Translate all uppercase letters to lowercase.

Sort input, bringing identical words on consecutive lines.

Remove all duplicate consecutive lines, keeping only one with a count of the
occurrences (-c).

Sort in reverse (-r) numeric order (-n).

Print the first k number of lines supplied by the first argument of the script
(${1}) and quit.

McIlroy’s solution is a beautiful example of the Unix approach. McIlroy originally
wrote this as a script, but it can easily be turned into a one-liner entered directly on
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the shell (assuming k here is 10). However, I’ve had to add a line break here so that
the code does not extend outside of the page margins:

$ cat input.txt \
| tr -cs A-Za-z '\n' | tr A-Z a-z | sort | uniq -c | sort -rn | sed 10q

McIlroy’s script was doubtlessly much faster to implement than Knuth’s program and
works just as well (and arguably better, as there were a few minor bugs in Knuth’s sol‐
ution). Also, his solution was built on reusable Unix data tools (or as he called them,
“Unix staples”) rather than “programmed monolithically from scratch,” to use McIl‐
roy’s phrasing. The speed and power of this approach is why it’s a core part of bioin‐
formatics work.

When to Use the Unix Pipeline Approach and How to Use
It Safely
Although McIlroy’s example is appealing, the Unix one-liner approach isn’t appropri‐
ate for all problems. Many bioinformatics tasks are better accomplished through a
custom, well-documented script, more akin to Knuth’s program in “Programming
Pearls.” Knowing when to use a fast and simple engineering solution like a Unix pipe‐
line and when to resort to writing a well-documented Python or R script takes experi‐
ence. As with most tasks in bioinformatics, choosing the most suitable approach can
be half the battle.

Unix pipelines entered directly into the command line shine as a fast, low-level data
manipulation toolkit to explore data, transform data between formats, and inspect
data for potential problems. In this context, we’re not looking for thorough, theory-
shattering answers—we usually just want a quick picture of our data. We’re willing to
sacrifice a well-documented implementation that solves a specific problem in favor of
a quick rough picture built from modular Unix tools. As McIlroy explained in his
response:

The simple pipeline … will suffice to get answers right now, not next week or next
month. It could well be enough to finish the job. But even for a production project … it
would make a handsome down payment, useful for testing the value of the answers and
for smoking out follow-on questions.

—Doug McIlroy (my emphasis)
Many tasks in bioinformatics are of this nature: we want to get a quick answer and
keep moving forward with our project. We could write a custom script, but for simple
tasks this might be overkill and would take more time than necessary. As we’ll see
later in this chapter, building Unix pipelines is fast: we can iteratively assemble and
test Unix pipelines directly in the shell.

For larger, more complex tasks it’s often preferable to write a custom script in a lan‐
guage like Python (or R if the work involves lots of data analysis). While shell
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approaches (whether a one-liner or a shell script) are useful, these don’t allow for the
same level of flexibility in checking input data, structuring programs, use of data
structures, code documentation, and adding assert statements and tests as languages
like Python and R. These languages also have better tools for stepwise documentation
of larger analyses, like R’s knitr (introduced in the “Reproducibility with Knitr and
Rmarkdown” on page 254) and iPython notebooks. In contrast, lengthy Unix pipe‐
lines can be fragile and less robust than a custom script.

So in cases where using Unix pipelines is appropriate, what steps can we take to
ensure they’re reproducible? As mentioned in Chapter 1, it’s essential that everything
that produces a result is documented. Because Unix one-liners are entered directly in
the shell, it’s particularly easy to lose track of which one-liner produced what version
of output. Remembering to record one-liners requires extra diligence (and is often
neglected, especially in bioinformatics work). Storing pipelines in scripts is a good
approach—not only do scripts serve as documentation of what steps were performed
on data, but they allow pipelines to be rerun and can be checked into a Git repository.
We’ll look at scripting in more detail in Chapter 12.

Inspecting and Manipulating Text Data with Unix Tools
In this chapter, our focus is on learning how to use core Unix tools to manipulate and
explore plain-text data formats. Many formats in bioinformatics are simple tabular
plain-text files delimited by a character. The most common tabular plain-text file for‐
mat used in bioinformatics is tab-delimited. This is not an accident: most Unix tools
such as cut and awk treat tabs as delimiters by default. Bioinformatics evolved to
favor tab-delimited formats because of the convenience of working with these files
using Unix tools. Tab-delimited file formats are also simple to parse with scripting
languages like Python and Perl, and easy to load into R.

Tabular Plain-Text Data Formats
Tabular plain-text data formats are used extensively in computing. The basic format is
incredibly simple: each row (also known as a record) is kept on its own line, and each
column (also known as a field) is separated by some delimiter. There are three flavors
you will encounter: tab-delimited, comma-separated, and variable space-delimited.

Of these three formats, tab-delimited is the most commonly used in bioinformatics. 
File formats such as BED, GTF/GFF, SAM, tabular BLAST output, and VCF are all
examples of tab-delimited files. Columns of a tab-delimited file are separated by a sin‐
gle tab character (which has the escape code \t). A common convention (but not a
standard) is to include metadata on the first few lines of a tab-delimited file. These
metadata lines begin with # to differentiate them from the tabular data records.
Because tab-delimited files use a tab to delimit columns, tabs in data are not allowed.
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Comma-separated values (CSV) is another common format. CSV is similar to tab-
delimited, except the delimiter is a comma character. While not a common occur‐
rence in bioinformatics, it is possible that the data stored in CSV format contain
commas (which would interfere with the ability to parse it). Some variants just don’t
allow this, while others use quotes around entries that could contain commas.
Unfortunately, there’s no standard CSV format that defines how to handle this and
many other issues with CSV—though some guidelines are given in RFC 4180.

Lastly, there are space-delimited formats. A few stubborn bioinformatics programs
use a variable number of spaces to separate columns. In general, tab-delimited for‐
mats and CSV are better choices than space-delimited formats because it’s quite com‐
mon to encounter data containing spaces.

Despite the simplicity of tabular data formats, there’s one major common headache:
how lines are separated. Linux and OS X use a single linefeed character (with the
escape code \n) to separate lines, while Windows uses a DOS-style line separator of a
carriage return and a linefeed character (\r\n). CSV files generally use this DOS-style
too, as this is specified in the CSV specification RFC-4180 (which in practice is
loosely followed). Occasionally, you might encounter files separated by only carriage
returns, too.

In this chapter, we’ll work with very simple genomic feature formats: BED (three-
column) and GTF files. These file formats store the positions of features such as
genes, exons, and variants in tab-delimited format. Don’t worry too much about the
specifics of these formats; we’ll cover both in more detail in Chapter 9. Our goal in
this chapter is primarily to develop the skills to freely manipulate plain-text files or
streams using Unix data tools. We’ll learn each tool separately, and cumulatively work
up to more advanced pipelines and programs.

Inspecting Data with Head and Tail
Many files we encounter in bioinformatics are much too long to inspect with cat—
running cat on a file a million lines long would quickly fill your shell with text scroll‐
ing far too fast to make sense of. A better option is to take a look at the top of a file
with head. Here, let’s took a look at the file Mus_musculus.GRCm38.75_chr1.bed:

$ head Mus_musculus.GRCm38.75_chr1.bed
1       3054233 3054733
1       3054233 3054733
1       3054233 3054733
1       3102016 3102125
1       3102016 3102125
1       3102016 3102125
1       3205901 3671498
1       3205901 3216344
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1       3213609 3216344
1       3205901 3207317

We can also control how many lines we see with head through the -n argument:
$ head -n 3 Mus_musculus.GRCm38.75_chr1.bed
1       3054233 3054733
1       3054233 3054733
1       3054233 3054733

head is useful for a quick inspection of files. head -n3 allows you to quickly inspect a
file to see if a column header exists, how many columns there are, what delimiter is
being used, some sample rows, and so on.

head has a related command designed to look at the end, or tail of a file. tail works
just like head:

$ tail -n 3 Mus_musculus.GRCm38.75_chr1.bed
1       195240910       195241007
1       195240910       195241007
1       195240910       195241007

We can also use tail to remove the header of a file. Normally the -n argument speci‐
fies how many of the last lines of a file to include, but if -n is given a number x pre‐
ceded with a + sign (e.g., +x), tail will start from the xth line. So to chop off a header,
we start from the second line with -n +2. Here, we’ll use the command seq to gener‐
ate a file of 3 numbers, and chop of the first line:

$ seq 3 > nums.txt
$ cat nums.txt
1
2
3
$ tail -n +2 nums.txt
2
3

Sometimes it’s useful to see both the beginning and end of a file—for example, if we
have a sorted BED file and we want to see the positions of the first feature and last
feature. We can do this using a trick from data scientist (and former bioinformati‐
cian) Seth Brown:

$ (head -n 2; tail -n 2) < Mus_musculus.GRCm38.75_chr1.bed
1 3054233 3054733
1 3054233 3054733
1 195240910 195241007
1 195240910 195241007

This is a useful trick, but it’s a bit long to type. To keep it handy, we can create a short‐
cut in your shell configuration file, which is either ~/.bashrc or ~/.profile:
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# inspect the first and last 3 lines of a file
i() { (head -n 2; tail -n 2) < "$1" | column -t}

Then, either run source on your shell configuration file, or start a new terminal ses‐
sion and ensure this works. Then we can use i (for inspect) as a normal command:

$ i Mus_musculus.GRCm38.75_chr1.bed
1  3054233    3054733
1  3054233    3054733
1  195240910  195241007
1  195240910  195241007

head is also useful for taking a peek at data resulting from a Unix pipeline. For exam‐
ple, suppose we want to grep the Mus_musculus.GRCm38.75_chr1.gtf file for rows
containing the string gene_id "ENSMUSG00000025907" (because our GTF is well
structured, it’s safe to assume that these are all features belonging to this gene—but
this may not always be the case!). We’ll use grep’s results as the standard input for the
next program in our pipeline, but first we want to check grep’s standard out to see if
everything looks correct. We can pipe the standard out of grep directly to head to
take a look:

$ grep 'gene_id "ENSMUSG00000025907"' Mus_musculus.GRCm38.75_chr1.gtf | head -n 1
1 protein_coding  gene  6206197 6276648 [...] gene_id "ENSMUSG00000025907" [...]

Note that for the sake of clarity, I’ve omitted the full line of this GTF, as it’s quite long.

After printing the first few rows of your data to ensure your pipeline is working prop‐
erly, the head process exits. This is an important feature that helps ensure your pipes
don’t needlessly keep processing data. When head exits, your shell catches this and
stops the entire pipe, including the grep process too. Under the hood, your shell sends
a signal to other programs in the pipe called SIGPIPE—much like the signal that’s sent
when you press Control-c (that signal is SIGINT). When building complex pipelines
that process large amounts of data, this is extremely important. It means that in a
pipeline like:

$ grep "some_string" huge_file.txt | program1 | program2 | head -n 5

grep won’t continue searching huge_file.txt, and program1 and program2 don’t con‐
tinue processing input after head outputs 5 lines and exits. While head is a good illus‐
tration of this feature of pipes, SIGPIPE works with all programs (unless the program
explicitly catches and ignore this symbol—a possibility, but not one we encounter
with bioinformatics programs).

less
less is also a useful program for a inspecting files and the output of pipes. less is a
terminal pager, a program that allows us to view large amounts of text in our termi‐
nals. Normally, if we cat a long file to screen, the text flashes by in an instant—less
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allows us to view and scroll through long files and standard output a screen at a time.
Other applications can call the default terminal pager to handle displaying large
amounts of output; this is how git log displays an entire Git repository’s commit
history. You might run across another common, but older terminal pager called more,
but less has more features and is generally preferred (the name of less is a play on
“less is more”).

less runs more like an application than a command: once we start less, it will stay
open until we quit it. Let’s review an example—in this chapter’s directory in the book’s
GitHub repository, there’s a file called contaminated.fastq. Let’s look at this with less:

$ less contaminated.fastq

This will open up the program less in your terminal and display a FASTQ file full of
sequences. First, if you need to quit less, press q. At any time, you can bring up a
help page of all of less’s commands with h.

Moving around in less is simple: press space to go down a page, and b to go up a
page. You can use j and k to go down and up a line at a time (these are the same keys
that the editor Vim uses to move down and up). To go back up to the top of a file,
enter g; to go to the bottom of a file, press G. Table 7-1 lists the most commonly used
less commands. We’ll talk a bit about how this works when less is taking input
from another program through a pipe in a bit.

Table 7-1. Commonly used less commands
Shortcut Action

space bar Next page

b Previous page

g First line

G Last line

j Down (one line at at time)

k Up (one line at at time)

/<pattern> Search down (forward) for string <pattern>

?<pattern> Search up (backward) for string <pattern>

n Repeat last search downward (forward)

N Repeat last search upward (backward)
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1 Courtesy of Illumina, Inc.

One of the most useful features of less is that it allows you to search text and high‐
lights matches. Visually highlighting matches can be an extremely useful way to find
potential problems in data. For example, let’s use less to get a quick sense of whether
there are 3’ adapter contaminants in the contaminated.fastq file. In this case, we’ll look
for AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC (a known adapter from the Illumina Tru‐
Seq® kit1). Our goal isn’t to do an exhaustive test or remove these adapters—we just
want to take a 30-second peek to check if there’s any indication there could be con‐
tamination.

Searching for this entire string won’t be very helpful, for the following reasons:

• It’s likely that only part of the adapter will be in sequences
• It’s common for there to be a few mismatches in sequences, making exact match‐

ing ineffective (especially since the base calling accuracy typically drops at the 3’
end of Illumina sequencing reads)

To get around this, let’s search for the first 11 bases, AGATCGGAAGA. First, we open con‐
taminated.fastq in less, and then press / and enter AGATCGG. The results are in
Figure 7-1, which passes the interocular test—the results hit you right between the
eyes. Note the skew in match position toward the end of sequencing reads (where we
expect contamination) and the high similarity in bases after the match. Although only
a quick visual inspection, this is quite informative.

less is also extremely useful in debugging our command-line pipelines. One of the
great beauties of the Unix pipe is that it’s easy to debug at any point—just pipe the
output of the command you want to debug to less and delete everything after. When
you run the pipe, less will capture the output of the last command and pause so you
can inspect it.

less is also crucial when iteratively building up a pipeline—which is the best way to
construct pipelines. Suppose we have an imaginary pipeline that involves three pro‐
grams, step1, step2, and step3. Our finished pipeline will look like step1
input.txt | step2 | step3 > output.txt. However, we want to build this up in
pieces, running step1 input.txt first and checking its output, then adding in step3
and checking that output, and so forth. The natural way to do this is with less:

$ step1 input.txt | less                   # inspect output in less
$ step1 input.txt | step2 | less
$ step1 input.txt | step2 | step3 | less
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Figure 7-1. Using less to search for contaminant adapter sequences starting with
“AGATCGG”; note how the nucleotides after the match are all very similar

A useful behavior of pipes is that the execution of a program with output piped to
less will be paused when less has a full screen of data. This is due to how pipes block
programs from writing to a pipe when the pipe is full. When you pipe a program’s
output to less and inspect it, less stops reading input from the pipe. Soon, the pipe
becomes full and blocks the program putting data into the pipe from continuing. The
result is that we can throw less after a complex pipe processing large data and not
worry about wasting computing power—the pipe will block and we can spend as
much time as needed to inspect the output.

Plain-Text Data Summary Information with wc, ls, and awk
In addition to peeking at a file with head, tail, or less, we may want other bits of
summary information about a plain-text data file like the number of rows or col‐
umns. With plain-text data formats like tab-delimited and CSV files, the number of
rows is usually the number of lines. We can retrieve this with the program wc (for
word count):
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$ wc Mus_musculus.GRCm38.75_chr1.bed
   81226  243678 1698545 Mus_musculus.GRCm38.75_chr1.bed

By default, wc outputs the number of words, lines, and characters of the supplied file.
It can also work with many files:

$ wc Mus_musculus.GRCm38.75_chr1.bed Mus_musculus.GRCm38.75_chr1.gtf
   81226  243678 1698545 Mus_musculus.GRCm38.75_chr1.bed
   81231 2385570 26607149 Mus_musculus.GRCm38.75_chr1.gtf
  162457 2629248 28305694 total

Often, we only care about the number of lines. We can use option -l to just return
the number of lines:

$ wc -l Mus_musculus.GRCm38.75_chr1.bed
   81226 Mus_musculus.GRCm38.75_chr1.bed

You might have noticed a discrepancy between the BED file and the GTF file for this
chromosome 1 mouse annotation. What’s going on? Using head, we can inspect the
Mus_musculus.GRCm38.75_chr1.gtf file and see that the first few lines are comments:

$ head -n 5 Mus_musculus.GRCm38.75_chr1.gtf
#!genome-build GRCm38.p2
#!genome-version GRCm38
#!genome-date 2012-01
#!genome-build-accession NCBI:GCA_000001635.4
#!genebuild-last-updated 2013-09

The five-line discrepancy we see with wc -l is due to this header. Using a hash mark
(#) as a comment field for metadata is a common convention; it is one we need to
consider when using Unix data tools.

Another bit of information we usually want about a file is its size. The easiest way to
do this is with our old Unix friend, ls, with the -l option:

$  ls -l Mus_musculus.GRCm38.75_chr1.bed
-rw-r--r--  1 vinceb  staff  1698545 Jul 14 22:40 Mus_musculus.GRCm38.75_chr1.bed

In the fourth column (the one before the creation data) ls -l reports file sizes in
bytes. If we wish to use human-readable sizes, we can use ls -lh:

$ ls -lh Mus_musculus.GRCm38.75_chr1.bed
-rw-r--r--  1 vinceb  staff   1.6M Jul 14 22:40 Mus_musculus.GRCm38.75_chr1.bed

Here, “M” indicates megabytes; if a file is gigabytes in size, ls -lh will output results
in gigabytes, “G.”
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Data Formats and Assumptions

Although wc -l is a quick way to determine how many rows there
are in a plain-text data file (e.g., a TSV or CSV file), it makes the
assumption that your data is well formatted. For example, imagine
that a script writes data output like:

$ cat some_data.bed
1  3054233  3054733
1  3054233  3054733
1  3054233  3054733

$ wc -l data.txt
       5 data.txt

There’s a subtle problem here: while there are only three rows of
data, there are five lines. These two extra lines are empty newlines
at the end of the file. So while wc -l is a quick and easy way to
count the number of lines in a file, it isn’t the most robust way to
check how many rows of data are in a file. Still, wc -l will work
well enough in most cases when we just need a rough idea how
many rows there are. If we wish to exclude lines with just white‐
space (spaces, tabs, or newlines), we can use grep:

$ grep -c "[^ \\n\\t]" some_data.bed
3

We’ll talk a lot more about grep later on.

There’s one other bit of information we often want about a file: how many columns it
contains. We could always manually count the number of columns of the first row
with head -n 1, but a far easier way is to use awk. Awk is an easy, small programming
language great at working with text data like TSV and CSV files. We’ll introduce awk
as a language in much more detail in “Text Processing with Awk” on page 157, but
let’s use an awk one-liner to return how many fields a file contains:

$ awk -F "\t" '{print NF; exit}' Mus_musculus.GRCm38.75_chr1.bed
3

awk was designed for tabular plain-text data processing, and consequently has a built-
in variable NF set to the number of fields of the current dataset. This simple awk one-
liner simply prints the number of fields of the first row of the
Mus_musculus.GRCm38.75_chr1.bed file, and then exits. By default, awk treats white‐
space (tabs and spaces) as the field separator, but we could change this to just tabs by
setting the -F argument of awk (because the examples in both BED and GTF formats
we’re working in are tab-delimited).

Finding how many columns there are in Mus_musculus.GRCm38.75_chr1.gtf is a bit
trickier. Remember that our Mus_musculus.GRCm38.75_chr1.gtf file has a series of 
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comments before it: five lines that begin with hash symbols (#) that contain helpful
metadata like the genome build, version, date, and accession number. Because the
first line of this file is a comment, our awk trick won’t work—instead of reporting the
number of data columns, it returns the number of columns of the first comment. To
see how many columns of data there are, we need to first chop off the comments and
then pass the results to our awk one-liner. One way to do this is with a tail trick we
saw earlier:

$ tail -n +5 Mus_musculus.GRCm38.75_chr1.gtf | head -n 1 
#!genebuild-last-updated 2013-09
$ tail -n +6 Mus_musculus.GRCm38.75_chr1.gtf | head 
1    pseudogene    gene    3054233    3054733    .    +    . [...]

$ tail -n +6 Mus_musculus.GRCm38.75_chr1.gtf | awk -F "\t" '{print NF; exit}' 
16

Using tail with the -n +5 argument (note the preceding plus sign), we can chop
off some rows. Before piping these results to awk, we pipe it to head to inspect
what we have. Indeed, we see we’ve made a mistake: the first line returned is the
last comment—we need to chop off one more line.

Incrementing our -n argument to 6, and inspecting the results with head, we get
the results we want: the first row of the standard output stream is the first row of
the Mus_musculus.GRCm38.75_chr1.gtf GTF file.

Now, we can pipe this data to our awk one-liner to get the number of columns in
this file.

While removing a comment header block at the beginning of a file with tail does
work, it’s not very elegant and has weaknesses as an engineering solution. As you
become more familiar with computing, you’ll recognize a solution like this as brittle.
While we’ve engineered a solution that does what we want, will it work on other files?
Is it robust? Is this a good way to do this? The answer to all three questions is no. Rec‐
ognizing when a solution is too fragile is an important part of developing Unix data
skills.

The weakness with using tail -n +6 to drop commented header lines from a file is
that this solution must be tailored to specific files. It’s not a general solution, while
removing comment lines from a file is a general problem. Using tail involves figur‐
ing out how many lines need to be chopped off and then hardcoding this value in our
Unix pipeline. Here, a better solution would be to simply exclude all lines that match
a comment line pattern. Using the program grep (which we’ll talk more about in
“The All-Powerful Grep” on page 140), we can easily exclude lines that begin with
“#”:
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$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | head -n 3
1  pseudogene              gene        3054233  3054733  .  +  . [...]
1  unprocessed_pseudogene  transcript  3054233  3054733  .  +  . [...]
1  unprocessed_pseudogene  exon        3054233  3054733  .  +  . [...]

This solution is faster and easier (because we don’t have to count how many commen‐
ted header lines there are), in addition to being less fragile and more robust. Overall,
it’s a better engineered solution—an optimal balance of robustness, being generaliza‐
ble, and capable of being implemented quickly. These are the types of solutions you
should hunt for when working with Unix data tools: they get the job done and are
neither over-engineered nor too fragile.

Working with Column Data with cut and Columns
When working with plain-text tabular data formats like tab-delimited and CSV files,
we often need to extract specific columns from the original file or stream. For exam‐
ple, suppose we wanted to extract only the start positions (the second column) of the
Mus_musculus.GRCm38.75_chr1.bed file. The simplest way to do this is with cut.
This program cuts out specified columns (also known as fields) from a text file. By
default, cut treats tabs as the delimiters, so to extract the second column we use:

$ cut -f 2 Mus_musculus.GRCm38.75_chr1.bed | head -n 3
3054233
3054233
3054233

The -f argument is how we specify which columns to keep. The argument -f also
allows us to specify ranges of columns (e.g., -f 3-8) and sets of columns (e.g., -f
3,5,8). Note that it’s not possible to reorder columns using using cut (e.g., -f
6,5,4,3 will not work, unfortunately). To reorder columns, you’ll need to use awk,
which is discussed later.

Using cut, we can convert our GTF for Mus_musculus.GRCm38.75_chr1.gtf to a
three-column tab-delimited file of genomic ranges (e.g., chromosome, start, and end
position). We’ll chop off the metadata rows using the grep command covered earlier,
and then use cut to extract the first, fourth, and fifth columns (chromosome, start,
end):

$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | cut -f1,4,5 | head -n 3
1  3054233  3054733
1  3054233  3054733
1  3054233  3054733
$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | cut -f1,4,5 > test.txt

Note that although our three-column file of genomic positions looks like a BED-
formatted file, it’s not due to subtle differences in genomic range formats. We’ll learn
more about this in Chapter 9.
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cut also allows us to specify the column delimiter character. So, if we were to come
across a CSV file containing chromosome names, start positions, and end positions,
we could select columns from it, too:

$ head -n 3 Mus_musculus.GRCm38.75_chr1_bed.csv
1,3054233,3054733
1,3054233,3054733
1,3054233,3054733
$ cut -d, -f2,3 Mus_musculus.GRCm38.75_chr1_bed.csv | head -n 3
3054233,3054733
3054233,3054733
3054233,3054733

Formatting Tabular Data with column
As you may have noticed when working with tab-delimited files, it’s not always easy
to see which elements belong to a particular column. For example:

$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | cut -f1-8 | head -n3
1       pseudogene      gene    3054233 3054733 .       +       .
1       unprocessed_pseudogene  transcript      3054233 3054733 .       +       .
1       unprocessed_pseudogene  exon    3054233 3054733 .       +       .

While tabs are a terrific delimiter in plain-text data files, our variable width data leads
our columns to not stack up well. There’s a fix for this in Unix: program column -t
(the -t option tells column to treat data as a table). column -t produces neat columns
that are much easier to read:

$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | cut -f 1-8 | column -t
  | head -n 3
1  pseudogene                     gene         3054233    3054733    .  +  .
1  unprocessed_pseudogene         transcript   3054233    3054733    .  +  .
1  unprocessed_pseudogene         exon         3054233    3054733    .  +  .

Note that you should only use columnt -t to visualize data in the terminal, not to
reformat data to write to a file. Tab-delimited data is preferable to data delimited by a
variable number of spaces, since it’s easier for programs to parse.

Like cut, column’s default delimiter is the tab character (\t). We can specify a differ‐
ent delimiter with the -s option. So, if we wanted to visualize the columns of the
Mus_musculus.GRCm38.75_chr1_bed.csv file more easily, we could use:

$ column -s"," -t Mus_musculus.GRCm38.75_chr1_bed.csv | head -n 3
1  3054233    3054733
1  3054233    3054733
1  3054233    3054733

column illustrates an important point about how we should treat data: there’s no rea‐
son to make data formats attractive at the expense of readable by programs. This
relates to the recommendation, “write code for humans, write data for computers”
(“Write Code for Humans, Write Data for Computers” on page 11). Although single-
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character delimited columns (like CSV or tab-delimited) can be difficult for humans
to read, consider the following points:

• They work instantly with nearly all Unix tools.
• They are easy to convert to a readable format with column -t.

In general, it’s easier to make computer-readable data attractive to humans than it is
to make data in a human-friendly format readable to a computer. Unfortunately, data
in formats that prioritize human readability over computer readability still linger in
bioinformatics.

The All-Powerful Grep
Earlier, we’ve seen how grep is a useful tool for extracting lines of a file that match (or
don’t match) a pattern. grep -v allowed us to exclude the header rows of a GTF file
in a more robust way than tail. But as we’ll see in this section, this is just scratching
the surface of grep’s capabilities; grep is one of the most powerful Unix data tools.

First, it’s important to mention grep is fast. Really fast. If you need to find a pattern
(fixed string or regular expression) in a file, grep will be faster than anything you
could write in Python. Figure 7-2 shows the runtimes of four methods of finding
exact matching lines in a file: grep, sed, awk, and a simple custom Python script. As
you can see, grep dominates in these benchmarks: it’s five times faster than the fastest
alternative, Python. However, this is a bit of unfair comparison: grep is fast because
it’s tuned to do one task really well: find lines of a file that match a pattern. The other
programs included in this benchmark are more versatile, but pay the price in terms of
efficiency in this particular task. This demonstrates a point: if computational speed is
our foremost priority (and there are many cases when it isn’t as important as we
think), Unix tools tuned to do certain tasks really often are the fastest
implementation.
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Figure 7-2. Benchmark of the time it takes to search the Maize genome for the exact
string “AGATGCATG”

While we’ve seen grep used before in this book let’s briefly review its basic usage.
grep requires two arguments: the pattern (the string or basic regular expression you
want to search for), and the file (or files) to search for it in. As a very simple example,
let’s use grep to find a gene, “Olfr418-ps1,” in the file Mus_muscu‐
lus.GRCm38.75_chr1_genes.txt (which contains all Ensembl gene identifiers and gene
names for all protein-coding genes on chromosome 1):

$ grep "Olfr418-ps1" Mus_musculus.GRCm38.75_chr1_genes.txt
ENSMUSG00000049605      Olfr418-ps1

The quotes around the pattern aren’t required, but it’s safest to use quotes so our
shells won’t try to interpret any symbols. grep returns any lines that match the pat‐
tern, even ones that only partially match:

$ grep Olfr Mus_musculus.GRCm38.75_chr1_genes.txt | head -n 5
ENSMUSG00000067064      Olfr1416
ENSMUSG00000057464      Olfr1415
ENSMUSG00000042849      Olfr1414
ENSMUSG00000058904      Olfr1413
ENSMUSG00000046300      Olfr1412

One useful option when using grep is --color=auto. This option enables terminal
colors, so the matching part of the pattern is colored in your terminal.
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GNU, BSD, and the Flavors of Grep

Up until now, we’ve glossed over a very important detail: there are
different implementations of Unix tools. Tools like grep, cut, and
sort come from one of two flavors: BSD utils and GNU coreutils.
Both of these implementations contain all standard Unix tools we
use in this chapter, but their features may slightly differ from each
other. BSD’s tools are found on Max OS X and other Berkeley Soft‐
ware Distribution-derived operating systems like FreeBSD. GNU’s
coreutils are the standard set of tools found on Linux systems. It’s
important to know which implementation you’re using (this is easy
to tell by reading the man page). If you’re using Mac OS X and
would like to use GNU coreutils, you can install these through
Homebrew with brew install coreutils. Each program will
install with the prefix “g” (e.g., cut would be aliased to gcut), so as
to not interfere with the system’s default tools.
Unlike BSD’s utils, GNU’s coreutils are still actively developed.
GNU’s coreutils also have many more features and extensions than
BSD’s utils, some of which we use in this chapter. In general, I rec‐
ommend you use GNU’s coreutils over BSD utils, as the documen‐
tation is more thorough and the GNU extensions are helpful (and
sometimes necessary). Throughout the chapter, I will indicate
when a particular feature relies on the GNU version.

Earlier, we saw how grep could be used to only return lines that do not match the
specified pattern—this is how we excluded the commented lines from our GTF file.
The option we used was -v, for invert. For example, suppose you wanted a list of all
genes that contain “Olfr,” except “Olfr1413.” Using -v and chaining together to calls to
grep with pipes, we could use:

$ grep Olfr Mus_musculus.GRCm38.75_chr1_genes.txt | grep -v Olfr1413

But beware! What might go wrong with this? Partially matching may bite us here:
while we wanted to exclude “Olfr1413,” this command would also exclude genes like
“Olfr1413a” and “Olfr14130.” But we can get around this by using -w, which matches
entire words (surrounded by whitespace). Let’s look at how this works with a simpler
toy example:

$ cat example.txt
bio
bioinfo
bioinformatics
computational biology
$ grep -v bioinfo example.txt
bio
computational biology
$ grep -v -w bioinfo example.txt
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bio
bioinformatics
computational biology

By constraining our matches to be words, we’re using a more restrictive pattern. In
general, our patterns should always be as restrictive as possible to avoid unintentional
matches caused by partial matching.

grep’s default output often doesn’t give us enough context of a match when we need
to inspect results by eye; only the matching line is printed to standard output. There
are three useful options to get around this context before (-B), context: after (-A), and
context before and after (-C). Each of these arguments takes how many lines of con‐
text to provide:

$ grep -B1 "AGATCGG" contam.fastq | head -n 6 
@DJB775P1:248:D0MDGACXX:7:1202:12362:49613
TGCTTACTCTGCGTTGATACCACTGCTTAGATCGGAAGAGCACACGTCTGAA
--
@DJB775P1:248:D0MDGACXX:7:1202:12782:49716
CTCTGCGTTGATACCACTGCTTACTCTGCGTTGATACCACTGCTTAGATCGG
--
$ grep -A2 "AGATCGG" contam.fastq | head -n 6 
TGCTTACTCTGCGTTGATACCACTGCTTAGATCGGAAGAGCACACGTCTGAA
+
JJJJJIIJJJJJJHIHHHGHFFFFFFCEEEEEDBD?DDDDDDBDDDABDDCA
--
CTCTGCGTTGATACCACTGCTTACTCTGCGTTGATACCACTGCTTAGATCGG
+

Print one line of context before (-B) the matching line.

Print two lines of context after (-A) the matching line.

grep also supports a flavor of regular expression called POSIX Basic Regular Expres‐
sions (BRE). If you’re familiar with the regular expressions in Perl or Python, you’ll
notice that grep’s regular expressions aren’t quite as powerful as the ones in these lan‐
guages. Still, for many simple applications they work quite well. For example, if we
wanted to find the Ensembl gene identifiers for both “Olfr1413” and “Olfr1411,” we
could use:

$ grep "Olfr141[13]" Mus_musculus.GRCm38.75_chr1_genes.txt
ENSMUSG00000058904      Olfr1413
ENSMUSG00000062497      Olfr1411

Here, we’re using a shared prefix between these two gene names, and allowing the last
single character to be either “1” or “3”. However, this approach is less useful if we have
more divergent patterns to search for. For example, constructing a BRE pattern to
match both “Olfr218” and “Olfr1416” would be complex and error prone. For tasks
like these, it’s far easier to use grep’s support for POSIX Extended Regular Expressions
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(ERE). grep allows us to turn on ERE with the -E option (which on many systems is
aliased to egrep). EREs allow us to use alternation (regular expression jargon for
matching one of several possible patterns) to match either “Olfr218” or “Olfr1416.”
The syntax uses a pipe symbol (|):

$ grep -E "(Olfr1413|Olfr1411)" Mus_musculus.GRCm38.75_chr1_genes.txt
ENSMUSG00000058904      Olfr1413
ENSMUSG00000062497      Olfr1411

We’re just scratching the surface of BRE and ERE now; we don’t have the space to
cover these two regular expression flavors in depth here (see “Assumptions This Book
Makes” on page xvi for some resources on regular expressions). The important part is
that you recognize there’s a difference and know the terms necessary to find further
help when you need it.

grep has an option to count how many lines match a pattern: -c. For example, sup‐
pose we wanted a quick look at how many genes start with “Olfr”:

$ grep -c "\tOlfr" Mus_musculus.GRCm38.75_chr1_genes.txt
27

Alternatively, we could pipe the matching lines to wc -l:
$ grep "\tOlfr" Mus_musculus.GRCm38.75_chr1_genes.txt | wc -l
      27

Counting matching lines is extremely useful—especially with plain-text data where
lines represent rows, and counting the number of lines that match a pattern can be
used to count occurrences in the data. For example, suppose we wanted to know how
many small nuclear RNAs are in our Mus_musculus.GRCm38.75_chr1.gtf file.
snRNAs are annotated as gene_biotype "snRNA" in the last column of this GTF file.
A simple way to count these features would be:

$ grep -c 'gene_biotype "snRNA"' Mus_musculus.GRCm38.75_chr1.gtf
315

Note here how we’ve used single quotes to specify our pattern, as our pattern includes
the double-quote characters (").

Currently, grep is outputting the entire matching line. In fact, this is one reason why
grep is so fast: once it finds a match, it doesn’t bother searching the rest of the line
and just sends it to standard output. Sometimes, however, it’s useful to use grep to
extract only the matching part of the pattern. We can do this with -o:

$ grep -o "Olfr.*" Mus_musculus.GRCm38.75_chr1_genes.txt | head -n 3
Olfr1416
Olfr1415
Olfr1414
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Or, suppose we wanted to extract all values of the “gene_id” field from the last col‐
umn of our Mus_musculus.GRCm38.75_chr1.gtf file. This is easy with -o:

$ grep -E -o 'gene_id "\w+"' Mus_musculus.GRCm38.75_chr1.gtf | head -n 5
gene_id "ENSMUSG00000090025"
gene_id "ENSMUSG00000090025"
gene_id "ENSMUSG00000090025"
gene_id "ENSMUSG00000064842"
gene_id "ENSMUSG00000064842"

Here, we’re using extended regular expressions to capture all gene names in the field.
However, as you can see there’s a great deal of redundancy: our GTF file has multiple
features (transcripts, exons, start codons, etc.) that all have the same gene name. As a
taste of what’s to come in later sections, Example 7-1 shows how we could quickly 
convert this messy output from grep to a list of unique, sorted gene names.

Example 7-1. Cleaning a set of gene names with Unix data tools

$ grep -E -o 'gene_id "(\w+)"' Mus_musculus.GRCm38.75_chr1.gtf | \
   cut -f2 -d" " | \
   sed 's/"//g' | \
   sort | \
   uniq > mm_gene_id.txt

Even though it looks complex, this took less than one minute to write (and there are
other possible solutions that omit cut, or only use awk). The length of this file
(according to wc -l) is 2,027 line long—the same number we get when clicking
around Ensembl’s BioMart database interface for the same information. In the
remaining sections of this chapter, we’ll learn these tools so you can employ this type
of quick pipeline in your work.

Decoding Plain-Text Data: hexdump
In bioinformatics, the plain-text data we work with is often encoded in ASCII. ASCII
is a character encoding scheme that uses 7 bits to represent 128 different values,
including letters (upper- and lowercase), numbers, and special nonvisible characters.
While ASCII only uses 7 bits, nowadays computers use an 8-bit byte (a unit repre‐
senting 8 bits) to store ASCII characters. More information about ASCII is available
in your terminal through man ascii. Because plain-text data uses characters to
encode information, our encoding scheme matters. When working with a plain-text
file, 98% of the time you won’t have to worry about the details of ASCII and how your
file is encoded. However, the 2% of the time when encoding does matter—usually
when an invisible non-ASCII character has entered data—it can lead to major head‐
aches. In this section, we’ll cover the basics of inspecting text data at a low level to
solve these types of problems. If you’d like to skip this section for now, bookmark it in
case you run into this issue at some point.
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First, to look at a file’s encoding use the program file, which infers what the encod‐
ing is from the file’s content. For example, we see that many of the example files we’ve
been working with in this chapter are ASCII-encoded:

$ file Mus_musculus.GRCm38.75_chr1.bed Mus_musculus.GRCm38.75_chr1.gtf
Mus_musculus.GRCm38.75_chr1.bed: ASCII text
Mus_musculus.GRCm38.75_chr1.gtf: ASCII text, with very long lines

Some files will have non-ASCII encoding schemes, and may contain special charac‐
ters. The most common character encoding scheme is UTF-8, which is a superset of
ASCII but allows for special characters. For example, the utf8.txt included in this
chapter’s GitHub directory is a UTF-8 file, as evident from file’s output:

$ file utf8.txt
utf8.txt: UTF-8 Unicode English text

Because UTF-8 is a superset of ASCII, if we were to delete the special characters in
this file and save it, file would return that this file is ASCII-encoded.

Most files you’ll download from data sources like Ensembl, NCBI, and UCSC’s
Genome Browser will not have special characters and will be ASCII-encoded (which
again is simply UTF-8 without these special characters). Often, the problems I’ve run
into are from data generated by humans, which through copying and pasting data
from other sources may lead to unintentional special characters. For example, the
improper.fa file in this chapter’s directory in the GitHub repository looks like a regu‐
lar FASTA file upon first inspection:

$ cat improper.fa
>good-sequence
AGCTAGCTACTAGCAGCTACTACGAGCATCTACGGCGCGATCTACG
>bad-sequence
GATCAGGCGACATCGAGCTATCACTACGAGCGAGΑGATCAGCTATT

However, finding the reverse complement of these sequences using bioawk (don’t
worry about the details of this program yet—we’ll cover it later) leads to strange
results:

$ bioawk -cfastx '{print revcomp($seq)}' improper.fa
CGTAGATCGCGCCGTAGATGCTCGTAGTAGCTGCTAGTAGCTAGCT
AATAGCTGATC

What’s going on? We have a non-ASCII character in our second sequence:
$ file improper.fa
improper.fa: UTF-8 Unicode text

Using the hexdump program, we can identify which letter is causing this problem. The
hexdump program returns the hexadecimal values of each character. With the -c
option, this also prints the character:

$ hexdump -c improper.fa
0000000   >   g   o   o   d   -   s   e   q   u   e   n   c   e  \n   A
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0000010   G   C   T   A   G   C   T   A   C   T   A   G   C   A   G   C
0000020   T   A   C   T   A   C   G   A   G   C   A   T   C   T   A   C
0000030   G   G   C   G   C   G   A   T   C   T   A   C   G  \n   >   b
0000040   a   d   -   s   e   q   u   e   n   c   e  \n   G   A   T   C
0000050   A   G   G   C   G   A   C   A   T   C   G   A   G   C   T   A
0000060   T   C   A   C   T   A   C   G   A   G   C   G   A   G   221
0000070   G   A   T   C   A   G   C   T   A   T   T  \n
000007c

As we can see, the character after “CGAGCGAG” in the second sequence is clearly
not an ASCII character. Another way to see non-ASCII characters is using grep. This
command is a bit tricky (it searches for characters outside a hexadecimal range), but
it’s such a specific use case there’s little reason to explain it in depth:

$ LC_CTYPE=C grep --color='auto' -P "[\x80-\xFF]" improper.fa
GATCAGGCGACATCGAGCTATCACTACGAGCGAG[m�GATCAGCTATT

Note that this does not work with BSD grep, the version that comes with Mac OS X.
Another useful grep option to add to this is -n, which adds line numbers to each
matching line. On my systems, I have this handy line aliased to nonascii in my shell
configuration file (often ~/.bashrc or ~/.profile):

$ alias nonascii="LC_CTYPE=C grep --color='auto' -n -P '[\x80-\xFF]'"

Overall, file, hexdump, and the grep command are useful for those situations where
something isn’t behaving correctly and you suspect a file’s encoding may be to blame
(which happened even during preparing this book’s test data!). This is especially com‐
mon with data curated by hand, by humans; always be wary of passing these files
without inspection into an analysis pipeline.

Sorting Plain-Text Data with Sort
Very often we need to work with sorted plain-text data in bioinformatics. The two
most common reasons to sort data are as follows:

• Certain operations are much more efficient when performed on sorted data.
• Sorting data is a prerequisite to finding all unique lines, using the Unix sort |
uniq idiom.

We’ll talk much more about sort | uniq in the next section; here we focus on how
to sort data using sort.

First, like cut, sort is designed to work with plain-text data with columns. Running
sort without any arguments simply sorts a file alphanumerically by line:

$ cat example.bed
chr1    26      39
chr1    32      47
chr3    11      28
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chr1    40      49
chr3    16      27
chr1    9       28
chr2    35      54
chr1    10      19
$ sort example.bed
chr1    10      19
chr1    26      39
chr1    32      47
chr1    40      49
chr1    9       28
chr2    35      54
chr3    11      28
chr3    16      27

Because chromosome is the first column, sorting by line effectively groups chromo‐
somes together, as these are “ties” in the sorted order. Grouped data is quite useful, as
we’ll see.

Using Different Delimiters with sort

By default, sort treats blank characters (like tab or spaces) as field
delimiters. If your file uses another delimiter (such as a comma for
CSV files), you can specify the field separator with -t (e.g., -t",").

However, using sort’s defaults of sorting alphanumerically by line doesn’t handle tab‐
ular data properly. There are two new features we need:

• The ability to sort by particular columns
• The ability to tell sort that certain columns are numeric values (and not alpha‐

numeric text; see the Tip "Leading Zeros and Sorting" in Chapter 2 for an exam‐
ple of the difference)

sort has a simple syntax to do this. Let’s look at how we’d sort example.bed by chro‐
mosome (first column), and start position (second column):

$ sort -k1,1 -k2,2n example.bed
chr1    9       28
chr1    10      19
chr1    26      39
chr1    32      47
chr1    40      49
chr2    35      54
chr3    11      28
chr3    16      27

Here, we specify the columns (and their order) we want to sort by as -k arguments. In
technical terms, -k specifies the sorting keys and their order. Each -k argument takes a
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range of columns as start,end, so to sort by a single column we use start,start. In
the preceding example, we first sorted by the first column (chromosome), as the first
-k argument was -k1,1. Sorting by the first column alone leads to many ties in rows
with the same chromosomes (e.g., “chr1” and “chr3”). Adding a second -k argument
with a different column tells sort how to break these ties. In our example, -k2,2n
tells sort to sort by the second column (start position), treating this column as
numerical data (because there’s an n in -k2,2n).

The end result is that rows are grouped by chromosome and sorted by start position.
We could then redirect the standard output stream of sort to a file:

$ sort -k1,1 -k2,2n example.bed > example_sorted.bed

If you need all columns to be sorted numerically, you can use the argument -n rather
than specifying which particular columns are numeric with a syntax like -k2,2n.

Understanding the -k argument syntax is so important we’re going to step through
one more example. The Mus_musculus.GRCm38.75_chr1_random.gtf file is
Mus_musculus.GRCm38.75_chr1.gtf with permuted rows (and without a metadata
header). Let’s suppose we wanted to again group rows by chromosome, and sort by
position. Because this is a GTF file, the first column is chromosome and the fourth
column is start position. So to sort this file, we’d use:

$ sort -k1,1 -k4,4n Mus_musculus.GRCm38.75_chr1_random.gtf > \
    Mus_musculus.GRCm38.75_chr1_sorted.gtf

Sorting Stability

There’s one tricky technical detail about sorting worth being aware
of: sorting stability. To understand stable sorting, we need to go
back and think about how lines that have identical sorting keys are
handled. If two lines are exactly identical according to all sorting
keys we’ve specified, they are indistinguishable and equivalent
when being sorted. When lines are equivalent, sort will sort them
according to the entire line as a last-resort effort to put them in
some order. What this means is that even if the two lines are identi‐
cal according to the sorting keys, their sorted order may be different
from the order they appear in the original file. This behavior makes
sort an unstable sort.
If we don’t want sort to change the order of lines that are equal
according to our sort keys, we can specify the -s option. -s turns
off this last-resort sorting, thus making sort a stable sorting algo‐
rithm.

Sorting can be computationally intensive. Unlike Unix tools, which operate on a sin‐
gle line a time, sort must compare multiple lines to sort a file. If you have a file that
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you suspect is already sorted, it’s much cheaper to validate that it’s indeed sorted
rather than resort it. We can check if a file is sorted according to our -k arguments
using -c:

$ sort -k1,1 -k2,2n -c example_sorted.bed 
$ echo $?
0
$ sort -k1,1 -k2,2n -c example.bed 
sort: example.bed:4: disorder: chr1     40      49
$ echo $?
1

This file is already sorted by -k1,1 -k2,2n -c, so sort exits with exit status 0
(true).

This file is not already sorted by -k1,1 -k2,2n -c, so sort returns the first out-
of-order row it finds and exits with status 1 (false).

It’s also possible to sort in reverse order with the -r argument:
$ sort -k1,1 -k2,2n -r example.bed
chr3    11      28
chr3    16      27
chr2    35      54
chr1    9       28
chr1    10      19
chr1    26      39
chr1    32      47
chr1    40      49

If you’d like to only reverse the sorting order of a single column, you can append r on
that column’s -k argument:

$ sort -k1,1 -k2,2nr example.bed
chr1    40      49
chr1    32      47
chr1    26      39
chr1    10      19
chr1    9       28
chr2    35      54
chr3    16      27
chr3    11      28

In this example, the effect is to keep the chromosomes sorted in alphanumeric
ascending order, but sort the second column of start positions in descending numeric
order.

There are a few other useful sorting options to discuss, but these are available for
GNU sort only (not the BSD version as found on OS X). The first is -V, which is a
clever alphanumeric sorting routine that understands numbers inside strings. To see
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why this is useful, consider the file example2.bed. Sorting with sort -k1,1 -k2,2n
groups chromosomes but doesn’t naturally order them as humans would:

cat example2.bed
chr2    15      19
chr22   32      46
chr10   31      47
chr1    34      49
chr11   6       16
chr2    17      22
chr2    27      46
chr10   30      42
$ sort -k1,1 -k2,2n example2.bed
chr1    34      49
chr10   30      42
chr10   31      47
chr11   6       16
chr2    15      19
chr2    17      22
chr2    27      46
chr22   32      46

Here, “chr2” is following “chr11” because the character “1” falls before “2”—sort isn’t
sorting by the number in the text. However, with V appended to -k1,1 we get the
desired result:

$ sort -k1,1V -k2,2n example2.bed
chr1    34      49
chr2    15      19
chr2    17      22
chr2    27      46
chr10   30      42
chr10   31      47
chr11   6       16
chr22   32      46

In practice, Unix sort scales well to the moderately large text data we’ll need to sort
in bioinformatics. sort does this by using a sorting algorithm called merge sort. One
nice feature of the merge sort algorithm is that it allows us to sort files larger than fit
in our memory by storing sorted intermediate files on the disk. For large files, reading
and writing these sorted intermediate files to the disk may be a bottleneck (remem‐
ber: disk operations are very slow). Under the hood, sort uses a fixed-sized memory
buffer to sort as much data in-memory as fits. Increasing the size of this buffer allows
more data to be sorted in memory, which reduces the amount of temporary sorted
files that need to be written and read off the disk. For example:

$ sort -k1,1 -k4,4n -S2G Mus_musculus.GRCm38.75_chr1_random.gtf
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The -S argument understands suffixes like K for kilobyte, M for megabyte, and G for
gigabyte, as well as % for specifying what percent of total memory to use (e.g., 50%
with -S 50%).

Another option (only available in GNU sort) is to run sort with the --parallel
option. For example, to use four cores to sort Mus_musculus.GRCm38.75_chr1_ran‐
dom.gtf:

$ sort -k1,1 -k4,4n --parallel 4 Mus_musculus.GRCm38.75_chr1_random.gtf

But note that Mus_musculus.GRCm38.75_chr1_random.gtf is much too small for
either increasing the buffer size or parallelization to make any difference. In fact,
because there is a fixed cost to parallelizing operations, parallelizing an operation run
on a small file could actually be slower! In general, don’t obsess with performance
tweaks like these unless your data is truly large enough to warrant them.

So, when is it more efficient to work with sorted output? As we’ll see when we work
with range data in Chapter 9, working with sorted data can be much faster than
working with unsorted data. Many tools have better performance when working on
sorted files. For example, BEDTools’ bedtools intersect allows the user to indicate
whether a file is sorted with -sorted. Using bedtools intersect with a sorted file is
both more memory-efficient and faster. Other tools, like tabix (covered in more
depth in “Fast Access to Indexed Tab-Delimited Files with BGZF and Tabix” on page
425) require that we presort files before indexing them for fast random-access.

Finding Unique Values in Uniq
Unix’s uniq takes lines from a file or standard input stream, and outputs all lines with
consecutive duplicates removed. While this is a relatively simple functionality, you
will use uniq very frequently in command-line data processing. Let’s first see an
example of its behavior:

$ cat letters.txt
A
A
B
C
B
C
C
C
$ uniq letters.txt
A
B
C
B
C
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As you can see, uniq does not return the unique values letters.txt—it only removes
consecutive duplicate lines (keeping one). If instead we did want to find all unique
lines in a file, we would first sort all lines using sort so that all identical lines are
grouped next to each other, and then run uniq. For example:

$ sort letters.txt | uniq
A
B
C

If we had lowercase letters mixed in this file as well, we could add the option -i to
uniq to be case insensitive.

uniq also has a tremendously useful option that’s used very often in command-line
data processing: -c. This option shows the counts of occurrences next to the unique
lines. For example:

$ uniq -c letters.txt
   2 A
   1 B
   1 C
   1 B
   3 C
$ sort letters.txt | uniq -c
   2 A
   2 B
   4 C

Both sort | uniq and sort | uniq -c are frequently used shell idioms in bioinfor‐
matics and worth memorizing. Combined with other Unix tools like grep and cut,
sort and uniq can be used to summarize columns of tabular data:

$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | cut -f3 | sort | uniq -c
25901 CDS
7588 UTR
36128 exon
2027 gene
2290 start_codon
2299 stop_codon
4993 transcript

If we wanted these counts in order from most frequent to least, we could pipe these
results to sort -rn:

$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | cut -f3 | sort | uniq -c | \
    sort -rn
36128 exon
25901 CDS
7588 UTR
4993 transcript
2299 stop_codon

Inspecting and Manipulating Text Data with Unix Tools | 153



2290 start_codon
2027 gene

Because sort and uniq are line-based, we can create lines from multiple columns to
count combinations, like how many of each feature (column 3 in this example GTF)
are on each strand (column 7):

$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | cut -f3,7 | sort | uniq -c
12891  CDS          +
13010  CDS          -
3754   UTR          +
3834   UTR          -
18134  exon         +
17994  exon         -
1034   gene         +
993    gene         -
1135   start_codon  +
1155   start_codon  -
1144   stop_codon   +
1155   stop_codon   -
2482   transcript   +
2511   transcript   -

Or, if you want to see the number of features belonging to a particular gene identifier:
$ grep "ENSMUSG00000033793" Mus_musculus.GRCm38.75_chr1.gtf | cut -f3 | sort \
  | uniq -c
  13 CDS
   3 UTR
  14 exon
   1 gene
   1 start_codon
   1 stop_codon
   1 transcript

These count tables are incredibly useful for summarizing columns of categorical data.
Without having to load data into a program like R or Excel, we can quickly calculate
summary statistics about our plain-text data files. Later on in Chapter 11, we’ll see
examples involving more complex alignment data formats like SAM.

uniq can also be used to check for duplicates with the -d option. With the -d option,
uniq outputs duplicated lines only. For example, the mm_gene_names.txt file (which
contains a list of gene names) does not have duplicates:

$ uniq -d mm_gene_names.txt
# no output
$ uniq -d mm_gene_names.txt | wc -l
       0

A file with duplicates, like the test.bed file, has multiple lines returned:
uniq -d test.bed | wc -l
   22925
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Join
The Unix tool join is used to join different files together by a common column. This
is easiest to understand with simple test data. Let’s use our example.bed BED file, and
example_lengths.txt, a file containing the same chromosomes as example.bed with
their lengths. Both files look like this:

$ cat example.bed
chr1    26      39
chr1    32      47
chr3    11      28
chr1    40      49
chr3    16      27
chr1    9       28
chr2    35      54
chr1    10      19
$ cat example_lengths.txt
chr1    58352
chr2    39521
chr3    24859

Our goal is to append the chromosome length alongside each feature (note that the
result will not be a valid BED-formatted file, just a tab-delimited file). To do this, we
need to join both of these tabular files by their common column, the one containing
the chromosome names (the first column in both example.bed and exam‐
ple_lengths.txt).

To append the chromosome lengths to example.bed, we first need to sort both files by
the column to be joined on. This is a vital step—Unix’s join will not work unless both
files are sorted by the column to join on. We can appropriately sort both files with
sort:

$ sort -k1,1 example.bed > example_sorted.bed
$ sort -c -k1,1 example_lengths.txt # verifies is already sorted

Now, let’s use join to join these files, appending the chromosome lengths to our
example.bed file. The basic syntax is join -1 <file_1_field> -2 <file_2_field>
<file_1> <file_2>, where <file_1> and <file_2> are the two files to be joined by a
column <file_1_field> in <file_1> and column <file_2_field> in <file_2>. So,
with example.bed and example_lengths.txt this would be:

$ join -1 1 -2 1 example_sorted.bed example_lengths.txt
  > example_with_lengths.txt
$ cat example_with_lengths.txt
chr1  10  19  58352
chr1  26  39  58352
chr1  32  47  58352
chr1  40  49  58352
chr1  9   28  58352
chr2  35  54  39521
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chr3  11  28  24859
chr3  16  27  24859

There are many types of joins; we will talk about each kind in more depth in Chap‐
ter 13. For now, it’s important that we make sure join is working as we expect. Our
expectation is that this join should not lead to fewer rows than in our example.bed
file. We can verify this with wc -l:

$ wc -l example_sorted.bed example_with_lengths.txt
       8 example_sorted.bed
       8 example_with_lengths.txt
      16 total

We see that we have the same number of lines in our original file and our joined file.
However, look what happens if our second file, example_lengths.txt, is truncated such
that it doesn’t have the lengths for chr3:

$ head -n2 example_lengths.txt > example_lengths_alt.txt # truncate file
$ join -1 1 -2 1 example_sorted.bed example_lengths_alt.txt
chr1 10 19 58352
chr1 26 39 58352
chr1 32 47 58352
chr1 40 49 58352
chr1 9 28 58352
chr2 35 54 39521
$ join -1 1 -2 1 example_sorted.bed example_lengths_alt.txt | wc -l
       6

Because chr3 is absent from example_lengths_alt.txt, our join omits rows from exam‐
ple_sorted.bed that do not have an entry in the first column of exam‐
ple_lengths_alt.txt. In some cases (such as this), we don’t want this behavior. GNU
join implements the -a option to include unpairable lines—ones that do not have an
entry in either file. (This option is not implemented in BSD join.) To use -a, we spec‐
ify which file is allowed to have unpairable entries:

$ join -1 1 -2 1 -a 1 example_sorted.bed example_lengths_alt.txt # GNU join only
chr1  10  19  58352
chr1  26  39  58352
chr1  32  47  58352
chr1  40  49  58352
chr1  9   28  58352
chr2  35  54  39521
chr3  11  28
chr3  16  27

Unix’s join is just one of many ways to join data, and is most useful for simple quick
joins. Joining data by a common column is a common task during data analysis; we’ll
see how to do this in R and with SQLite in future chapters.
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Text Processing with Awk
Throughout this chapter, we’ve seen how we can use simple Unix tools like grep, cut,
and sort to inspect and manipulate plain-text tabular data in the shell. For many triv‐
ial bioinformatics tasks, these tools allow us to get the job done quickly and easily
(and often very efficiently). Still, some tasks are slightly more complex and require a
more expressive and powerful tool. This is where the language and tool Awk excels—
extracting data from and manipulating tabular plain-text files. Awk is a tiny, special‐
ized language that allows you to do a variety of text-processing tasks with ease.

We’ll introduce the basics of Awk in this section—enough to get you started with
using Awk in bioinformatics. While Awk is a fully fledged programming language, it’s
a lot less expressive and powerful than Python. If you need to implement something
complex, it’s likely better (and easier) to do so in Python. The key to using Awk effec‐
tively is to reserve it for the subset of tasks it’s best at: quick data-processing tasks on
tabular data. Learning Awk also prepares us to learn bioawk, which we’ll cover in
“Bioawk: An Awk for Biological Formats” on page 163.

Gawk versus Awk

As with many other Unix tools, Awk comes in a few flavors. First,
you can still find the original Awk written by Alfred Aho, Peter
Weinberger, and Brian Kernighan (whose last names create the
name Awk) on some systems. If you use Mac OS X, you’ll likely be
using the BSD Awk. There’s also GNU Awk, known as Gawk, which
is based on the original Awk but has many extended features (and
an excellent manual; see man gawk). In the examples in this section,
I’ve stuck to a common subset of Awk functionality shared by all
these Awks. Just take note that there are multiple Awk implementa‐
tions. If you find Awk useful in your work (which can be a personal
preference), it’s worthwhile to use Gawk.

To learn Awk, we’ll cover two key parts of the Awk language: how Awk processes
records, and pattern-action pairs. After understanding these two key parts the rest of
the language is quite simple.

First, Awk processes input data a record at a time. Each record is composed of fields,
separate chunks that Awk automatically separates. Because Awk was designed to work
with tabular data, each record is a line, and each field is a column’s entry for that
record. The clever part about Awk is that it automatically assigns the entire record to
the variable $0, and field one’s value is assigned to $1, field two’s value is assigned to
$2, field three’s value is assigned to $3, and so forth.

Second, we build Awk programs using one or more of the following structures:
pattern { action }
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Each pattern is an expression or regular expression pattern. Patterns are a lot like if
statements in other languages: if the pattern’s expression evaluates to true or the regu‐
lar expression matches, the statements inside action are run. In Awk lingo, these are
pattern-action pairs and we can chain multiple pattern-action pairs together (separa‐
ted by semicolons). If we omit the pattern, Awk will run the action on all records. If
we omit the action but specify a pattern, Awk will print all records that match the pat‐
tern. This simple structure makes Awk an excellent choice for quick text-processing
tasks. This is a lot to take in, but these two basic concepts—records and fields, and
pattern-action pairs—are the foundation of writing text-processing programs with
Awk. Let’s see some examples.

First, we can simply mimic cat by omitting a pattern and printing an entire record
with the variable $0:

$ awk '{ print $0 }' example.bed
chr1    26      39
chr1    32      47
chr3    11      28
chr1    40      49
chr3    16      27
chr1    9       28
chr2    35      54
chr1    10      19

print prints a string. Optionally, we could omit the $0, because print called without
an argument would print the current record.

Awk can also mimic cut:
$ awk '{ print $2 "\t" $3 }' example.bed
26      39
32      47
11      28
40      49
16      27
9       28
35      54
10      19

Here, we’re making use of Awk’s string concatenation. Two strings are concatenated if
they are placed next to each other with no argument. So for each record, $2"\t"$3
concatenates the second field, a tab character, and the third field. This is far more typ‐
ing than cut -f2,3, but demonstrates how we can access a certain column’s value for
the current record with the numbered variables $1, $2, $3, etc.

Let’s now look at how we can incorporate simple pattern matching. Suppose we
wanted to write a filter that only output lines where the length of the feature (end
position - start position) was greater than 18. Awk supports arithmetic with the stan‐
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dard operators +, -, *, /, % (remainder), and ^ (exponentiation). We can subtract
within a pattern to calculate the length of a feature, and filter on that expression:

$ awk '$3 - $2 > 18' example.bed
chr1    9       28
chr2    35      54

See Table 7-2 for reference to Awk comparison and logical operators.

Table 7-2. Awk comparison and logical operations
Comparison Description

a == b a is equal to b

a != b a is not equal to b

a < b a is less than b

a > b a is greater than b

a <= b a is less than or equal to b

a >= b a is greater than or equal to b

a ~ b a matches regular expression pattern b

a !~ b a does not match regular expression pattern b

a && b logical and a and b

a || b logical or a and b

!a not a (logical negation)

We can also chain patterns, by using logical operators && (AND), || (OR), and !
(NOT). For example, if we wanted all lines on chromosome 1 with a length greater
than 10:

$ awk '$1 ~ /chr1/ && $3 - $2 > 10' example.bed
chr1    26      39
chr1    32      47
chr1    9       28

The first pattern, $1 ~ /chr1/, is how we specify a regular expression. Regular
expressions are in slashes. Here, we’re matching the first field, $1$, against the regular
expression chr1. The tilde, ~ means match; to not match the regular expression we
would use !~ (or !($1 ~ /chr1/)).
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We can combine patterns and more complex actions than just printing the entire
record. For example, if we wanted to add a column with the length of this feature
(end position - start position) for only chromosomes 2 and 3, we could use:

$ awk '$1 ~ /chr2|chr3/ { print $0 "\t" $3 - $2 }' example.bed
chr3    11      28      17
chr3    16      27      11
chr2    35      54      19

So far, these exercises have illustrated two ways Awk can come in handy:

• For filtering data using rules that can combine regular expressions and arithmetic
• Reformatting the columns of data using arithmetic

These two applications alone make Awk an extremely useful tool in bioinformatics,
and a huge time saver. But let’s look at some slightly more advanced use cases. We’ll
start by introducing two special patterns: BEGIN and END.

Like a bad novel, beginning and end are optional in Awk. The BEGIN pattern specifies
what to do before the first record is read in, and END specifies what to do after the last
record’s processing is complete. BEGIN is useful to initialize and set up variables, and
END is useful to print data summaries at the end of file processing. For example, sup‐
pose we wanted to calculate the mean feature length in example.bed. We would have
to take the sum feature lengths, and then divide by the total number of records. We
can do this with:

$ awk 'BEGIN{ s = 0 }; { s += ($3-$2) }; END{ print "mean: " s/NR };' example.bed
mean: 14

There’s a special variable we’ve used here, one that Awk automatically assigns in addi‐
tion to $0, $1, $2, etc.: NR. NR is the current record number, so on the last record NR is
set to the total number of records processed. In this example, we’ve initialized a vari‐
able s to 0 in BEGIN (variables you define do not need a dollar sign). Then, for each
record we increment s by the length of the feature. At the end of the records, we print
this sum s divided by the number of records NR, giving the mean.

160 | Chapter 7: Unix Data Tools



Setting Field, Output Field, and Record Separators

While Awk is designed to work with whitespace-separated tabular
data, it’s easy to set a different field separator: simply specify which
separator to use with the -F argument. For example, we could work
with a CSV file in Awk by starting with awk -F",".
It’s also possible to set the record (RS), output field (OFS), and out‐
put record (ORS) separators. These variables can be set using Awk’s
-v argument, which sets a variable using the syntax awk -v
VAR=val. So, we could convert a three-column CSV to a tab file by
just setting the field separator F and output field separator OFS: awk
-F"," -v OFS="\t" {print $1,$2,$3}. Setting OFS="\t" saves a
few extra characters when outputting tab-delimited results with
statements like print "$1 "\t" $2 "\t" $3.

We can use NR to extract ranges of lines, too; for example, if we wanted to extract all
lines between 3 and 5 (inclusive):

awk 'NR >= 3 && NR <= 5' example.bed
chr3    11      28
chr1    40      49
chr3    16      27

Awk makes it easy to convert between bioinformatics files like BED and GTF. For
example, we could generate a three-column BED file from Mus_muscu‐
lus.GRCm38.75_chr1.gtf as follows:

$ awk '!/^#/ { print $1 "\t" $4-1 "\t" $5 }' Mus_musculus.GRCm38.75_chr1.gtf | \
   head -n 3
1       3054232 3054733
1       3054232 3054733
1       3054232 3054733

Note that we subtract 1 from the start position to convert to BED format. This is
because BED uses zero-indexing while GTF uses 1-indexing; we’ll learn much more
about this in Chapter 10. This is a subtle detail, certainly one that’s been missed many
times. In the midst of analysis, it’s easy to miss these small details.

Awk also has a very useful data structure known as an associative array. Associative
arrays behave like Python’s dictionaries or hashes in other languages. We can create
an associative array by simply assigning a value to a key. For example, suppose we
wanted to count the number of features (third column) belonging to the gene
“Lypla1.” We could do this by incrementing their values in an associative array:

# This example has been split on multiple lines to improve readability
$ awk '/Lypla1/ { feature[$3] += 1 }; \
    END { for (k in feature)          \
    print k "\t" feature[k] }' Mus_musculus.GRCm38.75_chr1.gtf
exon         69
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CDS          56
UTR          24
gene         1
start_codon  5
stop_codon   5
transcript   9

This example illustrates that Awk really is a programming language—within our
action blocks, we can use standard programming statements like if, for, and while,
and Awk has several useful built-in functions (see Table 7-3 for some useful common
functions). However, when Awk programs become complex or start to span multiple
lines, I usually prefer to switch to Python at that point. You’ll have much more func‐
tionality at your disposal for complex tasks with Python: Python’s standard library,
the Python debugger (PDB), and more advanced data structures. However, this is a
personal preference—there are certainly programmers who write lengthy Awk pro‐
cessing programs.

Table 7-3. Useful built-in Awk functions
length(s) Length of a string s.

tolower(s) Convert string s to lowercase

toupper(s) Convert string s to uppercase

substr(s, i, 
j)

Return the substring of s that starts at i and ends at j

split(s, x, d) Split string s into chunks by delimiter d, place chunks in array
x

sub(f, r, s) Find regular expression f in s and replace it with r (modifying
s in place); use gsub for global substitution; returns a positive
value if string is found

It’s worth noting that there’s an entirely Unix way to count features of a particular
gene: grep, cut, sort, and uniq -c:

$ grep "Lypla1" Mus_musculus.GRCm38.75_chr1.gtf | cut -f 3 | sort | uniq -c
56  CDS
24  UTR
69  exon
1   gene
5   start_codon
5   stop_codon
9   transcript
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However, if we needed to also filter on column-specific information (e.g., strand), an
approach using just base Unix tools would be quite messy. With Awk, adding an addi‐
tional filter would be trivial: we’d just use && to add another expression in the pattern.

Bioawk: An Awk for Biological Formats
Imagine extending Awk’s powerful processing of tabular data to processing tasks
involving common bioinformatics formats like FASTA/FASTQ, GTF/GFF, BED,
SAM, and VCF. This is exactly what Bioawk, a program written by Heng Li (author of
other excellent bioinformatics tools such as BWA and Samtools) does. You can down‐
load, compile, and install Bioawk from source, or if you use Mac OS X’s Homebrew
package manager, Bioawk is also in homebrew-science (so you can install with brew
tap homebrew/science; brew install bioawk).

The basic idea of Bioawk is that we specify what bioinformatics format we’re working
with, and Bioawk will automatically set variables for each field (just as regular Awk
sets the columns of a tabular text file to $1, $1, $2, etc.). For Bioawk to set these fields,
specify the format of the input file or stream with -c. Let’s look at Bioawk’s supported
input formats and what variables these formats set:

$ bioawk -c help
bed:
        1:chrom 2:start 3:end 4:name 5:score 6:strand 7:thickstart
            8:thickend 9:rgb 10:blockcount 11:blocksizes 12:blockstarts
sam:
        1:qname 2:flag 3:rname 4:pos 5:mapq 6:cigar 7:rnext 8:pnext
            9:tlen 10:seq 11:qual
vcf:
        1:chrom 2:pos 3:id 4:ref 5:alt 6:qual 7:filter 8:info
gff:
        1:seqname 2:source 3:feature 4:start 5:end 6:score 7:filter
            8:strand 9:group 10:attribute
fastx:
        1:name 2:seq 3:qual 4:comment

As an example of how this works, let’s read in example.bed and append a column with
the length of the feature (end position - start position) for all protein coding genes:

$ bioawk -c gff '$3 ~ /gene/ && $2 ~ /protein_coding/ \
    {print $seqname,$end-$start}' Mus_musculus.GRCm38.75_chr1.gtf | head -n 4
1       465597
1       16807
1       5485
1       12533

We could add gene names too, but this gets trickier as we need to split key/values out
of the group column (column 9). We can do this with Awk’s split command and with
some cleanup after using sed, but this is stretching what we should attempt with a

Inspecting and Manipulating Text Data with Unix Tools | 163

http://github.com/lh3/bioawk
http://github.com/lh3/bioawk


one-liner. See this chapter’s README.md file in the book’s GitHub repository for a
comparison of using Bioawk and Python for this problem.

Bioawk is also quite useful for processing FASTA/FASTQ files. For example, we could
use it to turn a FASTQ file into a FASTA file:

bioawk -c fastx '{print ">"$name"\n"$seq}' contam.fastq | head -n 4
>DJB775P1:248:D0MDGACXX:7:1202:12362:49613
TGCTTACTCTGCGTTGATACCACTGCTTAGATCGGAAGAGCACACGTCTGAA
>DJB775P1:248:D0MDGACXX:7:1202:12782:49716
CTCTGCGTTGATACCACTGCTTACTCTGCGTTGATACCACTGCTTAGATCGG

Note that Bioawk detects whether to parse input as FASTQ or FASTA when we use -c
fastx.

Bioawk can also serve as a method of counting the number of FASTQ/FASTA entries:
$ bioawk -c fastx 'END{print NR}' contam.fastq
8

Or Bioawk’s function revcomp() can be used to reverse complement a sequence:
$ bioawk -c fastx '{print ">"$name"\n"revcomp($seq)}' contam.fastq | head -n 4
>DJB775P1:248:D0MDGACXX:7:1202:12362:49613
TTCAGACGTGTGCTCTTCCGATCTAAGCAGTGGTATCAACGCAGAGTAAGCA
>DJB775P1:248:D0MDGACXX:7:1202:12782:49716
CCGATCTAAGCAGTGGTATCAACGCAGAGTAAGCAGTGGTATCAACGCAGAG

Bioawk is also useful for creating a table of sequence lengths from a FASTA file. For
example, to create a table of all chromosome lengths of the Mus musculus genome:

$ bioawk -c fastx '{print $name,length($seq)}' \
    Mus_musculus.GRCm38.75.dna_rm.toplevel.fa.gz > mm_genome.txt
$ head -n 4 mm_genome.txt
1   195471971
10  130694993
11  122082543
12  120129022
13  120421639
14  124902244

Finally, Bioawk has two options that make working with plain tab-delimited files eas‐
ier: -t and -c hdr. -t is for processing general tab-delimited files; it sets Awk’s field
separator (FS) and output field separator (OFS) to tabs. The option -c hdr is for
unspecific tab-delimited formats with a header as the first line. This option sets field
variables, but uses the names given in the header. Suppose we had a simple tab-
delimited file containing variant names and genotypes for individuals (in columns):

$ head -n 4 genotypes.txt
id      ind_A   ind_B   ind_C   ind_D
S_000   T/T     A/T     A/T     T/T
S_001   G/C     C/C     C/C     C/G
S_002   C/A     A/C     C/C     C/C
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If we wanted to return all variants for which individuals ind_A and ind_B have identi‐
cal genotypes (note that this assumes a fixed allele order like ref/alt or major/minor):

$ bioawk -c hdr '$ind_A == $ind_B {print $id}' genotypes.txt
S_001
S_003
S_005
S_008
S_009

Stream Editing with Sed
In “The Almighty Unix Pipe: Speed and Beauty in One” on page 45, we covered how
Unix pipes are fast because they operate on streams of data (rather than data written
to disk). Additionally, pipes don’t require that we load an entire file in memory at
once—instead, we can operate one line at a time. We’ve used pipes throughout this
chapter to transform plain-text data by selecting columns, sorting values, taking the
unique values, and so on. Often we need to make trivial edits to a stream (we did this
in Example 7-1), usually to prepare it for the next step in a Unix pipeline. The stream
editor, or sed, allows you to do exactly that. sed is remarkably powerful, and has
capabilities that overlap other Unix tools like grep and awk. As with awk, it’s best to
keep your sed commands simple at first. We’ll cover a small subset of sed’s vast func‐
tionality that’s most useful for day-to-day bioinformatics tasks.

GNU Sed versus BSD Sed

As with many other Unix tools, the BSD and GNU versions of sed
differ considerably in behavior. In this section and in general, I rec‐
ommend you use the GNU version of sed. GNU sed has some
additional features, and supports functionality such as escape codes
for special characters like tab (\t) we expect in command-line
tools.

sed reads data from a file or standard input and can edit a line at a time. Let’s look at a
very simple example: converting a file (chroms.txt) containing a single column of
chromosomes in the format “chrom12,” “chrom2,” and so on to the format “chr12,”
“chr2,” and so on:

$ head -n 3 chroms.txt  # before sed
chrom1  3214482 3216968
chrom1  3216025 3216968
chrom1  3216022 3216024
$ sed 's/chrom/chr/' chroms.txt | head -n 3
chr1    3214482 3216968
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chr1    3216025 3216968
chr1    3216022 3216024

It’s a simple but important change: although chroms.txt is a mere 10 lines long, it
could be 500 gigabytes of data and we can edit it without opening the entire file in
memory. This is the beauty of stream editing, sed’s bread and butter. Our edited out‐
put stream is then easy to redirect to a new file (don’t redirect output to the input file;
this causes bad things to happen).

Let’s dissect how the sed command in the preceding code works. First, this uses sed’s
substitute command, by far the most popular use of sed. sed’s substitute takes the first
occurrence of the pattern between the first two slashes, and replaces it with the string
between the second and third slashes. In other words, the syntax of sed’s substitute is
s/pattern/replacement/.

By default, sed only replaces the first occurrence of a match. Very often we need to
replace all occurrences of strings that match our pattern. We can enable this behavior
by setting the global flag g after the last slash: s/pattern/replacement/g. If we need
matching to be case-insensitive, we can enable this with the flag i (e.g., s/pattern/
replacement/i).

By default, sed’s substitutions use POSIX Basic Regular Expressions (BRE). As with
grep, we can use the -E option to enable POSIX Extended Regular Expressions
(ERE). Whether basic or extended, sed’s regular expressions give us considerable
freedom to match patterns. Perhaps most important is the ability to capture chunks of
text that match a pattern, and use these chunks in the replacement (often called
grouping and capturing). For example, suppose we wanted to capture the chromo‐
some name, and start and end positions in a string containing a genomic region in
the format "chr1:28427874-28425431", and output this as three columns. We could
use:

$ echo "chr1:28427874-28425431" | \
     sed -E 's/^(chr[^:]+):([0-9]+)-([0-9]+)/\1\t\2\t\3/'
chr1    28427874        28425431

That looks quite complex! Let’s dissect each part of this. The first component of this
regular expression is ^\(chr[^:]+\):. This matches the text that begins at the start of
the line (the anchor ^ enforces this), and then captures everything between \( and \).
The pattern used for capturing begins with “chr” and matches one or more characters
that are not “:”, our delimiter. We match until the first “:” through a character class
defined by everything that’s not “:”, [^:]+.

The second and third components of this regular expression are the same: match and
capture more than one number. Finally, our replacement is these three captured
groups, interspersed with tabs, \t. If you’re struggling to understand the details of
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this regular expression, don’t fret—regular expressions are tricky and take time and
practice to master.

Explicitly capturing each component of our genomic region is one way to tackle this,
and nicely demonstrates sed’s ability to capture patterns. But just as there’s always
more than one way to bash a nail into wood, there are numerous ways to use sed or
other Unix tools to parse strings like this. Here are a few more ways to do the same
thing:

$ echo "chr1:28427874-28425431" | sed 's/[:-]/\t/g' 
chr1    28427874        28425431
$ echo "chr1:28427874-28425431" | sed 's/:/\t/' | sed 's/-/\t/' 
chr1    28427874        28425431
$ echo "chr1:28427874-28425431" | tr ':-' '\t' 
chr1    28427874        28425431

Rather than explicitly capturing each chunk of information (the chromosome,
start position, and end position), here we just replace both delimiters (: and -)
with a tab. Note that we’ve enabled the global flag g, which is necessary for this
approach to work.

Here, we use two sed commands to carry out these edits separately. For complex
substitutions, it can be much easier to use two or more calls to sed rather than
trying to do this with one regular expression. sed has a feature to chain pattern/
replacements within sed too, using -e. For example, this line is equivalent to: sed
-e 's/:/\t/' -e 's/-/\t/'.

Using tr to translate both delimiters to a tab character is also another option. tr
translates all occurrences of its first argument to its second (see man tr for more
details).

By default, sed prints every line, making replacements to matching lines. Sometimes
this behavior isn’t what we want (and can lead to erroneous results). Imagine the fol‐
lowing case: we want to use capturing to capture all transcript names from the last
(9th) column of a GTF file. Our pipeline would look like (working with the first three
lines to simplify output):

# warning: this is incorrect!
$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | head -n 3 | \
   sed -E 's/.*transcript_id "([^"]+)".*/\1/'

1    pseudogene    gene    3054233    3054733    .    [...]
ENSMUST00000160944
ENSMUST00000160944

What happened? Some lines of the last column of Mus_muscu‐
lus.GRCm38.75_chr1.gtf don’t contain transcript_id, so sed prints the entire line
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rather than the captured group. One way to solve this would be to use grep "tran
script_id" before sed to only work with lines containing the string "tran
script_id". However, sed offers a cleaner way. First, disable sed from outputting all
lines with -n. Then, by appending p after the last slash sed will print all lines it’s made
a replacement on. The following is an illustration of -n used with p:

$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | head -n 3 | \
   sed -E -n 's/.*transcript_id "([^"]+)".*/\1/p'
ENSMUST00000160944
ENSMUST00000160944

This example uses an important regular expression idiom: capturing text between
delimiters (in this case, quotation marks). This is a useful pattern, so let’s break it
down:

1. First, match zero or more of any character (.*) before the string "tran
script_id".

2. Then, match and capture (because there are parentheses around the pattern) one
or more characters that are not a quote. This is accomplished with [^"]+, the
important idiom in this example. In regular extension jargon, the brackets make
up a character class. Character classes specify what characters the expression is
allowed to match. Here, we use a caret (^) inside the brackets to match anything
except what’s inside these brackets (in this case, a quote). The end result is that we
match and capture one or more nonquote characters (because there’s a trailing +). 
This approach is nongreedy; often beginners make the mistake of taking a greedy
approach and use .*. Consider:

$ echo 'transcript_id "ENSMUST00000160944"; gene_name "Gm16088"'
  > greedy_example.txt

$ sed -E 's/transcript_id "(.*)".*/\1/' greedy_example.txt
ENSMUST00000160944"; gene_name "Gm16088
$ sed -E 's/transcript_id "([^"]+)".*/\1/' greedy_example.txt
ENSMUST00000160944

The first example was greedy; it not only captured the transcript identifier inside the
quotes, but everything until the last quotation mark (which follows the gene name)!

It’s also possible to select and print certain ranges of lines with sed. In this case, we’re
not doing pattern matching, so we don’t need slashes. To print the first 10 lines of a
file (similar to head -n 10), we use:

$ sed -n '1,10p' Mus_musculus.GRCm38.75_chr1.gtf

If we wanted to print lines 20 through 50, we would use:
$ sed -n '20,50p' Mus_musculus.GRCm38.75_chr1.gtf

168 | Chapter 7: Unix Data Tools



Substitutions make up the majority of sed’s usage cases, but this is just scratching the
surface of sed’s capabilities. sed has features that allow you to make any type of edit
to a stream of text, but for complex stream processing tasks it can be easier to write a
Python script than a long and complicated sed command. Remember the KISS prin‐
cipal: Keep Incredible Sed Simple.

Advanced Shell Tricks
With both the Unix shell refresher in Chapter 3 and the introduction to Unix data
tools in this chapter, we’re ready to dig into a few more advanced shell tricks. If you’re
struggling with the shell, don’t hesitate to throw a sticky note on this page and come
back to this section later.

Subshells
The first trick we’ll cover is using Unix subshells. Before explaining this trick, it’s
helpful to remember the difference between sequential commands (connected with &&
or ;), and piped commands (connected with |). Sequential commands are simply run
one after the other; the previous command’s standard output does not get passed to
the next program’s standard in. In contrast, connecting two programs with pipes
means the first program’s standard out will be piped into the next program’s
standard in.

The difference between sequential commands linked with && and ; comes down to
exit status, a topic covered in “Exit Status: How to Programmatically Tell Whether
Your Command Worked” on page 52. If we run two commands with command1 ; com
mand2, command2 will always run, regardless of whether command1 exits successfully
(with a zero exit status). In contrast, if we use command1 && command2, command2 will
only run if command1 completed with a zero-exit status. Checking exit status with
pipes unfortunately gets tricky (we’ll explore this important topic in Chapter 12).

So how do subshells fit into all of this? Subshells allow us to execute sequential com‐
mands together in a separate shell process. This is useful primarily to group sequential
commands together (such that their output is a single stream). This gives us a new
way to construct clever one-liners and has practical uses in command-line data pro‐
cessing. Let’s look at a toy example first:

$ echo "this command"; echo "that command" | sed 's/command/step/'
this command
that step
$ (echo "this command"; echo "that command") | sed 's/command/step/'
this step
that step
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In the first example, only the second command’s standard out is piped into sed. This
is because your shell interprets echo "this command" as one command and echo
"that command" | sed 's/command/step/' as a second separate command. But
grouping both echo commands together using parentheses causes these two com‐
mands to be run in a separate subshell, and both commands’ combined standard out‐
put is passed to sed. Combining two sequential commands’ standard output into a
single stream with a subshell is a useful trick, and one we can apply to shell problems
in bioinformatics.

Consider the problem of sorting a GTF file with a metadata header. We can’t simply
sort the entire file with sort, because this header could get shuffled in with rows of
data. Instead, we want to sort everything except the header, but still include the
header at the top of the final sorted file. We can solve this problem using a subshell to
group sequential commands that print the header to standard out and sort all other
lines by chromosome and start position, printing all lines to standard out after the
header. Admittedly, this is a bit of Unix hackery, but it turns out to be a useful trick.

Let’s do this using the gzipped GTF file Mus_musculus.GRCm38.75_chr1.gtf.gz, and
zgrep (the gzip analog of grep). We’ll pipe the output to less first, to inspect our
results:

$ (zgrep "^#" Mus_musculus.GRCm38.75_chr1.gtf.gz; \
   zgrep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf.gz | \
   sort -k1,1 -k4,4n) | less

Because we’ve used a subshell, all standard output from these sequential commands
will be combined into a single stream, which here is piped to less. To write this
stream to a file, we could redirect this stream to a file using something like > Mus_mus
culus.GRCm38.75_chr1_sorted.gtf. But a better approach would be to use gzip to
compress this stream before writing it to disk:

$ (zgrep "^#" Mus_musculus.GRCm38.75_chr1.gtf.gz; \
   zgrep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf.gz | \
   sort -k1,1 -k4,4n) | gzip > Mus_musculus.GRCm38.75_chr1_sorted.gtf.gz

Subshells give us another way to compose commands in the shell. While these are
indeed tricky to understand at first (which is why this section is labelled “advanced”),
these do have tangible, useful applications—especially in manipulating large data
streams. Note that we could have written a custom Python script to do this same task,
but there are several disadvantages with this approach: it would be more work to
implement, it would require more effort to have it work with compressed streams,
and sorting data in Python would almost certainly be much, much less efficient than
using Unix sort.
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Named Pipes and Process Substitution
Throughout this chapter, we’ve used pipes to connect command-line tools to build
custom data-processing pipelines. However, some programs won’t interface with the
Unix pipes we’ve come to love and depend on. For example, certain bioinformatics
tools read in multiple input files and write to multiple output files:

$ processing_tool --in1 in1.fq --in2 in2.fq --out1 out2.fq --out2.fq

In this case, the imaginary program processing_tool requires two separate input
files, and produces two separate output files. Because each file needs to be provided
separately, we can’t pipe the previous processing step’s results through process
ing_tool’s standard in. Likewise, this program creates two separate output files, so it
isn’t possible to pipe processing_tool’s standard output to another program in the
processing pipeline. This isn’t just an unlikely toy example; many bioinformatics pro‐
grams that process two paired-end sequencing files together operate like this.

In addition to the inconvenience of not being able to use a Unix pipe to interface
processing_tool with other programs, there’s a more serious problem: we would
have to write and read four intermediate files to disk to use this program. If process
ing_tool were in the middle of a data-processing pipeline, this would lead to a signif‐
icant computational bottleneck (remember from “The Almighty Unix Pipe: Speed
and Beauty in One” on page 45 that reading and writing to disk is very slow).

Fortunately, Unix provides a solution: named pipes. A named pipe, also known as a
FIFO (First In First Out, a concept in computer science), is a special sort of file. Regu‐
lar pipes are anonymous—they don’t have a name, and only persist while both pro‐
cesses are running. Named pipes behave like files, and are persistent on your
filesystem. We can create a named pipe with the program mkfifo:

$ mkfifo fqin
$ ls -l fqin
prw-r--r--    1 vinceb  staff          0 Aug  5 22:50 fqin

You’ll notice that this is indeed a special type of file: the p before the file permissions
is for pipe. Just like pipes, one process writes data into the pipe, and another process
reads data out of the pipe. As a toy example, we can simulate this by using echo to
redirect some text into a named pipe (running it in the background, so we can have
our prompt back), and then cat to read the data back out:

$ echo "hello, named pipes" > fqin & 
[1] 16430
$ cat fqin 
[1]  + 16430 done
hello, named pipes
$ rm fqin 

Write some lines to the named pipe we created earlier with mkfifo.
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Treating the named pipe just as we would any other file, we can access the data
we wrote to it earlier. Any process can access this file and read from this pipe.
Like a standard Unix pipe, data that has been read from the pipe is no longer
there.

Like a file, we clean up by using rm to remove it.

Although the syntax is similar to shell redirection to a file, we’re not actually writing
anything to our disk. Named pipes provide all of the computational benefits of pipes
with the flexibility of interfacing with files. In our earlier example, in1.fq and in2.fq
could be named pipes that other processes are writing input to. Additionally, out1.fq
and out2.fq could be named pipes that processing_tool is writing to, that other pro‐
cesses read from.

However, creating and removing these file-like named pipes is a bit tedious. Pro‐
grammers like syntactic shortcuts, so there’s a way to use named pipes without having
to explicitly create them. This is called process substitution, or sometimes known as
anonymous named pipes. These allow you to invoke a process, and have its standard
output go directly to a named pipe. However, your shell treats this process substitu‐
tion block like a file, so you can use it in commands as you would a regular file or
named pipe. This is a bit confusing at first, but it should be clearer with some exam‐
ples.

If we were to re-create the previous toy example with process substitution, it would
look as follows:

$ cat <(echo "hello, process substitution")
hello, process substitution

Remember that cat takes file arguments. The chunk <(echo "hello, process sub
stition") runs the echo command and pipes the output to an anonymous named
pipe. Your shell then replaces this chunk (the <(...) part) with the path to this
anonymous named pipe. No named pipes need to be explicitly created, but you get
the same functionality. Process substitution allows us to connect two (or potentially
more) programs, even if one doesn’t take input through standard input. This is illus‐
trated in Figure 7-3.
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Figure 7-3. Process substitution broken down by what your shell does.

In the program example we saw earlier, two inputs were needed (--in1 and --in2).
Because this program takes two inputs, and not one from standard input, there’s no
way to use a classic Unix pipe (|) if these input files are the outputs of another pro‐
gram. Instead of creating two explicit named pipes with mkfifo, we can use process
substitution. For the sake of this example, assume that a program called makein is cre‐
ating the input streams for --in1 and --in2:

program --in1 <(makein raw1.txt) --in2 <(makein raw2.txt) \
   --out1 out1.txt --out2 out2.txt

The last thing to know about process substitution is that it can also be used to capture
an output stream. This is used often in large data processing to compress output on
the fly before writing it to disk. In the preceding program example, assume that we
wanted to take the output that’s being written to files out1.txt and out2.txt and com‐
press these streams to files out1.txt.gz and out2.txt.gz. We can do this using the intu‐
itive analog to <(...), >(...). For clarity, I am omitting our previous process
substitutions:

program --in1 in1.txt --in2 in2.txt \
   --out1 >(gzip > out1.txt.gz) --out2 >(gzip > out2.txt.gz)

This creates two anonymous named pipes, and their input is then passed to the gzip
command. gzip then compresses these and writes to standard out, which we redirect
to our gzipped files.

The Unix Philosophy Revisited
Throughout this chapter, the Unix philosophy—equipped with the power of the Unix
pipe—allowed us to rapidly stitch together tiny programs using a rich set of Unix
tools. Not only are Unix piped workflows fast to construct, easy to debug, and versa‐
tile, but they’re often the most computationally efficient solution, too. It’s a testament
to the incredible design of Unix that so much of the way we approach modern bioin‐
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formatics is driven by the almighty Unix pipe, a piece of technology invented over 40
years ago in “one feverish night” by Ken Thompson (as described by Doug McIlroy).
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CHAPTER 8

A Rapid Introduction to the R Language

In summary, data analysis, like experimentation, must be considered as an open-
ended, highly interactive, iterative process, whose actual steps are selected segments of
a stubbily branching, tree-like pattern of possible actions.

— Data analysis and statistics: an
expository overview J. W. Tukey and M.
B. Wilk (1966)

…exploratory data analysis is an attitude, a state of flexibility, a willingness to look for
those things that we believe are not there, as well as for those we believe might be there.
Except for its emphasis on graphs, its tools are secondary to its purpose.

—J. W. Tukey in a comment to E. Par‐
zen (1979)

Many biologists are first exposed to the R language by following a cookbook-type
approach to conduct a statistical analysis like a t-test or an analysis of variance
(ANOVA). Although R excels at these and more complicated statistical tasks, R’s real
power is as a data programming language you can use to explore and understand data
in an open-ended, highly interactive, iterative way. Learning R as a data programming
language will give you the freedom to experiment and problem solve during data
analysis—exactly what we need as bioinformaticians. In particular, we’ll focus on the
subset of the R language that allows you to conduct exploratory data analysis (EDA).
Note, however, that EDA is only one aspect of the R language—R also includes state-
of-the-art statistical and machine learning methods.

Popularized by statistician John W. Tukey, EDA is an approach that emphasizes
understanding data (and its limitations) through interactive investigation rather than
explicit statistical modeling. In his 1977 book Exploratory Data Analysis, Tukey
described EDA as “detective work” involved in “finding and revealing the clues” in
data. As Tukey’s quote emphasizes, EDA is more an approach to exploring data than
using specific statistical methods. In the face of rapidly changing sequencing technol‐
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ogies, bioinformatics software, and statistical methods, EDA skills are not only widely
applicable and comparatively stable—they’re also essential to making sure that our
analyses are robust to these new data and methods.

Exploratory data analysis plays an integral role throughout an entire bioinformatics
project. Exploratory data analysis skills are just as applicable in analyzing intermedi‐
ate bioinformatics data (e.g., are fewer reads from this sequencing lane aligning?) as
they are in making sense of results from statistical analyses (e.g., what’s the distribu‐
tion of these p-values, and do they correlate with possible confounders like gene
length?). These exploratory analyses need not be complex or exceedingly detailed
(many patterns are visible with simple analyses and visualization); it’s just about
wanting to look into the data and having the skill set to do so.

In many cases, exploratory data analysis—and especially visualization—can reveal
patterns in bioinformatics data we might overlook with statistical modeling or
hypothesis testing. Bioinformatics data is high dimensional and messy, with each data
point being a possible mix of biological signal, measurement noise, bias due to ad hoc
bioinformatics filtering criteria or analysis steps, and confounding by both technical
and biological covariates. Our brains are the most sophisticated pattern-finding
instruments on the planet, and exploratory data analysis is the craft of presenting data
in different ways to allow our brains to find patterns—both those that indicate inter‐
esting biological signals or suggest potential problems. Compared to our brains, stat‐
istical tests are a blunt instrument—and one that’s even duller when working with the
complex, high-dimensional datasets widespread in bioinformatics.

Although this chapter emphasizes exploratory data analysis, statistical analysis of
high-dimensional genomics data is just as important; in fact, this topic is so important
that you should seek books and articles that cover it in depth. As stated in Chapter 1,
no amount of post-experiment data analysis can rescue a poorly designed experi‐
ment. Likewise, no amount of terrific exploratory data analysis is substitute for hav‐
ing a good experimental question and applying appropriate statistical methods.
Rather, EDA techniques like visualization should play an ongoing role throughout
statistical analysis and complement other statistical methods, assessing the output at
each step. The objective of this chapter is to teach you the EDA skills that give you the
freedom to explore and experiment with your data at any stage of analysis.

Getting Started with R and RStudio
To capitalize on R’s interactive capabilities, we need a development environment that
promotes interactive coding. The most popular option is RStudio, an open source
integrated development environment for R. RStudio supports many features useful
for working in R: syntax highlighting, quick access to R’s internal help and documen‐
tation system, and plots visible alongside code. Additionally, RStudio has an intuitive
interface, is easy to use, and is the editor I’d recommend for beginner R users.
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Developing code in R is a back-and-forth between writing code in a rerunnable script
and exploring data interactively in the R interpreter. To be reproducible, all steps that
lead to results you’ll use later must be recorded in the R script that accompanies your
analysis and interactive work. While R can save a history of the commands you’ve
entered in the interpreter during a session (with the command savehistory()), stor‐
ing your steps in a well-commented R script makes your life much easier when you
need to backtrack to understand what you did or change your analysis. RStudio sim‐
plifies developing R scripts this way by allowing you to send lines from your R script
to the R interpreter with a simple keyboard shortcut: Command-Enter (for OS X) or
Control-Enter (for Windows and Linux).

The Comprehensive R Archive Network (CRAN)
Among R’s greatest strengths are the numerous packages that extend its functionality.
The R Project hosts many of these packages (over 6,400) on the Comprehensive R
Archive Network, or CRAN, on a variety of servers that mirror the R project’s server.
You can install these packages directly from within R with the install.packages()
function. For example, we can install the ggplot2 package (which we’ll use through‐
out this chapter) as follows:

> install.packages("ggplot2")
trying URL 'http://cran.cnr.Berkeley.edu/src/contrib/ggplot2_1.0.0.tar.gz'
Content type 'application/x-gzip' length 2351447 bytes (2.2 Mb)
opened URL
==================================================
downloaded 2.2 Mb

Loading required package: devtools
* installing *source* package ‘ggplot2’ ...
** package ‘ggplot2’ successfully unpacked and MD5 sums checked
** R
** data
*** moving datasets to lazyload DB
** inst
** preparing package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded
Loading required package: devtools
* DONE (ggplot2)

This downloads and installs ggplot2 from a CRAN repository (for information on
setting various options, including how to configure your repository to a nearby mir‐
ror, see help(install.packages)).
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CRAN isn’t the only R package repository—in Chapter 9, we’ll use many packages
from the Bioconductor project. Bioconductor has its own way of installing packages
that we’ll learn about in “Installing and Working with Bioconductor Packages” on
page 269.

To get started with the examples in this chapter, we first need to install R. You can do
this by either downloading R from the R-Project’s website or installing it from a ports
or package manager like Ubuntu’s apt-get or OS X’s Homebrew. Then, you’ll need to
install RStudio IDE from RStudio’s website. Be sure to keep both R and RStudio up to
date. I’ve included some additional resources on getting started with RStudio in this
chapter’s README on GitHub.

R Language Basics
Before getting our hands dirty working with real data in R, we need to learn the
basics of the R language. Even if you’ve poked around in R and seen these concepts
before, I would still recommend skimming through this section. Many of the difficul‐
ties beginning R users face stem from misunderstanding the language’s basic con‐
cepts, data structures, and behavior (which can differ quite significantly from other
languages like Python and Perl). In this section, we’ll learn how to do simple calcula‐
tions in R, assign values to variables, and call functions. Then, we’ll look at R’s vectors,
vector data types, and vectorization. Vectors and vectorization underpin how we
approach many problems in R—a theme we’ll continue to see throughout this chap‐
ter.

Simple Calculations in R, Calling Functions, and Getting Help in R
Let’s begin by looking at some simple calculations in R. Open RStudio (or a terminal
R prompt) and try some basic arithmetic calculations in R:

> 4 + 3
[1] 7
> 4 - 3
[1] 1
> 4 * 3
[1] 12
> 4 / 3
[1] 1.333333

You’ll need to familiarize yourself with some R lingo: we say each line contains an
expression that is evaluated by R when you press Enter. Whitespace around the arith‐
metic operations does not change how R evaluates these expressions. In some cases,
you will need to surround parts of an expression with parentheses to indicate the
order of evaluation. For example:
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> 3 + 4/2
[1] 5
> (3 + 4)/2
[1] 3.5

Other mathematical operations can be performed by using functions. Functions take
in zero or more arguments, do some work, and output a return value. A very impor‐
tant fact about R’s functions is that they copy their arguments, and do not modify
their arguments in place (there are some technical exceptions to this rule we’ll
ignore). In contrast, Python’s functions can modify their arguments in place. Func‐
tions are the bread and butter of working in R, so it’s necessary to understand and be
able to work with functions, function arguments, and return values.

R has numerous mathematical functions (see Table 8-1 for some commonly used
ones). For example, we call the function sqrt() on a (nonnegative) numeric argu‐
ment:

> sqrt(3.5)
[1] 1.870829

Table 8-1. Common mathematic functions
Function Name Description Example

exp(x) Exponential function exp(1), exp(2)

log(x, base=exp(1)),
log10(), log2()

Natural, base 10, and base 2
logarithms

log(2),
log10(100),
log2(16)

sqrt(x) Square root sqrt(2)

sin(x), cos(x), tan(x),
etc.

Trigonometric functions (see
help(sin) for more)

sin(pi)

abs(x) Absolute value abs(-3)

factorial(x) Factorial factorial(5)

choose(n, k) Binomial coefficient choose(5, 3)

Significant Digits, print(), and Options in R
By default, R will print seven significant digits (which is what it did when we executed
sqrt(3.5)). While seven significant digits is the default, it’s easy to print more digits
of a value by using the function print(). For example:
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> print(sqrt(3.5), digits=10)
[1] 1.870828693

Behind the scenes, R uses print() to format the R objects you see printed as output.
(note that you won’t see print() explicitly called).

Alternatively, you can change the default number of significant digits R uses by
changing the global option in R. You can view the current default value of an option
by calling getOption() with the option name as an argument; for example, you can
retrieve the number of significant digits printed as follows:

> getOption('digits')
[1] 7

A new option value can be set using the function options():
> options(digits=9)

options() contains numerous user-customizable global options. See help(options)
for more information.

Here, 1.870829 is the return value of this function. This value can either be assigned
to a variable (which we’ll see later), or passed directly to other functions as an argu‐
ment. For example, we could pass this return value into another function, round(), to
round our square root:

> round(sqrt(3.5))
[1] 2

The round() function rounds sqrt(3.5) to 2, keeping zero decimal places, because
the round() function’s second argument (digits) has a default value of zero. You can
learn about a function’s arguments and their default values through round()’s docu‐
mentation, which you can access with help(round) (see “Getting Help in R” on page
180 for more depth on R’s help and documentation system). We can change the num‐
ber of digits round() uses by specifying the value of this second digits argument
either of two ways:

> round(sqrt(3.5), digits=3)
[1] 1.871
> round(sqrt(3.5), 3)
[1] 1.871

Getting Help in R
As would be expected from a sophisticated scientific and statistical computing lan‐
guage, R has oodles of functions—far more than any reasonable human can expect to
learn and remember. Consequently, you’ll need to master two of the most practical R
skills:
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• Knowing how to look up a function’s documentation to recall its arguments and
how it works

• Being able to discover new useful functions

Each of R’s functions (and other objects such as constants like pi, classes, and pack‐
ages) has integrated documentation accessible within R. R’s documentation includes
descriptions and details about the function, all arguments of a function, and useful
usage examples. You access access R’s built-in documentation with the help() func‐
tion or its syntactic shortcut, ?:

> help(log)
> ?log

In RStudio, this opens a special help window containing log()’s documentation. In
terminal R, this documentation is handled by your default pager (probably the pro‐
gram less). Operators such as + and ^ need to be quoted (e.g., help('+')). R also has
documentation for general topics available; see, for example, help(Quotes).

R’s help() function is useful when you already know the name of the function you
need documentation for. Unfortunately, we often only have a fuzzier idea of what we
need help with (e.g., what was the function in R that calculates cross tabulate vec‐
tors?). For tasks like this, we can search R’s help system with the function
help.search(), or its shortcut ??:

> help.search("cross tabulate")
> ??"cross tabulate"

In this case, help.search() would help you find the function table(), which is use‐
ful in creating counts and cross tabulations from vectors.

Also, R has the neat feature that all examples in an R help file can be executed with the
function example(). For example:

> example(log)

log> log(exp(3))
[1] 3
[...]

Finally, R also has functions for listing all functions in a package (e.g.,
library(help="base")) and finding functions by name (e.g., apropos(norm)), which
are often useful in remembering a function’s name.

First, values are matched to arguments by name. Technically, R also allows partial
matching of argument names but I would discourage this, as it decreases code read‐
ability. Second, values are matched based on position within the argument list. For
functions that have many arguments with default values such as foo(x, a=3, b=4,
c=5), it’s easier to set an argument later in the function by specifying it by name. For
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example, compare calling foo() with c=5 by using foo(2, 3, 4, 5) with foo(2,
c=5).

Variables and Assignment
To store a value for future use, we assign it to a variable (also known as a symbol in R
jargon) using the <- assignment operator:

> x <- 3.1

Once the variable is assigned, we can retrieve its value by evaluating it on a line:
> x
3.1

Variables can also be used in expressions and passed to functions as arguments. R will
substitute the variable’s value during evaluation and return the results. These results
can then be assigned to other variables:

> (x + 2)/2
[1] 2.55
> exp(x)
[1] 22.1979513
> y <- exp(2*x) - 1
> y
[1] 491.749041

RStudio Assignment Operator Shortcut

In RStudio, you can create the <- assignment operator in one key‐
stroke using Option - (that’s a dash) on OS X or Alt - on Windows/
Linux.

It’s also possible to use = for assignment, but <- is more conventional (and is what
we’ll use throughout the chapter).

When we assign a value in our R session, we’re assigning it to an environment known
as the global environment. The objects we create by assigning values to variables are
kept in environments. We can see objects we’ve created in the global environment
with the function ls():

> ls()
[1] "x"

Here, we see the variable name x, which we assigned the value 3.1 earlier. When R
needs to lookup a variable name, it looks in the search path. Calling the function
search() returns where R looks when searching for the value of a variable—which
includes the global environment (.GlobalEnv) and attached packages.
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Vectors, Vectorization, and Indexing
Arguably the most important feature of the R language is its vectors. A vector is a
container of contiguous data. Unlike most languages, R does not have a type for a sin‐
gle value (known as a scalar) such as 3.1 or “AGCTACGACT.” Rather, these values are
stored in a vector of length 1. We can verify that values like 3.1 are vectors of length 1
by calling the function length() (which returns the length of a vector) on them:

> length(3.1)
[1] 1

To create longer vectors, we combine values with the function c():
> x <- c(56, 95.3, 0.4)
> x
[1] 56.0 95.3  0.4
> y <- c(3.2, 1.1, 0.2)
> y
[1] 3.2 1.1 0.2

R’s vectors are the basis of one of R’s most important features: vectorization. Vectori‐
zation allows us to loop over vectors elementwise, without the need to write an
explicit loop. For example, R’s arithmetic operators are all vectorized:

> x + y
[1] 59.2 96.4  0.6
> x - y
[1] 52.8 94.2  0.2
> x/y
[1] 17.50000 86.63636  2.00000

Integer sequences crop up all over computing and statistics, so R has a few ways of
creating these vectors. We’ll use these later in this section:

> seq(3, 5)
[1] 3 4 5
> 1:5
[1] 1 2 3 4 5

There’s one important subtle behavior of vectorized operations applied to two vectors
simultaneously: if one vector is longer than the other, R will recycle the values in the
shorter vector. This is an intentional behavior, so R won’t warn you when this hap‐
pens (unless the recycled shorter vector’s length isn’t a multiple of the longer vector’s
length). Recycling is what allows you to add a single value to all elements of a vector;
the shorter vector (the single value in this case) is recycled to all elements of the
longer vector:

> x
[1] 56.0 95.3  0.4
> x - 3
[1] 53.0 92.3 -2.6
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> x / 2
[1] 28.00 47.65  0.20

R does warn if it recycles the shorter vector and there are remainder elements left.
Consider the following examples:

> c(1, 2) + c(0, 0, 0, 0) 
[1] 1 2 1 2
> c(1, 2) + c(0, 0, 0) 
[1] 1 2 1
Warning message:
In c(1, 2) + c(0, 0, 0) :
  longer object length is not a multiple of shorter object length

R adds a shorter vector c(1, 2) to a longer vector c(0, 0, 0, 0) by recycling
the shorter values. The longer vector is all zeros so this is easier to see.

When the shorter vector’s length isn’t a multiple of the longer vector’s length,
there will be a remainder element. R warns about this.

In addition to operators like + and *, many of R’s mathematical functions (e.g.,
sqrt(), round(), log(), etc.) are all vectorized:

> sqrt(x)
[1] 7.4833148 9.7621719 0.6324555
> round(sqrt(x), 3)
[1] 7.483 9.762 0.632
> log(x)/2 + 1 # note how we can combined vectorized operations
[1] 3.0126758 3.2785149 0.5418546

This vectorized approach is not only more clear and readable, it’s also often computa‐
tionally faster. Unlike other languages, R allows us to completely forgo explicitly
looping over vectors with a for loop. Later on, we’ll see other methods used for more
explicit looping.

We can access specific elements of a vector through indexing. An index is an integer
that specifies which element in the vector to retrieve. We can use indexing to get or
set values to certain elements from a vector:

> x <- c(56, 95.3, 0.4)
> x[2] 
[1] 95.3
> x[1]
[1] 56
> x[4] 
[1] NA
> x[3] <- 0.5 
> x
[1] 56.0 95.3  0.5
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R’s vectors are 1-indexed, meaning that the index 1 corresponds to the first ele‐
ment in a list (in contrast to 0-indexed languages like Python). Here, the value
95.3 is the 2nd item, and is accessed with x[2].

Trying to access an element that doesn’t exist in the vector leads R to return NA,
the “not available” missing value.

We can change specific vector elements by combining indexing and assignment.

Vectors can also have names, which you can set while combining values with c():
> b <- c(a=3.4, b=5.4, c=0.4)
> b
  a   b   c
3.4 5.4 0.4

The names of a vector can be both accessed and set with names():
> names(b)
[1] "a" "b" "c"
> names(b) <- c("x", "y", "z") # change these names
> b
  x   y   z
3.4 5.4 0.4

And just as we can access elements by their positional index, we can also access them
by their name:

> b['x']
  x
3.4
> b['z']
  z
0.4

It is also possible to extract more than one element simultaneously from a vector
using indexing. This is more commonly known as subsetting, and it’s a primary rea‐
son why the R language is so terrific for manipulating data. Indices like 3 in x[3] are
just vectors themselves, so it’s natural to allow these vectors to have more than one
element. R will return each element at the positions in the indexing vector:

> x[c(2, 3)]
[1] 95.3  0.4

Vectorized indexing provides some incredibly powerful ways to manipulate data, as
we can use indexes to slice out sections of vector, reorder elements, and repeat values.
For example, we can use the methods we used to create contiguous integer sequences
we learned in “Vectors, Vectorization, and Indexing” on page 183 to create indexing
vectors, as we often want to extract contiguous slices of a vector:
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> z <- c(3.4, 2.2, 0.4, -0.4, 1.2)
> z[3:5] # extract third, fourth, and fifth elements
[1]  0.4 -0.4  1.2

Out-of-Range Indexing

Be aware that R does not issue a warning if you try to access an ele‐
ment in a position that’s greater than the number of elements—
instead, R will return a missing value (NA; more on this later). For
example:

> z[c(2, 1, 10)]
[1] 2.2 3.4  NA

Similarly, missing values in indexes leads to an NA too.

It’s also possible to exclude certain elements from lists using negative indexes:
> z[c(-4, -5)]   # exclude fourth and fifth elements
[1] 3.4 2.2 0.4

Negative Indexes and the Colon Operator

One important subtle gotcha occurs when trying to combine nega‐
tive indexes with the colon operator. For example, if you wanted to
exclude the second through fourth elements of a vector x, you
might be tempted to use x[-2:4]. However, if you enter -2:4 in the
R interpreter, you’ll see that it creates a sequence from -2 to 4—not
–2, –3, and –4. To remedy this, wrap the sequence in parentheses:

> -(2:4)
[1] -2 -3 -4

Indices are also often used to reorder elements. For example, we could rearrange the
elements of this vector z with:

> z[c(3, 2, 4, 5, 1)]
[1]  0.4  2.2 -0.4  1.2  3.4

Or we could reverse the elements of this vector by creating the sequence of integers
from 5 down to 1 using 5:1:

> z[5:1]
[1]  1.2 -0.4  0.4  2.2  3.4

Similarly, we can use other R functions to create indexes for us. For example, the
function order() returns a vector of indexes that indicate the (ascending) order of
the elements. This can be used to reorder a vector into increasing or decreasing order:

> order(z)
[1] 4 3 5 2 1
> z[order(z)]
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[1] -0.4  0.4  1.2  2.2  3.4
> order(z, decreasing=TRUE)
[1] 1 2 5 3 4
> z[order(z, decreasing=TRUE)]
[1]  3.4  2.2  1.2  0.4 -0.4

Again, R’s vector index rule is simple: R will return the element at the ith position for
each i in the indexing vector. This also allows us to repeat certain values in vectors:

> z[c(2, 2, 1, 4, 5, 4, 3)]
[1]  2.2  2.2  3.4 -0.4  1.2 -0.4  0.4

Again, often we use functions to generate indexing vectors for us. For example, one
way to resample a vector (with replacement) is to randomly sample its indexes using
the sample() function:

> set.seed(0)   # we set the random number seed so this example is reproducible
> i <- sample(length(z), replace=TRUE)
> i
[1] 5 2 2 3 5
> z[i]
[1] 1.2 2.2 2.2 0.4 1.2

Just as we use certain functions to generate indexing vectors, we can use comparison
operators like ==, !=, <, <=, >, and >= (see Table 8-2) to build logical vectors of TRUE and
FALSE values indicating the result of the comparison test for each element in the vec‐
tor. R’s comparison operators are also vectorized (and will be recycled according to R’s
rule). Here are some examples:

> v <- c(2.3, 6, -3, 3.8, 2, -1.1)
> v == 6
[1] FALSE  TRUE FALSE FALSE FALSE FALSE
> v <= -3
[1] FALSE FALSE  TRUE FALSE FALSE FALSE
> abs(v) > 5
[1] FALSE  TRUE FALSE FALSE FALSE FALSE

Logical vectors are useful because they too can be used as indexing vectors—R
returns the elements with corresponding TRUE values in the indexing vector (see
Example 8-1).

Example 8-1. Indexing vectors with logical vectors

> v[c(TRUE, TRUE, FALSE, TRUE, FALSE, FALSE)]
[1] 2.3 6.0 3.8

But it’s tedious to construct these logical vectors of TRUE and FALSE by hand; if we
wanted to select out particular elements using an integer, indexes would involve
much less typing. But as you might have guessed, the power of using logical vectors in
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subsetting comes from creating logical vectors using comparison operators. For
example, to subset v such that only elements greater than 2 are kept, we’d use:

> v[v > 2]
[1] 2.3 6.0 3.8

Note that there’s no magic or special evaluation going on here: we are simply creating
a logical vector using v > 2 and then using this logical vector to select out certain
elements of v. Lastly, we can use comparison operators (that return logical vectors)
with vectorized logical operations (also known as Boolean algebra in other disci‐
plines) such as & (AND), | (OR), and ! (NOT). For example, to find all elements of v
greater than 2 and less than 4, we’d construct a logical vector and use this to index the
vector:

> v > 2 & v < 4
[1]  TRUE FALSE FALSE  TRUE FALSE FALSE
> v[v > 2 & v < 4]
[1] 2.3 3.8

Table 8-2. R’s comparison and logical operators
Operator Description

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

! Not equal to

& Elementwise logical AND

| Elementwise logical OR

! Elementwise logical NOT

&& Logical AND (first element only, for if statements)

|| Logical OR (first element only, for if statements)

We’ll keep returning to this type of subsetting, as it’s the basis of some incredibly
powerful data manipulation capabilities in R.
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Vector types
The last topic about vectors to cover before diving into working with real data is R’s
vector types. Unlike Python’s lists or Perl’s arrays, R’s vectors must contain elements of
the same type. In the context of working with statistical data, this makes sense: if we
add two vectors x and y together with a vectorized approach like x + y, we want to
know ahead of time whether all values in both vectors have the same type and can
indeed be added together. It’s important to be familiar with R’s types, as it’s common
as an R beginner to run into type-related issues (especially when loading in data that’s
messy).

R supports the following vector types (see also Table 8-3):

Numeric
Numeric vectors (also known as double vectors) are used for real-valued numbers
like 4.094, –12.4, or 23.0. By default, all numbers entered into R (e.g., c(5, 3,
8)) create numeric vectors, regardless of whether they’re an integer.

Integer
R also has an integer vector type for values like –4, 39, and 23. Because R defaults
to giving integer values like –4, 39, and 23 the type numeric, you can explicitly
tell R to treat a value as an integer by appending a capital L after the value (e.g.,
-4L, 39L, and 23L). (Note that the seemingly more sensible i or I aren’t used to
avoid confusion with complex numbers with an imaginary component like 4 +
3i).

Character
Character vectors are used to represent text data, also known as strings. Either
single or double quotes can be used to specify a character vector (e.g., c("AGTC
GAT", "AGCTGGA")). R’s character vectors recognize special characters common
to other programming languages such as newline (\n) and tab (\t).

Logical
Logical values are used to represent Boolean values, which in R are TRUE and
FALSE. T and F are assigned the values TRUE and FALSE, and while you might be
tempted to use these shortcuts, do not. Unlike TRUE and FALSE, T and F can be
redefined in code. Defining T <- 0 will surely cause problems.

Table 8-3. R’s vector types
Type Example Creation function Test function Coercion function

Numeric c(23.1, 42, -1) numeric() is.numeric() as.numeric()

Integer c(1L, -3L, 4L) integer() is.integer() as.integer()
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Type Example Creation function Test function Coercion function

Character c("a", "c") character() is.character() as.character()

Logical c(TRUE, FALSE) logical() is.logical() as.logical()

In addition to double, integer, character, and logical vectors, R has two other vector
types: complex to represent complex numbers (those with an imaginary component),
and raw, to encode raw bytes. These types have limited application in bioinformatics,
so we’ll skip discussing them.

R’s Special Values
R has four special values (NA, NULL, Inf/-Inf, and NaN) that you’re likely to encounter
in your work:

NA
NA is R’s built-in value to represent missing data. Any operation on an NA will
return an NA (e.g., 2 + NA returns NA). There are numerous functions to handle
NAs in data; see na.exclude() and complete.cases(). You can find which ele‐
ments of a vector are NA with the function is.na().

NULL
NULL represents not having a value (which is different than having a value that’s
missing). It’s analogous to Python’s None value. You can test if a value is NULL with
the function is.null().

-Inf, Inf
These are just as they sound, negative infinite and positive infinite values. You
can test whether a value is finite with the function is.finite() (and its comple‐
ment is.infinite()).

NaN
NaN stands for “not a number,” which can occur in some computations that don’t
return numbers, i.e., 0/0 or Inf + -Inf. You can test for these with is.nan().

Again, the most important thing to remember about R’s vectors and data types is that
vectors are of homogenous type. R enforces this restriction through coercion, which
like recycling is a subtle behavior that’s important to remember about R.
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Type Coercion in R

Because all elements in a vector must have homogeneous data type,
R will silently coerce elements so that they have the same type.

R’s coercion rules are quite simple; R coerces vectors to a type that leads to no infor‐
mation loss about the original value. For example, if you were to try to create a vector
containing a logical value and a numeric value, R would coerce the logical TRUE and
FALSE values to 1 and 0, as these represent TRUE and FALSE without a loss of informa‐
tion:

> c(4.3, TRUE, 2.1, FALSE)
[1] 4.3 1.0 2.1 0.0

Similarly, if you were to try to create a vector containing integers and numerics, R
would coerce this to a numeric vector, because integers can be represented as numeric
values without any loss of information:

> c(-9L, 3.4, 1.2, 3L)
[1] -9.0  3.4  1.2  3.0

Lastly, if a string were included in a vector containing integers, logicals, or numerics,
R would convert everything to a character vector, as this leads to the least amount of
information loss:

> c(43L, TRUE, 3.2413341, "a string")
[1] "43"        "TRUE"      "3.2413341" "a string"

We can see any object’s type (e.g., a vector’s type) using the function typeof():
> q <- c(2, 3.5, -1.1, 3.8)
> typeof(q)
[1] "double"

Factors and classes in R
Another kind of vector you’ll encounter are factors. Factors store categorical vari‐
ables, such as a treatment group (e.g., “high,” “medium,” “low,” “control”), strand (for‐
ward or reverse), or chromosome (“chr1,” “chr2,” etc.). Factors crop up all over R, and
occasionally cause headaches for new R users (we’ll discuss why in “Loading Data
into R” on page 194).

Suppose we had a character vector named chr_hits containing the Drosophila mela‐
nogaster chromosomes where we find a particular sequence aligns. We can create a
factor from this vector using the function factor():

> chr_hits <- c("chr2", "chr2", "chr3", "chrX", "chr2", "chr3", "chr3")
> hits <- factor(chr_hits)
> hits
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[1] chr2 chr2 chr3 chrX chr2 chr3 chr3
Levels: chr2 chr3 chrX

Printing the hits object shows the original sequence (i.e., chr2, chr2, chr3, etc.) as
well as all of this factor’s levels. The levels are the possible values a factor can contain
(these are fixed and must be unique). We can view a factor’s levels by using the func‐
tion levels():

> levels(hits)
[1] "chr2" "chr3" "chrX"

Biologically speaking, our set of levels isn’t complete. Drosophila melanogaster has two
other chromosomes: chrY and chr4. Although our data doesn’t include these chro‐
mosomes, they are valid categories and should be included as levels in the factor.
When creating our factor, we could use the argument levels to include all relevant
levels:

> hits <- factor(chr_hits, levels=c("chrX", "chrY", "chr2", "chr3", "chr4"))
> hits
[1] chr2 chr2 chr3 chrX chr2 chr3 chr3
Levels: chrX chrY chr2 chr3 chr4

If we’ve already created a factor, we can add or rename existing levels with the func‐
tion levels(). This is similar to how we assigned vector names using names(obj)
<- . When setting names, we use a named character vector to provide a mapping
between the original names and the new names:

> levels(hits) <- list(chrX="chrX", chrY="chrY", chr2="chr2",
                       chr3="chr3", chr4="chr4")
> hits
[1] chr2 chr2 chr3 chrX chr2 chr3 chr3
Levels: chrX chrY chr2 chr3 chr4

We can count up how many of each level there are in a factor using the function
table():

> table(hits)
hits
chrX chrY chr2 chr3 chr4
   1    0    3    3    0

Factors are a good segue into briefly discussing classes in R. An object’s class endows
objects with higher-level properties that can affect how functions treat that R object.
We won’t get into the technical details of creating classes or R’s object orientation sys‐
tem in this section (see a text like Hadley Wickham’s Advanced R for these details).
But it’s important to have a working familiarity with the idea that R’s objects have a
class and this can change how certain functions treat R objects.

To discern the difference between an object’s class and its type, notice that factors are
just integer vectors under the hood:
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> typeof(hits)
[1] "integer"
> as.integer(hits)
[1] 3 3 4 1 3 4 4

Functions like table() are generic—they are designed to work with objects of all
kinds of classes. Generic functions are also designed to do the right thing depending
on the class of the object they’re called on (in programming lingo, we say that the
function is polymorphic). For example, table() treats a factor differently than it
would treat an integer vector. As another example, consider how the function sum
mary() (which summarizes an object such as vector) behaves when it’s called on a
vector of numeric values versus a factor:

> nums <- c(0.97, -0.7, 0.44, 0.25, -1.38, 0.08)
> summary(nums)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.
-1.38000 -0.50500  0.16500 -0.05667  0.39250  0.97000
> summary(hits)
chrX chrY chr2 chr3 chr4
   1    0    3    3    0

When called on numeric values, summary() returns a numeric summary with the
quartiles and the mean. This numeric summary wouldn’t be meaningful for the cate‐
gorical data stored in a factor, so instead summary() returns the level counts like
table() did. This is function polymorphism, and occurs because nums has class
“numeric” and hits has class “factor”:

> class(nums)
[1] "numeric"
> class(hits)
[1] "factor"

These classes are a part of R’s S3 object-oriented system. R actually has three object ori‐
entation systems (S3, S4, and reference classes). Don’t worry too much about the
specifics; we’ll encounter classes in this chapter (and also in Chapter 9), but it won’t
require an in-depth knowledge of R’s OO systems. Just be aware that in addition to a
type, objects have a class that changes how certain functions treat that object.

Working with and Visualizing Data in R
With a knowledge of basic R language essentials from the previous section, we’re
ready to start working with real data. We’ll work a few different datasets in this chap‐
ter. All files to load these datasets into R are available in this chapter’s directory on
GitHub.

The dataset we’ll use for learning data manipulation and visualization skills is from
the 2006 paper “The Influence of Recombination on Human Genetic Diversity” by
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Spencer et al. I’ve chosen this dataset (Dataset_S1.txt on GitHub) for the following
reasons:

• It’s an excellent piece of genomic research with interesting biological findings.
• The article is open access and thus freely accessible the public.
• The raw data is also freely available and is tidy, allowing us to start exploring it

immediately.
• All scripts used in the authors’ analyses are freely available (making this a great

example of reproducible research).

In addition, this type of genomic dataset is also characteristic of the data generated
from lower-level bioinformatics workflows that are then analyzed in R.

Dataset_S1.txt contains estimates of population genetics statistics such as nucleotide
diversity (e.g., the columns Pi and Theta), recombination (column Recombination),
and sequence divergence as estimated by percent identity between human and chim‐
panzee genomes (column Divergence). Other columns contain information about
the sequencing depth (depth), and GC content (percent.GC). We’ll only work with a
few columns in our examples; see the description of Dataset_S1.txt in this paper’s
supplementary information for more detail. Dataset_S1.txt includes these estimates
for 1kb windows in human chromosome 20.

Loading Data into R
The first step of any R data analysis project is loading data into R. For some datasets
(e.g., Dataset_S1.txt), this is quite easy—the data is tidy enough that R’s functions for
loading in data work on the first try. In some cases, you may need to use Unix tools
(Chapter 7) to reformat the data into a tab-delimited or CSV plain-text format, or do
some Unix sleuthing to find strange characters in the file (see “Decoding Plain-Text
Data: hexdump” on page 145). In other cases, you’ll need to identify and remove
improper values from data within R or coerce columns.

Before loading in this file, we need to discuss R’s working directory. When R is run‐
ning, the process runs in a specific working directory. It’s important to mind this
working directory while loading data into R, as which directory R is running in will
affect how you specify relative paths to data files. By default, command-line R will use
the directory you start the R program with; RStudio uses your home directory (this is
a customizable option). You can use getwd() to get R’s current working directory and
setwd() to set the working directory:

> getwd()
[1] "/Users/vinceb"
> setwd("~/bds-files/chapter-08-r") # path to this chapter's
                                    # directory in the Github repository.
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For all examples in this chapter, I’ll assume R’s working directory is this chapter’s
directory in the book’s GitHub repository. We’ll come back to working directories
again when we discuss R scripts in “Working with R Scripts” on page 254.

Next, it’s wise to first inspect a file from the command line before loading it into R.
This will give you a sense of the column delimiter being used, whether there are com‐
ment lines (e.g., lines that don’t contain data and begin with a character like #), and if
the first line is a header containing column names. Either head or less work well for
this:

$ head -n 3 Dataset_S1.txt
start,end,total SNPs,total Bases,depth,unique SNPs,dhSNPs, [...]
55001,56000,0,1894,3.41,0,0, [...]
56001,57000,5,6683,6.68,2,2, [...]

From this, we see Dataset_S1.txt is a comma-separated value file with a header. If you
explore this file in more detail with less, you’ll notice this data is tidy and organized.
Each column represents a single variable (e.g., window start position, window end
position, percent GC, etc.) and each row represents an observation (in this case, the
values for a particular 1kb window). Loading tidy plain-text data like Dataset_S1.txt
requires little effort, so you can quickly get started working with it. Your R scripts
should organize data in a similar tidy fashion (and in a format like tab-delimited or
CSV), as it’s much easier to work with tidy data using Unix tools and R.

Large Genomics Data into R: colClasses, Compression, and More
It’s quite common to encounter genomics datasets that are difficult to load into R
because they’re large files. This is either because it takes too long to load the entire
dataset into R, or your machine simply doesn’t have enough memory. In many cases,
the best strategy is to reduce the size of your data somehow: summarizing data in ear‐
lier processing steps, omitting unnecessary columns, splitting your data into chunks
(e.g., working with a chromosome at a time), or working on a random subset of your
data. Many bioinformatics analyses do not require working on an entire genomic
dataset at once, so these strategies can work quite well. These approaches are also the
only way to work with data that is truly too large to fit in your machine’s memory
(apart from getting a machine with more memory).

If your data will fit in your machine’s memory, it’s still possible that loading the data
into R may be quite slow. There are a few tricks to make the read.csv() and
read.delim() functions load large data files more quickly. First, we could explicitly
set the class of each column through the colClasses argument. This saves R time
(usually making the R’s data reading functions twice as fast), as it takes R time to fig‐
ure out what type of class a column has and convert between classes. If your dataset
has columns you don’t need in your analysis (and unnecessarily take up memory),
you can set their value in the colClasses vector to "NULL" (in quotes) to force R to
skip them.
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Additionally, specifying how many rows there are in your data by setting nrow in
read.delim() can lead to some performance gains. It’s OK to somewhat overestimate
this number; you can get a quick estimate using wc -l. If these solutions are still too
slow, you can install the data.table package and use its fread() function, which is
the fastest alternative to read.* functions (though be warned: fread() returns a
data.table, not a data.frame, which behaves differently; see the manual).

If your data is larger than the available memory on your machine, you’ll need to use a
strategy that keeps the bulk of your data out of memory, but still allows for easy access
from R. A good solution for moderately large data is to use SQLite and query out sub‐
sets for computation using the R package RSQLite (we’ll cover SQLite and other
strategies for data too large to fit in memory in Chapter 13).

Finally, as we saw in Chapter 6, many Unix data tools have versions that work on
gzipped files: zless, zcat (gzcat on BSD-derived systems like Max OS X), and oth‐
ers. Likewise, R’s data-reading functions can also read gzipped files directly—there’s
no need to uncompress gzipped files first. This saves disk space and there can be
some slight performance gains in reading in gzipped files, as there are fewer bytes to
read off of (slow) hard disks.

With our working directory properly set, let’s load Dataset_S1.txt into R. The R func‐
tions read.csv() and read.delim() are used for reading CSV and tab-delimited
files, respectively. Both are thin wrappers around the function read.table() with the
proper arguments set for CSV and tab-delimited files—see help(read.table) for
more information. To load the CSV file Dataset_S1.txt, we’d use read.csv() with
"Dataset_S1.txt" as the file argument (the first argument). To avoid repeatedly
typing a long name when we work with our data, we’ll assign this to a variable named
d:

> d <- read.csv("Dataset_S1.txt")

Note that the functions read.csv() and read.delim() have the argument header set
to TRUE by default. This is important because Dataset_S1’s first line contains column
names rather than the first row of data. Some data files don’t include a header, so
you’d need to set header=FALSE. If your file lacks a column name header, it’s a good
idea to assign column names as you read in the data using the col.names argument.
For example, to load a fake tab-delimited file named noheader.bed that contains three
columns named chrom, start, and end, we’d use:

> bd <- read.delim("noheader.bed", header=FALSE,
                   col.names=c("chrom", "start", "end"))

R’s read.csv() and read.delim() functions have numerous arguments, many of
which will need to be adjusted for certain files you’ll come across in bioinformatics.
See Table 8-4 for a list of some commonly used arguments, and consult

196 | Chapter 8: A Rapid Introduction to the R Language



help(read.csv) for full documentation. Before we move on to working with the data
in Dataset_S1.txt, we need to discuss one common stumbling block when loading
data into R: factors. As we saw in “Factors and classes in R” on page 191, factors are
R’s way of encoding categorical data in a vector. By default, R’s read.delim() and
read.csv() functions will coerce a column of strings to a factor, rather than treat it as
a character vector. It’s important to know that R does this so you can disable this coer‐
cion when you need a column as a character vector. To do this, set the argument
stringsAsFactors=FALSE (or use asis; see help(read.table) for more informa‐
tion). In “Factors and classes in R” on page 191, we saw how factors are quite useful,
despite the headaches they often cause new R users.

Table 8-4. Commonly used read.csv() and read.delim() arguments
Argument Description Additional comments

header A TRUE/FALSE value indicating whether the first row
contains column names rather than data

sep A character value indicating what delimits columns;
using the empty string "" treats all whitespace as a
separator

stringsAs
Factors

Setting this argument as FALSE prevents R from
coercing character vectors to factors for all columns; see
argument asis in help(read.delim) to prevent
coercion to factor on specific columns

This is an important argument to be aware of,
because R’s default behavior of coercing
character vector columns to factors is a
common stumbling block for beginners.

col.names A character vector to be used as column names

row.names A vector to use for row names, or a single integer or
column name indicating which column to use as row
names

na.strings A character vector of possible missing values to convert
to NA

Files using inconsistent missing values (e.g., a
mix of “NA,” “Na,” “na”) can be corrected using
na.strings=c("NA", "Na", "na").

colClasses A character vector of column classes; "NULL" indicates
a column should be skipped and NA indicates R should
infer the type

colClasses can drastically decrease the
time it takes to load a file into R, and is a
useful argument when working with large
bioinformatics files.

com
ment.char

Lines beginning with this argument are ignored; the
empty string (i.e., "") disables this feature

This argument is useful in ignoring metadata
lines in bioinformatics files.

Working with and Visualizing Data in R | 197



Getting Data into Shape
Quite often, data we load in to R will be in the wrong shape for what we want to do
with it. Tabular data can come in two different formats: long and wide. With wide
data, each measured variable has its own column (Table 8-5).

Table 8-5. A gene expression counts table by tissue in wide format

Gene Meristem Root Flower

gene_1 582 91 495

gene_2 305 3505 33

With long data, one column is used to store what type of variable was measured and
another column is used to store the measurement (Table 8-6).

Table 8-6. A gene expression counts table by tissue in long format

Gene Tissue Expression

gene_1 meristem 582

gene_2 meristem 305

gene_1 root 91

gene_2 root 3503

gene_1 flower 495

gene_2 flower 33

In many cases, data is recorded by humans in wide format, but we need data in long
format when working with and plotting statistical modeling functions. Hadley Wick‐
ham’s reshape2 package provides functions to reshape data: the function melt()
turns wide data into long data, and cast() turns long data into wide data. There are
numerous resources for learning more about the reshape2 package:

• reshape2 CRAN page
• Hadley Wickham’s reshape page 

198 | Chapter 8: A Rapid Introduction to the R Language

http://bit.ly/reshape-2
http://had.co.nz/reshape/


Exploring and Transforming Dataframes
The Dataset_S1.txt data we’ve loaded into R with read.csv() is stored as a dataframe.
Dataframes are R’s workhorse data structure for storing tabular data. Dataframes con‐
sist of columns (which represent variables in your dataset), and rows (which represent
observations). In this short section, we’ll learn the basics of accessing the dimensions,
rows, columns, and row and column names of a dataframe. We’ll also see how to
transform columns of a dataframe and add additional columns.

Each of the columns of a dataframe are vectors just like those introduced in “Vectors,
Vectorization, and Indexing” on page 183. Consequently, each element in a dataframe
column has the same type. But a dataframe can contain many columns of all different
types; storing columns of heterogeneous types of vectors is what dataframes are
designed to do.

First, let’s take a look at the dataframe we’ve loaded in with the function head(). By
default, head() prints the first six lines of a dataframe, but we’ll limit this to three
using the n argument:

> head(d, n=3)
  start   end total.SNPs total.Bases depth unique.SNPs dhSNPs reference.Bases
1 55001 56000          0        1894  3.41           0      0             556
2 56001 57000          5        6683  6.68           2      2            1000
3 57001 58000          1        9063  9.06           1      0            1000
  Theta     Pi Heterozygosity    X.GC Recombination  Divergence Constraint SNPs
1 0.000  0.000          0.000 54.8096   0.009601574 0.003006012          0    0
2 8.007 10.354          7.481 42.4424   0.009601574 0.018018020          0    0
3 3.510  1.986          1.103 37.2372   0.009601574 0.007007007          0    0

(Note that R has wrapped the columns of this dataset.)

Other things we might want to know about this dataframe are its dimensions, which
we can access using nrow() (number of rows), ncol() (number of columns), and
dim() (returns both):

> nrow(d)
[1] 59140
> ncol(d)
[1] 16
> dim(d)
[1] 59140    16

We can also print the columns of this dataframe using col.names() (there’s also a
row.names() function):

> colnames(d)
 [1] "start"           "end"             "total.SNPs"      "total.Bases"
 [5] "depth"           "unique.SNPs"     "dhSNPs"          "reference.Bases"
 [9] "Theta"           "Pi"              "Heterozygosity"  "X.GC"
[13] "Recombination"   "Divergence"      "Constraint"      "SNPs"

Working with and Visualizing Data in R | 199



Note that R’s read.csv() function has automatically renamed some of these columns
for us: spaces have been converted to periods and the percent sign in %GC has been
changed to an “X.” “X.GC” isn’t a very descriptive column name, so let’s change this.
Much like we’ve set the names of a vector using names() <-, we can set column
names with col.names() <-. Here, we only want to change the 12th column name, so
we’d use:

> colnames(d)[12] # original name
[1] "X.GC"
> colnames(d)[12] <- "percent.GC"
> colnames(d)[12] # after change
[1] "percent.GC"

Creating Dataframes from Scratch

R’s data loading functions read.csv() and read.delim() read in
data from a file and return the results as a data.frame. Sometimes
you’ll need to create a dataframe from scratch from a set of vectors.
You can do this with the function data.frame(), which creates a
dataframe from vector arguments (recycling the shorter vectors
when necessary). One nice feature of data.frame() is that if you
provide vectors as named arguments, data.frame() will use these
names as column names. For example, if we simulated data from a
simple linear model using sample() and rnorm(), we could store it
in a dataframe with:

> x <- sample(1:50, 300, replace=TRUE)
> y <- 3.2*x + rnorm(300, 0, 40)
> d_sim <- data.frame(y=y, x=x)

As with R’s read.csv() and read.delim() functions,
data.frame() will convert character vectors into factors. You can
disable this behavior by setting stringsAsFactors=FALSE.

Similarly, we could set row names using row.names() <- (note that row names must
be unique).

The most common way to access a single column of a dataframe is with the dollar
sign operator. For example, we could access the column depth in d using:

> d$depth
  [1]  3.41  6.68  9.06 10.26  8.06  7.05 [...]

This returns the depth column as a vector, which we can then pass to R functions like
mean() or summary() to get an idea of what depth looks like across this dataset:

> mean(d$depth)
[1] 8.183938
> summary(d$depth)
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   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  1.000   6.970   8.170   8.184   9.400  21.910

The dollar sign operator is a syntactic shortcut for a more general bracket operator
used to access rows, columns, and cells of a dataframe. Using the bracket operator is
similar to accessing the elements of a vector (e.g., vec[2]), except as two-dimensional
data structures, dataframes use two indexes separated by a comma: df[row, col].
Just as with indexing vectors, these indexes can be vectors to select multiple rows and
columns simultaneously. Omitting the row index retrieves all rows, and omitting the
column index retrieves all columns. This will be clearer with some examples. To
access the first two columns (and all rows), we’d use:

> d[ , 1:2]
  start   end
1 55001 56000
2 56001 57000
3 57001 58000
[...]

It’s important to remember the comma (and note that whitespace does not matter
here; it’s just to increase readability). Selecting two columns like this returns a data‐
frame. Equivalently, we could use the column names (much like we could use names
to access elements of a vector):

> d[, c("start", "end")]
  start   end
1 55001 56000
2 56001 57000
3 57001 58000
[...]

If we only wanted the first row of start and end positions, we’d use:
> d[1, c("start", "end")]
  start   end
1 55001 56000

Similarly, if we wanted the first row of data for all columns, we’d omit the column
index:

> d[1, ]
  start   end total.SNPs total.Bases depth unique.SNPs dhSNPs reference.Bases
1 55001 56000          0        1894  3.41           0      0             556
  Theta Pi Heterozygosity percent.GC Recombination  Divergence Constraint SNPs
1     0  0              0    54.8096   0.009601574 0.003006012          0    0

Single cells can be accessed by specifying a single row and a single column:
>  d[2, 3]
[1] 5
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However, in practice we don’t usually need to access single rows or cells of a data‐
frame during data analysis (see Fragile Code and Accessing Rows and Columns in
Dataframes).

Fragile Code and Accessing Rows and Columns in Dataframes

It’s a good idea to avoid referring to specific dataframe rows in your
analysis code. This would produce code fragile to row permuta‐
tions or new rows that may be generated by rerunning a previous
analysis step. In every case in which you might need to refer to a
specific row, it’s avoidable by using subsetting (see “Exploring Data
Through Slicing and Dicing: Subsetting Dataframes” on page 203).
Similarly, it’s a good idea to refer to columns by their column
name, not their position. While columns may be less likely to
change across dataset versions than rows, it still happens. Column
names are more specific than positions, and also lead to more read‐
able code.

When accessing a single column from a dataframe, R’s default behavior is to return
this as a vector—not a dataframe with one column. Sometimes this can cause prob‐
lems if downstream code expects to work with a dataframe. To disable this behavior,
we set the argument drop to FALSE in the bracket operator:

> d[, "start", drop=FALSE]
  start
1 55001
2 56001
3 57001
[...]

Now, let’s add an additional column to our dataframe that indicates whether a win‐
dow is in the centromere region. The positions of the chromosome 20 centromere
(based on Giemsa banding) are 25,800,000 to 29,700,000 (see this chapter’s README
on GitHub to see how these coordinates were found). We can append to our d data‐
frame a column called cent that has TRUE/FALSE values indicating whether the cur‐
rent window is fully within a centromeric region using comparison and logical
operations:

> d$cent <- d$start >= 25800000 & d$end <= 29700000

Note the single ampersand (&), which is the vectorized version of logical AND. &
operates on each element of the two vectors created by dd$start >= 25800000 and
dd$end <= 29700000 and returns TRUE when both are >true. How many windows fall
into this centromeric region? There are a few ways to tally the TRUE values. First, we
could use table():
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> table(d$cent)
FALSE  TRUE
58455   685

Another approach uses the fact that sum() will coerce logical values to integers (so
TRUE has value 1 and FALSE has value 0). To count how many windows fall in this cen‐
tromeric region, we could use:

> sum(d$cent)
[1] 685

Lastly, note that according to the supplementary material of this paper, the diversity 
estimates (columns Theta, Pi, and Heterozygosity) are all scaled up by 10x in the
dataset (see supplementary Text S1 for more details). We’ll use the nucleotide diver‐
sity column Pi later in this chapter in plots, and it would be useful to have this scaled
as per basepair nucleotide diversity (so as to make the scale more intuitive). We can
create a new rescaled column called diversity with:

> d$diversity <- d$Pi / (10*1000)  # rescale, removing 10x and making per bp
> summary(d$diversity )
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max.
0.0000000 0.0005577 0.0010420 0.0012390 0.0016880 0.0265300

Average nucleotide diversity per basepair in this data is around 0.001 (0.12%),
roughly what we’d expect from other estimates of human diversity (Hernandez et al.,
2012, Perry et al., 2012).

Exploring Data Through Slicing and Dicing: Subsetting Dataframes
The most powerful feature of dataframes is the ability to slice out specific rows by
applying the same vector subsetting techniques we saw in “Vectors, Vectorization,
and Indexing” on page 183 to columns. Combined with R’s comparison and logical
operators, this leads to an incredibly powerful method to query out rows in a data‐
frame. Understanding and mastering dataframe subsetting is one of the most impor‐
tant R skills to develop, as it gives you considerable power to interrogate and explore
your data. We’ll learn these skills in this section by applying them to the Data‐
set_S1.txt dataset to explore some features of this data.

Let’s start by looking at the total number of SNPs per window. From summary(), we
see that this varies quite considerably across all windows on chromosome 20:

> summary(d$total.SNPs)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  0.000   3.000   7.000   8.906  12.000  93.000

Notice how right-skewed this data is: the third quartile is 12 SNPs, but the maximum
is 93 SNPs. Often we want to investigate such outliers more closely. Let’s use data sub‐
setting to select out some rows that have 85 or more SNPs (this arbitrary threshold is
just for exploratory data analysis, so it doesn’t matter much). We can create a logical
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vector containing whether each observation (row) has 85 or more SNPs using the fol‐
lowing:

> d$total.SNPs >= 85
[1] FALSE FALSE FALSE FALSE FALSE FALSE [...]

Recall from “Vectors, Vectorization, and Indexing” on page 183 that in addition to
integer indexing vectors, we can use logical vectors (Example 8-1). Likewise, we can
use the logical vector we created earlier to extract the rows of our dataframe. R will
keep only the rows that have a TRUE value:

> d[d$total.SNPs >= 85, ]
         start      end total.SNPs total.Bases depth unique.SNPs dhSNPs
2567   2621001  2622000         93       11337 11.34          13     10
12968 13023001 13024000         88       11784 11.78          11      1
43165 47356001 47357000         87       12505 12.50           9      7
      reference.Bases  Theta     Pi Heterozygosity percent.GC Recombination
2567             1000 43.420 50.926         81.589    43.9439   0.000706536
12968            1000 33.413 19.030         74.838    28.8288   0.000082600
43165            1000 29.621 27.108         69.573    46.7467   0.000500577
      Divergence Constraint SNPs  cent
2567  0.01701702          0    1 FALSE
12968 0.01401401          0    1 FALSE
43165 0.02002002          0    7 FALSE

This subset of the data gives a view of windows with 85 or greater SNPs. With the
start and end positions of these windows, we can see if any potential confounders
stand out. If you’re curious, explore these windows using the UCSC Genome
Browser; remember to use the NCBI34/hg16 version of the human genome).

We can build more elaborate queries by chaining comparison operators. For example,
suppose we wanted to see all windows where Pi (nucleotide diversity) is greater than
16 and percent GC is greater than 80. Equivalently, we could work with the rescaled
diversity column but subsetting with larger numbers like 16 is easier and less error
prone than with numbers like 0.0016. We’d use:

> d[d$Pi > 16 & d$percent.GC > 80, ]
         start      end total.SNPs total.Bases depth unique.SNPs dhSNPs
58550 63097001 63098000          5         947  2.39           2      1
58641 63188001 63189000          2        1623  3.21           2      0
58642 63189001 63190000          5        1395  1.89           3      2
      reference.Bases  Theta     Pi Heterozygosity percent.GC Recombination
58550             397 37.544 41.172         52.784    82.0821   0.000781326
58641             506 16.436 16.436         12.327    82.3824   0.000347382
58642             738 35.052 41.099         35.842    80.5806   0.000347382
      Divergence Constraint SNPs  cent
58550 0.03826531        226    1 FALSE
58641 0.01678657        148    0 FALSE
58642 0.01793722          0    0 FALSE
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In these examples, we’re extracting all columns by omitting the column argument in
the bracket operator (e.g., col in df[row, col]). If we only care about a few particu‐
lar columns, we could specify them by their position or their name:

> d[d$Pi > 16 & d$percent.GC > 80, c("start", "end", "depth", "Pi")]
         start      end depth     Pi
58550 63097001 63098000  2.39 41.172
58641 63188001 63189000  3.21 16.436
58642 63189001 63190000  1.89 41.099

Similarly, you could reorder columns by providing the column names or column
indexes in a different order. For example, if you wanted to swap the order of depth
and Pi, use:

> d[d$Pi > 16 & d$percent.GC > 80, c("start", "end", "Pi", "depth")]
         start      end     Pi depth
58550 63097001 63098000 41.172  2.39
58641 63188001 63189000 16.436  3.21
58642 63189001 63190000 41.099  1.89

Remember, columns of a dataframe are just vectors. If you only need the data from
one column, just subset it as you would a vector:

> d$percent.GC[d$Pi > 16]
[1] 39.1391 38.0380 36.8368 36.7367 43.0430 41.1411 [...]

This returns all of the percent GC values for observations where that observation has
a Pi value greater than 16. Note that there’s no need to use a comma in the bracket
because d$percent is a vector, not a two-dimensional dataframe.

Subsetting columns can be a useful way to summarize data across two different con‐
ditions. For example, we might be curious if the average depth in a window (the
depth column) differs between very high GC content windows (greater than 80%)
and all other windows:

> summary(d$depth[d$percent.GC >= 80])
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
   1.05    1.89    2.14    2.24    2.78    3.37
> summary(d$depth[d$percent.GC < 80])
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  1.000   6.970   8.170   8.185   9.400  21.910

This is a fairly large difference, but it’s important to consider how many windows this
includes. Indeed, there are only nine windows that have a GC content over 80%:

> sum(d$percent.GC >= 80)
[1] 9

As another example, consider looking at Pi by windows that fall in the centromere
and those that do not. Because d$cent is a logical vector, we can subset with it
directly (and take its complement by using the negation operator, !):
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> summary(d$Pi[d$cent])
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
   0.00    7.95   16.08   20.41   27.36  194.40
> summary(d$Pi[!d$cent])
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  0.000   5.557  10.370  12.290  16.790 265.300

Indeed, the centromere does appear to have higher nucleotide diversity than other
regions in this data. Extracting specific observations using subsetting, and summariz‐
ing particular columns is a quick way to explore relationships within the data. Later
on in “Working with the Split-Apply-Combine Pattern” on page 239, we’ll learn ways
to group observations and create per-group summaries.

In addition to using logical vectors to subset dataframes, it’s also possible to subset
rows by referring to their integer positions. The function which() takes a vector of
logical values and returns the positions of all TRUE values. For example:

> d$Pi > 3
[1] FALSE  TRUE FALSE  TRUE  TRUE  TRUE [...]
> which(d$Pi > 3)
[1]  2  4  5  6  7 10 [...]

Thus, d[$Pi > 3, ] is identical to d[which(d$Pi > 3), ]; subsetting operations can
be expressed using either method. In general, you should omit which() when subset‐
ting dataframes and use logical vectors, as it leads to simpler and more readable code.
Under other circumstances, which() is necessary—for example, if we wanted to select
the four first TRUE values in a vector:

> which(d$Pi > 10)[1:4]
[1]  2 16 21 23

which() also has two related functions that return the index of the first minimum or
maximum element of a vector: which.min() and which.max(). For example:

> d[which.min(d$total.Bases),]
         start      end total.SNPs total.Bases depth [...]
25689 25785001 25786000          0         110 1.24  [...]

> d[which.max(d$depth),]
       start     end total.SNPs total.Bases depth [...]
8718 8773001 8774000         58       21914 21.91 [...]

Sometimes subsetting expressions inside brackets can be quite redundant (because
each column must be specified like d$Pi, d$depth, etc). A useful convenience func‐
tion (intended primarily for interactive use) is the R function subset(). subset()
takes two arguments: the dataframe to operate on, and then conditions to include a
row. With subset(), d[d$Pi > 16 & d$percent.GC > 80, ] can be expressed as:

$ subset(d, Pi > 16 & percent.GC > 80)
         start      end total.SNPs total.Bases depth [...]
58550 63097001 63098000          5         947  2.39 [...]
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58641 63188001 63189000          2        1623  3.21 [...]
58642 63189001 63190000          5        1395  1.89 [...]

Optionally, a third argument can be supplied to specify which columns (and in what
order) to include:

> subset(d, Pi > 16 & percent.GC > 80,
    c(start, end, Pi, percent.GC, depth))
         start      end     Pi percent.GC depth
58550 63097001 63098000 41.172    82.0821  2.39
58641 63188001 63189000 16.436    82.3824  3.21
58642 63189001 63190000 41.099    80.5806  1.89

Note that we (somewhat magically) don’t need to quote column names. This is
because subset() follows special evaluation rules, and for this reason, subset() is
best used only for interactive work.

Exploring Data Visually with ggplot2 I: Scatterplots and Densities
Instead of spending time making your graph look pretty, [ggplot2 allows you to] focus
on creating a graph that best reveals the messages in your data.

— ggplot2: Elegant Graphics for Data
Analysis Hadley Wickham

Exploratory data analysis emphasizes visualization as the best tool to understand and
explore our data—both to learn what the data says and what its limitations are. We’ll
learn visualization in R through Hadley Wickham’s powerful ggplot2 package, which
is just one of a few ways to plot data in R; R also has a built-in graphics system
(known as base graphics) and the lattice package. Every R user should be acquain‐
ted with base graphics (at some point, you’ll encounter a base graphics plot you need
to modify), but we’re going to skip base graphics in this chapter to focus entirely on
learning visualization with ggplot2. The reason for this is simple: you’ll be able to
create more informative plots with less time and effort invested with ggplot2 than
possible with base graphics.

As with other parts of this chapter, this discussion of ggplot2 will be short and defi‐
cient in some areas. This introduction is meant to get you on your feet so you can
start exploring your data, rather than be an exhaustive reference. The best up-to-date
reference for ggplot2 is the ggplot2 online documentation. As you shift from begin‐
ning ggplot2 to an intermediate user, I highly recommend the books ggplot2: Elegant
Graphics for Data Analysis by Hadley Wickham (Springer, 2010) and R Graphics
Cookbook by Winston Chang (O’Reilly, 2012) for more detail.

First, we need to load the ggplot2 package with R’s library() function. If you don’t
have ggplot2 installed, you’ll need to do that first with install.packages():

> install.packages("ggplot2")
> library(ggplot2)
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ggplot2 is quite different from R’s base graphics because it’s built on top of a gram‐
mar inspired by Leland Wilkinson’s Grammar of Graphics (Springer, 2005). This
grammar provides an underlying logic to creating graphics, which considerably sim‐
plifies creating complex plots. Each ggplot2 plot is built by adding layers to a plot
that map the aesthetic properties of geometric objects to data. Layers can also apply
statistical transformations to data and change the scales of axes and colors. This may
sound abstract now, but you’ll become familiar with gplot2’s grammar through
examples.

Let’s look at how we’d use ggplot2 to create a scatterplot of nucleotide diversity along
the chromosome in the diversity column in our d dataframe. Because our data is
window-based, we’ll first add a column called position to our dataframe that’s the
midpoint between each window:

> d$position <- (d$end + d$start) / 2
> ggplot(d) + geom_point(aes(x=position, y=diversity))

This creates Figure 8-1.

There are two components of this ggplot2 graphic: the call to the function ggplot(),
and the call to the function geom_point(). First, we use ggplot(d) to supply this plot
with our d dataframe. ggplot2 works exclusively with dataframes, so you’ll need to
get your data tidy and into a dataframe before visualizing it with ggplot2.

Figure 8-1. ggplot2 scatterplot nucleotide diversity by position for human
chromosome 20
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Second, with our data specified, we then add layers to our plot (remember: ggplot2 is
layer-based). To add a layer, we use the same + operator that we use for addition in R.
Each layer updates our plot by adding geometric objects such as the points in a scat‐
terplot, or the lines in a line plot.

We add geom_point() as a layer because we want points to create a scatterplot.
geom_point() is a type of geometric object (or geom in ggplot2 lingo). ggplot2 has
many geoms (e.g., geom_line(), geom_bar(), geom_density(), geom_boxplot(),
etc.), which we’ll see throughout this chapter. Geometric objects have many aesthetic
attributes (e.g., x and y positions, color, shape, size, etc.). Different geometric objects
will have different aesthetic attributes (ggplot2 documentation refers to these as aes‐
thetics). The beauty of ggplot2s grammar is that it allows you to map geometric
objects’ aesthetics to columns in your dataframe. In our diversity by position scatter‐
plot, we mapped the x position aesthetic to the position column, and the y position
to the diversity column. We specify the mapping of aesthetic attributes to columns
in our dataframe using the function aes().

Axis Labels, Plot Titles, and Scales

As my high school mathematics teacher Mr. Williams drilled into
my head, no plot is complete without proper axis labels and a title.
While ggplot2 chooses smart labels based on your column names,
you might want to change this down the road. ggplot2 makes
specifying labels easy: simply use the xlab(), ylab(), and ggti
tle() functions to specify the x-axis label, y-axis label, and plot
title. For example, we could change our x- and y-axis labels when
plotting the diversity data with p + xlab("chromosome position
(basepairs)") + ylab("nucleotide diversity"). To avoid clut‐
ter in examples in this book, I’ll just use the default labels.
You can also set the limits for continuous axes using the function
scale_x_continuous(limits=c(start, end)) where start and
end are the start and end of the axes (and scale_y_continuous()
for the y axis). Similarly, you can change an axis to a log10-scale
using the functions scale_x_log10() and scale_y_log10().
ggplot2 has numerous other scale options for discrete scales, other
axes transforms, and color scales; see http://docs.ggplot2.org for
more detail.

Aesthetic mappings can also be specified in the call to ggplot()—geoms will then use
this mapping. Example 8-2 creates the exact same scatterplot as Figure 8-1.

Example 8-2. Including aes() in ggplot()

> ggplot(d, aes(x=position, y=diversity)) + geom_point()
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Notice the missing diversity estimates in the middle of this plot. What’s going on in
this region? ggplot2’s strength is that it makes answering these types of questions
with exploratory data analysis techniques effortless. We simply need to map a possi‐
ble confounder or explanatory variable to another aesthetic and see if this reveals any
unexpected patterns. In this case, let’s map the color aesthetic of our point geometric
objects to the column cent, which indicates whether the window falls in the centro‐
meric region of this chromosome (see Example 8-3).

Example 8-3. A simple diversity scatterplot with ggplot2

> ggplot(d) + geom_point(aes(x=position, y=diversity, color=cent))

As you can see from Figure 8-2, the region with missing diversity estimates is around
the centromere. This is intentional; centromeric and heterochromatic regions were
excluded from this study.

Figure 8-2. ggplot2 scatterplot nucleotide diversity by position coloring by whether win‐
dows are in the centromeric region

Throughout this chapter, I’ve used a slightly different ggplot theme
than the default to optimize graphics for print and screen. All of
the code to produce the plots exactly as they appear in this chapter
is in this chapter’s directory on GitHub.
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A particularly nice feature of ggplot2 is that it has well-chosen default behaviors,
which allow you to quickly create or adjust plots without having to consider technical
details like color palettes or a legend (though these details are customizable). For
example, in mapping the color aesthetic to the cent column, ggplot2 considered
cent’s type (logical) when choosing a color palette. Discrete color palettes are auto‐
matically used with columns of logical or factor data mapped to the color aesthetic;
continuous color palettes are used for numeric data. We’ll see further examples of
mapping data to the color aesthetic later on in this chapter.

As Tukey’s quote at the beginning of this chapter explains, exploratory analysis is an
interactive, iterative process. Our first plot gives a quick first glance at what the data
say, but we need to keep exploring to learn more. One problem with this plot is the
degree of overplotting (data oversaturating a plot so as to obscure the information of
other data points). We can’t get a sense of the distribution of diversity from this figure
—everything is saturated from about 0.05 and below.

One way to alleviate overplotting is to make points somewhat transparent (the trans‐
parency level is known as the alpha). Let’s make points almost entirely transparent so
only regions with multiple overlapping points appear dark (this produces a plot like
Figure 8-3):

> ggplot(d) + geom_point(aes(x=position, y=diversity), alpha=0.01)

Figure 8-3. Using transparency to address overplotting

There’s a subtlety here that illustrates a very important ggplot2 concept: we set
alpha=0.01 outside of the aesthetic mapping function aes(). This is because we’re
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not mapping the alpha aesthetic to a column of data in our dataframe, but rather giv‐
ing it a fixed value for all data points.

Other than highlighting the lack of diversity estimates in centromeric windows, the
position axes isn’t revealing any positional patterns in diversity. Part of the problem is
still overplotting (which occurs often when visualizing genomic data). But the more
severe issue is that these windows span 63 megabases, and it’s difficult to detect
regional patterns with data at this scale.

Let’s now look at the density of diversity across all positions. We’ll use a different geo‐
metric object, geom_density(), which is slightly different than geom_point() in that
it takes the data and calculates a density from it for us (see Figure 8-4):

> ggplot(d) + geom_density(aes(x=diversity), fill="black")

Figure 8-4. Density plot of diversity

By default, ggplot2 uses lines to draw densities. Setting fill="black" fills the density
so it’s clearer to see (try running this same command without this fill argument).

We can also map the color aesthetic of geom_density() to a discrete-valued column
in our dataframe, just as we did with geom_point() in Example 8-3. geom_density()
will create separate density plots, grouping data by the column mapped to the color
aesthetic and using colors to indicate the different densities. To see both overlapping
densities, we use alpha to set the transparency to half (see Figure 8-5):

> ggplot(d) + geom_density(aes(x=diversity, fill=cent), alpha=0.4)
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Figure 8-5. Densities of diversity, colored by whether a window is in the centromere or
not

Immediately we’re able to see a trend that wasn’t clear by using a scatterplot: diversity
is skewed to more extreme values in centromeric regions. Try plotting this same fig‐
ure without mapping the color aesthetic to cent—you’ll see there’s no indication of
bimodality. Again (because this point is worth repeating), mapping columns to addi‐
tional aesthetic attributes can reveal patterns and information in the data that may
not be apparent in simple plots. We’ll see this again and again throughout this chap‐
ter.

Exploring Data Visually with ggplot2 II: Smoothing
Let’s look at the Dataset_S1.txt data using another useful ggplot2 feature: smoothing. 
We’ll use ggplot2 in particular to investigate potential confounders in genomic data.
There are numerous potential confounders in genomic data (e.g., sequencing read
depth; GC content; mapability, or whether a region is capable of having reads cor‐
rectly align to it; batch effects; etc.). Often with large and high-dimension datasets,
visualization is the easiest and best way to spot these potential issues.

In the previous section, we saw how overplotting can obscure potential relationships
between two variables in a scatterplot. The number of observations in whole genome
datasets almost ensures that overplotting will be a problem during visualization. Ear‐
lier, we used transparency to give us a sense of the most dense regions. Another strat‐
egy is to use ggplot2’s geom_smooth() to add a smoothing line to plots and look for
an unexpected trend. This geom requires x and y aesthetics, so it can fit the smoothed
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curve to the data. Because we often superimpose a smooth curve on a scatterplot cre‐
ated from the same x and y mappings, we can specify the aesthetic in ggplot() as we
did in Example 8-2. Let’s use a scatterplot and smoothing curve to look at the rela‐
tionship between the sequencing depth (the depth column) and the total number of
SNPs in a window (the total.SNPs column; see Figure 8-6):

> ggplot(d, aes(x=depth, y=total.SNPs)) + geom_point() + geom_smooth()

Figure 8-6. A scatterplot (demonstrating overplotting) and GAM smoothing curve illus‐
trating how total number of SNPs in a window depends on sequencing depth

By default, ggplot2 uses generalized additive models (GAM) to fit this smoothed
curve for datasets with more than 1,000 rows (which ours has). You can manually
specify the smoothing method through the method argument of geom_smooth() (see
help(stat_smooth) for the method options). Also, ggplot2 adds confidence inter‐
vals around the smoothing curve; this can be disabled by using
geom_smooth(se=FALSE).

Visualizing the data this way reveals a well-known relationship between depth and
SNPs: higher sequencing depth increases the power to detect and call SNPs, so in
general more SNPs will be found in higher-depth regions. However, this isn’t the
entire story—the relationship among these variables is made more complex by GC
content. Both higher and lower GC content regions have been shown to decrease read
coverage, likely through less efficient PCR in these regions (Aird et al., 2011). We can
get a sense of the effect GC content has on depth in our own data through a similar
scatterplot and smoothing curve plot:
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> ggplot(d, aes(x=percent.GC, y=depth)) + geom_point() + geom_smooth()

The trajectory of the smoothing curve (in Figure 8-7) indicates that GC content does
indeed have an effect on sequencing depth in this data. There’s less support in the
data that low GC content leads to lower depth, as there are few windows that have a
GC content below 25%. However, there’s clearly a sharp downward trend in depth for
GC contents above 60%.

Figure 8-7. A scatterplot and GAM smoothing curve show a relationship between
extreme GC content windows and sequencing depth

Binning Data with cut() and Bar Plots with ggplot2
Another way we can extract information from complex datasets is by reducing the
resolution of the data through binning (or discretization). Binning takes continuous
numeric values and places them into a discrete number of ranged bins. At first, it
might sound counterintuitive to reduce the resolution of the data through binning to
learn more about the data. The benefit is that discrete bins facilitate conditioning on a
variable. Conditioning is an incredibly powerful way to reveal patterns in data. This
idea stems from William S. Cleveland’s concept of a coplot (a portmanteau of condi‐
tioning plot); I encourage you to read Cleveland’s Visualizing Data for more informa‐
tion if this topic is of interest. We’ll create plots like Cleveland’s coplots when we
come to gplot2’s facets in “Using ggplot2 Facets” on page 224.

In R, we bin data through the cut() function (see Example 8-4):
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Example 8-4. Using cut() to bin GC content

> d$GC.binned <- cut(d$percent.GC, 5)
> d$GC.binned
[1] (51.6,68.5] (34.7,51.6] (34.7,51.6] (34.7,51.6] (34.7,51.6]
[...]
Levels: (0.716,17.7] (17.7,34.7] (34.7,51.6] (51.6,68.5] (68.5,85.6]

When cut()’s second argument breaks is a single number, cut() divides the data
into that number of equally sized bins. The returned object is a factor, which we
introduced in “Factors and classes in R” on page 191. The levels of the factor returned
from cut() will always have labels like (34.7,51.6], which indicate the particular
bin that value falls in. We can count how many items fall into a bin using table():

> table(d$GC.binned)

(0.716,17.7]  (17.7,34.7]  (34.7,51.6]  (51.6,68.5]  (68.5,85.6]
           6         4976        45784         8122          252

We can also use prespecified ranges when binning data with cut() by setting breaks
to a vector. For example, we could cut the percent GC values with breaks at 0, 25, 50,
75, and 100:

> cut(d$percent.GC, c(0, 25, 50, 75, 100))
[1] (50,75] (25,50] (25,50] (25,50] (25,50] (25,50]
[...]
Levels: (0,25] (25,50] (50,75] (75,100]

An important gotcha to remember about cut() is that if you manually specify breaks
that don’t fully enclose all values, values outside the range of breaks will be given the
value NA. You can check if your manually specified breaks have created NA values
using any(is.na(cut(x, breaks))) (for your particular vector x and breaks).

Bar plots are the natural visualization tool to use when looking at count data like the
number of occurrences in bins created with cut(). ggplot2’s geom_bar() can help us
visualize the number of windows that fall into each GC bin we’ve created previously:

> ggplot(d) + geom_bar(aes(x=GC.binned))

When geom_bar()’s x aesthetic is a factor (e.g., d$binned.GC), ggplot2 will create a
bar plot of counts (see Figure 8-8, left). When geom_bar()’s x aesthetic is mapped to a
continuous column (e.g., percent.GC) geom_bar() will automatically bin the data
itself, creating a histogram (see Figure 8-8, right):

> ggplot(d) + geom_bar(aes(x=percent.GC))
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Figure 8-8. ggplot2’s geom_bar() used to visualize the GC.binned column we created
with cut(), and the numeric percent.GC column using its own binning scheme

The bins created from cut() are useful in grouping data (a concept we often use in
data analysis). For example, we can use the GC.binned column to group data by the
10 GC content bins to see how GC content has an impact on other variables. To do
this, we map aesthetics like color, fill, or linetype to our GC.binned column. Again,
looking at sequencing depth and GC content:

> ggplot(d) + geom_density(aes(x=depth, linetype=GC.binned), alpha=0.5)

The same story of depth and GC content comes out in Figure 8-9: both the lowest GC
content windows and the highest GC content windows have lower depth. Try to cre‐
ate this sample plot, except don’t group by GC.binned—the entire story disappears.
Also, try plotting the densities of other variables like Pi and Total.SNPs, grouping by
GC.binned again.
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Figure 8-9. Density plots of depth, grouped by GC content bin

Finding the Right Bin Width

Notice in Figure 8-8 how different bin widths can drastically
change the way we view and understand the data. Try creating a
histogram of Pi with varying binwidths using: ggplot(d) +
geom_bar(aes(x=Pi), binwidth=1) + scale_x_continu
ous(limits=c(0.01, 80)).
Using scale_x_continuous() just ignores all windows with 0 Pi
and zooms into the figure. Try binwidths of 0.05, 0.5, 1, 5, and 10. 
Smaller bin widths can fit the data better (revealing more subtle
details about the distribution), but there’s a trade-off. As bin widths
become narrower, each bin will contain fewer data points and con‐
sequently be more noisy (and undersmoothed). Using wider bins
smooth over this noise. However, bins that are too wide result in
oversmoothing, which can hide details about the data. This trade-off
is a case of the more general bias-variance trade-off in statistics; see
the Wikipedia pages on the bias–variance trade-off and histograms
for more information on these topics. In your own data, be sure to
explore a variety of bin widths.

We can learn an incredible amount about our data by grouping by possible con‐
founding factors and creating simple summaries like densities by group. Because it’s a
powerful exploratory data analysis skill, we’ll look at other ways to group and sum‐
marize data in “Working with the Split-Apply-Combine Pattern” on page 239.
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Merging and Combining Data: Matching Vectors and Merging
Dataframes
We’re now going to switch topics to merging and combining data so we can create
example data for the next sections. Bioinformatics analyses involve connecting many
numerous datasets: sequencing data, genomic features (e.g., gene annotation), func‐
tional genomics data, population genetic data, and so on. As data piles up in reposito‐
ries, the ability to connect different datasets together to tell a cohesive story will
become an increasingly more important analysis skill. In this section, we’ll look at
some canonical ways to combine datasets together in R. For more advanced joins (or
data approaching the limits of what R can store in memory), using a database (which
we learn about in Chapter 13) may be a better fit.

The simplest operation to match two vectors is checking whether some of a vector’s
values are in another vector using R’s %in% operator. x %in% y returns a logical vector
indicating which of the values of x are in y. As a simple example:

> c(3, 4, -1) %in% c(1, 3, 4, 8)
[1]  TRUE  TRUE FALSE

We often use %in% to select rows from a dataframe by specifying the levels a factor
column can take. We’ll use the dataset chrX_rmsk.txt, the repeats on human chromo‐
some X found by Repeat Masker, to illustrate this. Unlike Dataset_S1.txt, this data is
on human reference genome version hg17 (because these same Repeat Masker files
are used in a later example that replicates findings that also use hg17). Let’s load in
and look at this file:

> reps <- read.delim("chrX_rmsk.txt.gz", header=TRUE)
> head(reps, 3)
  bin swScore milliDiv milliDel milliIns genoName genoStart genoEnd   genoLeft
1 585     342        0        0        0     chrX         0      38 -154824226
2 585     392      109        0        0     chrX        41     105 -154824159
3 585     302      240       31       20     chrX       105     203 -154824061
  strand   repName      repClass     repFamily repStart repEnd repLeft id
1      + (CCCTAA)n Simple_repeat Simple_repeat        3     40       0  1
2      +    LTR12C           LTR          ERV1     1090   1153    -425  2
3      +     LTR30           LTR          ERV1      544    642     -80  3

repClass is an example of a factor column—try class(d$repClass) and levels(d
$repClass) to verify for yourself. Suppose we wanted to select out rows for a few
common repeat classes: DNA, LTR, LINE, SINE, and Simple_repeat. Even with just five
repeat classes, it would be error prone and tedious to construct a statement to select
these values using logical operators: reps$repClass == "SINE" | reps$repClass
== "LINE" | reps$repClass == "LTR" | and so on. Instead, we can create a vector
common_repclass and use %in%:

> common_repclass <- c("SINE", "LINE", "LTR", "DNA", "Simple_repeat")
> reps[reps$repClass %in% common_repclass, ]
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  bin swScore milliDiv milliDel milliIns genoName genoStart genoEnd   genoLeft
1 585     342        0        0        0     chrX         0      38 -154824226
2 585     392      109        0        0     chrX        41     105 -154824159
3 585     302      240       31       20     chrX       105     203 -154824061
[...]
  strand   repName      repClass     repFamily repStart repEnd repLeft id
1      + (CCCTAA)n Simple_repeat Simple_repeat        3     40       0  1
2      +    LTR12C           LTR          ERV1     1090   1153    -425  2
3      +     LTR30           LTR          ERV1      544    642     -80  3
[...]

It’s worth noting that we can also create vectors like common_repclass programmati‐
cally. For example, we could always just directly calculate the five most common
repeat classes using:

> sort(table(reps$repClass), decreasing=TRUE)[1:5]

         SINE          LINE           LTR           DNA Simple_repeat
        45709         30965         14854         11347          9163

> top5_repclass <- names(sort(table(reps$repClass), decreasing=TRUE)[1:5])
> top5_repclass
[1] "LINE"          "SINE"          "LTR"           "Simple_repeat"
[5] "DNA"

The %in% operator is a simplified version of another function, match(). x %in% y
returns TRUE/FALSE for each value in x depending on whether it’s in y. In contrast,
match(x, y) returns the first occurrence of each of x’s values in y. If match() can’t
find one of x’s elements in y, it returns its nomatch argument (which by default has
the value NA).

It’s important to remember the directionality of match(x, y): the first argument x is
what you’re searching for (the proverbial needle) in the second argument y (the hay‐
stack). The positions returned are always the first occurrences in y (if an occurrence
was found). Here’s a simple example:

> match(c("A", "C", "E", "A"), c("A", "B", "A", "E"))
[1]  1 NA  4  1

Study this example carefully—to use match() safely, it’s important to understand its
subtle behavior. First, although there are two “A” values in the second argument, the
position of the first one is returned. Second, “C” does not occur in the second argu‐
ment, so match() returns NA. Lastly, the vector returned will always have the same
length as the first argument and contains positions in the second argument.

Because match() returns where it finds a particular value, match()’s output can be
used to join two dataframes together by a shared column. We’ll see this in action by
stepping through a merge of two datasets. I’ve intentionally chosen data that is a bit
tricky to merge; the obstacles in this example are ones you’re likely to encounter with
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real data. I’ll review various guidelines you should follow when applying the lessons
of this section. Our reward for merging these datasets is that we’ll use the result to
replicate an important finding in human recombination biology.

For this example, we’ll merge two datasets to explore recombination rates around a
degenerate sequence motif that occurs in repeats. This motif has been shown to be
enriched in recombination hotspots (see Myers et al., 2005; Myers et al., 2008) and is
common in some repeat classes. The first dataset (motif_recombrates.txt in the Git‐
Hub directory) contains estimates of the recombination rate for all windows within
40kb of each motif (for two motif variants). The second dataset (motif_repeats.txt)
contains which repeat each motif occurs in. Our goal is to merge these two datasets so
that we can look at the local effect of recombination of each motif on specific repeat
backgrounds.

Creating These Example Datasets

Both of these datasets were created using the GenomicRanges tools
we will learn about in Chapter 9, from tracks downloaded directly
from the UCSC Genome Browser. With the appropriate tools and
bioinformatics data skills, it takes surprisingly few steps to replicate
part of this important scientific finding (though the original paper
did much more than this—see Myers et al., 2008). For the code to
reproduce the data used in this example, see the motif-example/
directory in this chapter’s directory on GitHub.

Let’s start by loading in both files and peeking at them with head():
> mtfs <- read.delim("motif_recombrates.txt", header=TRUE)
> head(mtfs, 3)
   chr motif_start motif_end    dist recomb_start recomb_end  recom
1 chrX    35471312  35471325 39323.0     35430651   35433340 0.0015
2 chrX    35471312  35471325 36977.0     35433339   35435344 0.0015
3 chrX    35471312  35471325 34797.5     35435343   35437699 0.0015
          motif
1 CCTCCCTGACCAC
2 CCTCCCTGACCAC
3 CCTCCCTGACCAC

> rpts <- read.delim("motif_repeats.txt", header=TRUE)
> head(rpts, 3)
   chr     start       end name motif_start
1 chrX  63005829  63006173   L2    63005830
2 chrX  67746983  67747478   L2    67747232
3 chrX 118646988 118647529   L2   118647199

The first guideline of combining data is always to carefully consider the structure of
both datasets. In mtfs, each motif is represented across multiple rows. Each row gives
the distance between a focal motif and a window over which recombination rate was
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estimated (in centiMorgans). For example, in the first three rows of mtfs, we see
recombination rate estimates across three windows, at 39,323, 36,977, and 34,797
bases away from the motif at position chrX:35471312-35471325. The dataframe rpts
contains the positions of THE1 or L2 repeats that completely overlap motifs, and the
start positions of the motifs they overlap.

Our goal is to merge the column name in the rpts dataframe into the mtfs column, so
we know which repeat each motif is contained in (if any). The link between these two
datasets are the positions of each motif, identified by the chromosome and motif start
position columns chr and motif_start. When two or more columns are used as a
link between datasets, concatenating these columns into a single key string column
can simplify merging. We can merge these two columns into a string using the func‐
tion paste(), which takes vectors and combines them with a separating string speci‐
fied by sep:

> mtfs$pos <- paste(mtfs$chr, mtfs$motif_start, sep="-")
> rpts$pos <- paste(rpts$chr, rpts$motif_start, sep="-")

> head(mtfs, 2) # results
   chr motif_start motif_end  dist recomb_start recomb_end  recom         motif
1 chrX    35471312  35471325 39323     35430651   35433340 0.0015 CCTCCCTGACCAC
2 chrX    35471312  35471325 36977     35433339   35435344 0.0015 CCTCCCTGACCAC
            pos
1 chrX-35471312
2 chrX-35471312
> head(rpts, 2)
   chr    start      end name motif_start           pos
1 chrX 63005829 63006173   L2    63005830 chrX-63005830
2 chrX 67746983 67747478   L2    67747232 chrX-67747232

Now, this pos column functions as a common key between the two datasets.

The second guideline in merging data is to validate that your keys overlap in the way
you think they do before merging. One way to do this is to use table() and %in% to
see how many motifs in mtfs have a corresponding entry in rpts:

> table(mtfs$pos %in% rpts$pos)

FALSE  TRUE
10832  9218

This means there are 9,218 motifs in mtfs with a corresponding entry in rpts and
10,832 without. Biologically speaking, this means 10,832 motifs in our dataset don’t
overlap either the THE1 or L2 repeats. By the way I’ve set up this data, all repeats in
rpts have a corresponding motif in mtfs, but you can see for yourself using
table(rpts$pos %in% mtfs$pos). Remember: directionality matters—you don’t go
looking for a haystack in a needle!
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Now, we use match() to find where each of the mtfs$pos keys occur in the rpts$pos.
We’ll create this indexing vector first before doing the merge:

> i <- match(mtfs$pos, rpts$pos)

All motif positions without a corresponding entry in rpts are NA; our number of NAs
is exactly the number of mts$pos elements not in rpts$pos:

> table(is.na(i))

FALSE  TRUE
 9218 10832

Finally, using this indexing vector we can select out the appropriate elements of rpts
$name and merge these into mtfs:

> mtfs$repeat_name <- rpts$name[i]

Often in practice you might skip assigning match()’s results to i and use this directly:
> mtfs$repeat_name <- rpts$name[match(mtfs$pos, rpts$pos)]

The third and final guideline of merging data: validate, validate, validate. As this
example shows, merging data is tricky; it’s easy to make mistakes. In our case, good
external validation is easy: we can look at some rows where mtfs$repeat_name isn’t
NA and check with the UCSC Genome Browser that these positions do indeed overlap
these repeats (you’ll need to visit UCSC Genome Browser and do this yourself):

> head(mtfs[!is.na(mtfs$repeat_name), ], 3)
     chr motif_start motif_end    dist recomb_start recomb_end  recom
102 chrX    63005830  63005843 37772.0     62965644   62970485 1.4664
103 chrX    63005830  63005843 34673.0     62970484   62971843 0.0448
104 chrX    63005830  63005843 30084.5     62971842   62979662 0.0448
            motif           pos repeat_name
102 CCTCCCTGACCAC chrX-63005830          L2
103 CCTCCCTGACCAC chrX-63005830          L2
104 CCTCCCTGACCAC chrX-63005830          L2

Our result is that we’ve combined the rpts$name vector directly into our mtfs data‐
frame (technically, this type of join is called a left outer join). Not all motifs have
entries in rpts, so some values in mfs$repeat_name are NA. We could easily remove
these NAs with:

> mtfs_inner <- mtfs[!is.na(mtfs $repeat_name), ]
> nrow(mtfs_inner)
[1] 9218

In this case, only motifs in mtfs contained in a repeat in rpts are kept (technically,
this type of join is called an inner join). Inner joins are the most common way to
merge data. We’ll talk more about the different types of joins in Chapter 13.
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We’ve learned match() first because it’s a general, extensible way to merge data in R.
match() reveals some of the gritty details involved in merging data necessary to avoid
pitfalls. However, R does have a more user-friendly merging function: merge().
Merge can directly merge two datasets:

> recm <- merge(mtfs, rpts, by.x="pos", by.y="pos")
> head(recm, 2)
             pos chr.x motif_start.x motif_end    dist recomb_start recomb_end
1 chr1-101890123  chr1     101890123 101890136 34154.0    101855215  101856736
2 chr1-101890123  chr1     101890123 101890136 35717.5    101853608  101855216
   recom         motif repeat_name chr.y     start       end  name
1 0.0700 CCTCCCTAGCCAC       THE1B  chr1 101890032 101890381 THE1B
2 0.0722 CCTCCCTAGCCAC       THE1B  chr1 101890032 101890381 THE1B
  motif_start.y
1     101890123
2     101890123
> nrow(recm)
[1] 9218

merge() takes two dataframes, x and y, and joins them by the columns supplied by
by.x and by.y. If they aren’t supplied, merge() will try to infer what these columns
are, but it’s much safer to supply them explicitly. By default, merge() behaves like our
match() example after we removed the NA values in repeat_name (technically,
merge() uses a variant of an inner join known as a natural join). But merge() can also
perform joins similar to our first match() example (left outer joins), through the
argument all.x=TRUE:

> recm <- merge(mtfs, rpts, by.x="pos", by.y="pos", all.x=TRUE)

Similarly, merge() can also perform joins that keep all rows of the second argument
(a join known as a right outer join) through the argument all.y=TRUE. If you want to
keep all rows in both datasets, you can specify all=TRUE. See help(merge) for more
details on how merge() works. To continue our recombination motif example, we’ll
use mtfs because unlike the recm dataframe created by merge(), mtfs doesn’t have
any duplicated columns.

Using ggplot2 Facets
After merging our two datasets in the last example, we’re ready to explore this data
using visualization. One useful visualization technique we’ll introduce in this section
is facets. Facets allow us to visualize grouped data by creating a series of separate adja‐
cent plots for each group. Let’s first glimpse at the relationship between recombina‐
tion rate and distance to a motif using the mtfs dataframe created in the previous
section. We’ll construct this graphic in steps:

> p <- ggplot(mtfs, aes(x=dist, y=recom)) + geom_point(size=1)
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> p <- p + geom_smooth(method="loess", se=FALSE, span=1/10)
> print(p)

This creates Figure 8-10. Note that I’ve turned off geom_smooth()’s standard error
estimates, adjusted the smoothing with span, and set the smoothing method to
"loess". Try playing with these settings yourself to become familiar with how each
changes the visualization and what we learn from the data. From this data, we only
see a slight bump in the smoothing curve where the motifs reside. However, this data
is a convolution of two different motif sequences on many different genomic back‐
grounds. In other words, there’s a large amount of heterogeneity we’re not accounting
for, and this could be washing out our signal. Let’s use faceting to pick apart this data.

Figure 8-10. Recombination rate by distance to sequence motif

First, if you’ve explored the mtfs dataframe, you’ll notice that the mtfs$motif column
contains two variations of the sequence motif:

> unique(mtfs$motif)
[1] CCTCCCTGACCAC CCTCCCTAGCCAC
Levels: CCTCCCTAGCCAC CCTCCCTGACCAC

We might wonder if these motifs have any noticeably different effects on local recom‐
bination. One way to compare these is by grouping and coloring the loess curves by
motif sequence. I’ve omitted this plot to save space, but try this on your own:

> ggplot(mtfs, aes(x=dist, y=recom)) + geom_point(size=1) +
    geom_smooth(aes(color=motif), method="loess", se=FALSE, span=1/10)

Alternatively, we can split these motifs apart visually with facets using ggplot2’s
facet_wrap() (shown in Figure 8-11):
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> p <- ggplot(mtfs, aes(x=dist, y=recom)) + geom_point(size=1, color="grey")
> p <- p + geom_smooth(method='loess', se=FALSE, span=1/10)
> p <- p + facet_wrap(~ motif)
> print(p)

Figure 8-11. Faceting plots by motif sequence using facet_wrap()

ggplot2 has two facet methods: facet_wrap() and facet_grid(). facet_wrap()
(used earlier) takes a factor column and creates a panel for each level and wraps
around horizontally. facet_grid() allows finer control of facets by allowing you to
specify the columns to use for vertical and horizontal facets. For example:

> p <- ggplot(mtfs, aes(x=dist, y=recom)) + geom_point(size=1, color="grey")
> p <- p + geom_smooth(method='loess', se=FALSE, span=1/16)
> p <- p + facet_grid(repeat_name ~ motif)
> print(p)

Figure 8-12 shows some of the same patterns seen in Figure 1 of Myers et al., 2008.
Motif CCTCCCTAGCCAC on a THE1B repeat background has a strong effect, as
does CCTCCCTGACCAC on a L2 repeat background. You can get a sense of the data
that goes into this plot with table(mtfs$repeat_name, mtfs$motif,
useNA="ifany").
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Figure 8-12. Using facet_grid() to facet by both repeat background and motif sequence;
the empty panel indicates there is no data for this particular motif/repeat combination

The tilde (~) used with facet_wrap() and facet_grid() is how we specify model
formula in R. If you’ve used R to fit linear models, you’ve encountered ~ before. We
can ignore the specifics when using it in facet_wrap() (but see help(formula) if
you’re curious).

One important feature of facet_wrap() and facet_grid() is that by default, x- and
y-scales will be the same across all panels. This is a good default because people have
a natural tendency to compare adjacent graphics as if they’re on the same scale. How‐
ever, forcing facets to have fixed scales can obscure patterns that occur on different
scales. Both facet_grid() and facet_wrap() have scales arguments that by default
are "fixed". You can set scales to be free with scales="free_x" and
scales="free_y" (to free the x- and y-scales, respectively), or scales="free" to free
both axes. For example (see Figure 8-13):

> p <- ggplot(mtfs, aes(x=dist, y=recom)) + geom_point(size=1, color="grey")
> p <- p + geom_smooth(method='loess', se=FALSE, span=1/10)
> p <- p + facet_wrap( ~ motif, scales="free_y")
> print(p)
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Figure 8-13. Recombination rates around two sequence motifs, with the y-scales free

Try using facets to look at this data when grouped by chromosome with
facet_wrap( ~ chr). 

More R Data Structures: Lists
Thus far, we’ve used two R data structures for everything: vectors and dataframes. In
this section, we’ll learn about another R data structure as important as these two: the
list. Recall the following points about R’s vectors:

• R vectors require all elements to have the same data type (that is, vectors are
homogenous)

• They only support the six data types discussed earlier (integer, double, character,
logical, complex, and raw)

In contrast, R’s lists are more versatile:

• Lists can contain elements of different types (they are heterogeneous)
• Elements can be any object in R (vectors with different types, other lists, environ‐

ments, dataframes, matrices, functions, etc.)
• Because lists can store other lists, they allow for storing data in a recursive way

(in contrast, vectors cannot contain other vectors)

The versatility of lists make them indispensable in programming and data analysis
with R. You’ve actually been using lists already without knowing it—dataframes are
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built using R’s lists. This makes sense, because the columns of a dataframe are vectors
and each column can have a different type. The R data structure used to store hetero‐
geneous elements is the list. See for yourself that dataframes are truly lists; try
is.list(mtfs).

We create lists with the list() function. Like creating dataframes with the
data.frame() function or combining vectors with c(), list() will interpret named
arguments as the names of the elements. For example, suppose we wanted to store a
specific genomic position using a list:

> adh <- list(chr="2L", start=14615555L, end=14618902L, name="Adh")
> adh
$chr
[1] "2L"
$start
[1] 14615555
$end
[1] 14618902
$name
[1] "Adh"

Had we tried to store these three values in a vector, vector coercion would coerce
them into a character vector. Lists allow heterogeneous typed elements, so the charac‐
ter vectors “chr2L” and “Adh”, and integer vectors 14,615,555 and 14,618,902 can exist
in the same list without being coerced.

As with R’s vectors, we can extract subsets of a list or change values of specific ele‐
ments using indexing. However, accessing elements from an R list is slightly different
than with vectors. Because R’s lists can contain objects with different types, a subset
containing multiple list elements could contain objects with different types. Conse‐
quently, the only way to return a subset of more than one list element is with another
list. As a result, there are two indexing operators for lists: one for accessing a subset of
multiple elements as a list (the single bracket; e.g., adh[1:2]) and one for accessing an
element within a list (the double bracket; e.g., adh[[3]]).

For example, if we were to access the first two elements of the list x we created before,
we would use single bracket indexing:

> adh[1:2]
$chr
[1] "2L"
$start
[1] 14615555

Peeking into R’s Structures with str()
Because R’s lists can be nested and can contain any type of data, list-based data struc‐
tures can grow to be quite complex. In some cases, it can be difficult to understand
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the overall structure of some lists. The function str() is a convenient R function for
inspecting complex data structures. str() prints a line for each contained data struc‐
ture, complete with its type, length (or dimensions), and the first few elements it con‐
tains. We can see an example by creating an artificially complex nested list (for the
sake of this example) and looking at its structure:

> z <- list(a=list(rn1=rnorm(20), rn2=rnorm(20)), b=rnorm(10))
> str(z)
List of 2
 $ a:List of 2
  ..$ rn1: num [1:20] -2.8126 1.0328 -0.6777 0.0821 0.7532 ...
  ..$ rn2: num [1:20] 1.09 1.27 1.31 2.03 -1.05 ...
 $ b: num [1:10] 0.571 0.929 1.494 1.123 1.713 ...

For deeply nested lists, you can simplify str()’s output by specifying the maximum
depth of nested structured to return with str()’s second argument, max.level. By
default, max.level is NA, which returns all nested structures.

Note that this subset of the original list is returned as a list. We can verify this using
the function is.list(). Additionally, note that single brackets return a list even if a
single element is selected (for consistency):

> is.list(adh[1:2])
[1] TRUE
> is.list(adh[1])
[1] TRUE

Because the single bracket operator always returns subjects of a list as a list, R has the
double bracket operator to extract an object from a list position (either by position or
name):

> adh[[2]]
[1] 14615555
> adh[['start']]
[1] 14615555

Unlike the single bracket operator, the double bracket operator will return the value
from inside a list position (e.g., not as a list). Because accessing list elements by name
is quite common, R has a syntactic shortcut:

> adh$chr
[1] "2L"

You should be familiar with this syntax already—we used the same syntax to extract
columns from a dataframe. This isn’t a coincidence: dataframes are built from lists,
and each dataframe column is a vector stored as a list element.

We can create new elements or change existing elements in a list using the familiar
<-. Assigning a list element the value NULL removes it from the list. Some examples
are shown here:
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> adh$id <- "FBgn0000055"
> adh$chr <- "chr2L"
> adh
$chr
[1] "chr2L"
$start
[1] 14615555
$end
[1] 14618902
$name
[1] "Adh"
$id
[1] "FBgn0000055"

> adh$id <- NULL # remove the FlyBase ID
> adh
$chr
[1] "chr2L"
$start
[1] 14615555
$end
[1] 14618902
$name
[1] "Adh"

Similar to vectors, list names can be accessed with names() or changed using
names(x) <-. We’ll use lists extensively in the next few sections of this book, so it’s
important that you’re familiar with these basic operations.

Writing and Applying Functions to Lists with lapply() and sapply()
Understanding R’s data structures and how subsetting works are fundamental to hav‐
ing the freedom in R to explore data any way you like. In this section, we’ll cover
another cornerstone of R: how to write and apply functions to data. This approach of
applying functions to data rather than writing explicit loops follows from a
functional-programming style that R inherited from one of its language influences,
Scheme. Specifically, our focus will be on applying functions to R’s lists using
lapply() and sapply(), but the same ideas extend to other R data structures through
similar “apply” functions. Solving common data analysis problems with apply func‐
tions is tricky at first, but mastering it will serve you well in R.

Using lapply()
Let’s work through a simple example on artificial data first (we’ll see how to apply
these concepts to real data in the next section). Suppose you have a list of numeric
values (here, generated at random with rnorm()):

> ll <- list(a=rnorm(6, mean=1), b=rnorm(6, mean=4), c=rnorm(6, mean=6))
> ll
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$a
[1]  2.2629543  0.6737666  2.3297993  2.2724293  1.4146414 -0.5399500
$b
[1] 3.071433 3.705280 3.994233 6.404653 4.763593 3.200991
$c
[1] 4.852343 5.710538 5.700785 5.588489 6.252223 5.108079

How might we calculate the mean of each vector stored in this list? If you’re familiar
with for loops in other languages, you may approach this problem using R’s for
loops (a topic we save for “Control Flow: if, for, and while” on page 253):

# create an empty numeric vector for the means
ll_means <- numeric(length(ll))

# loop over each list element and calculate mean
for (i in seq_along(ll)) {
    ll_means[i] <- mean(ll[[i]])
}

However, this is not idiomatic R; a better approach is to use an apply function that
applies another function to each list element. For example, to calculate the mean of
each list element, we’d want to apply the function mean() to each element. To do so,
we can use the function lapply() (the l is for list, as lapply() returns the result as a
list):

> lapply(ll, mean)
$a
[1] 0.5103648
$b
[1] 0.09681026
$c
[1] -0.2847329

lapply() has several advantages: it creates the output list for us, uses fewer lines of
code, leads to clearer code, and is in some cases faster than using a for loop. While
using lapply() rather than loops admittedly takes time getting used to, it’s worth the
effort.
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lapply() in Parallel

A great feature of using the lapply() approach is that parallelizing
lapply()s is simple. R’s parallel package has a parallelized drop-
in version of lapply() called mclapply() (“mc” stands for multi‐
core). We can use mclapply() just as we would use lapply():

> library(parallel)
> results <- mclapply(my_samples, slowFunction)

This would run the function slowFunction on each of the elements
of my_samples in parallel. By default, mclapply() will use as many
cores as are set in your options (or two cores if this option is not
set). You can explicitly set the number of cores to use by setting this
option:

> options(cores=3)
> getOption('cores')
[1] 3

Even though for some tasks parallelization is absolutely indispensa‐
ble, it’s not a substitute for writing idiomatic, efficient R code.
Often, efficient R code will lead to sizable performance gains
without requiring parallelization.

A few remarks: first, don’t call the function you pass to lapply()—for example, don’t
do lapply(d_split, mean(x)) or lapply(d_split, mean()). Remember, you’re
passing lapply() the function you want it to apply to each list element. It’s lapply()’s
job to call the mean() function. Note that lapply() calls the supplied function using
each list element as the function’s first argument.
Second, in some cases you will need to specify additional arguments to the function
you’re passing to lapply(). For example, suppose an element of ll was a vector that
contained an NA. In this case, mean() would return NA unless we ignore NA values by
calling mean() with the argument na.rm=TRUE. To supply this argument to mean(), we
could use:

> ll$a[3] <- NA    # replace an element with a missing value
> lapply(ll, mean)
$a
[1] NA
$b
[1] 4.19003
$c
[1] 5.53541

> lapply(ll, mean, na.rm=TRUE)
$a
[1] 1.216768
$b
[1] 4.19003
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$c
[1] 5.53541

In general, it’s a good idea to pass arguments by name—both to help readers under‐
stand what’s going on and to prevent issues in argument matching.

Writing functions
There’s another way to specify additional arguments in functions that illustrates the
flexibility of R’s functions: write a function that wraps another function. R makes
writing functions very easy, both because you should be writing lots of them to orga‐
nize your code and applying functions is such a common operation in R. For exam‐
ple, we could write a simple version of R’s mean() function with na.rm=TRUE:

> meanRemoveNA <- function(x) mean(x, na.rm=TRUE)
> lapply(ll, meanRemoveNA)
$a
[1] 1.216768
$b
[1] 4.19003
$c
[1] 5.53541

The syntax for meanRemoveNA() is a common shortened version of the general syntax
for R functions:

fun_name <- function(args) {
   # body, containing R expressions
   return(value)
}

Function definitions consist of arguments, a body, and a return value. Functions that
contain only one line in their body can omit the braces (as the meanRemoveNA() func‐
tion does). Similarly, using return() to specify the return value is optional; R’s func‐
tions will automatically return the last evaluated expression in the body. These
syntactic shortcuts are commonly used in R, as we often need to quickly write func‐
tions to apply to data.

Alternatively, we could forgo creating a function named meanRemoveNA() in our
global environment altogether and instead use an anonymous function (named so
because anonymous functions are functions without a name). Anonymous functions
are useful when we only need a function once for a specific task. For example, instead
of writing meanRemoveNA(), we could use:

> lapply(ll, function(x) mean(x, na.rm=TRUE))
$a
[1] 1.216768
$b
[1] 4.19003
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$c
[1] 5.53541

In other cases, we might need to create polished functions that we’ll use repeatedly
throughout our code. In theses cases, it pays off to carefully document your functions
and add some extra features. For example, the following is a version of meanRemo
veNA() that will warn the user when it encounters and automatically removes missing
values. This more verbose behavior can be disabled by setting the argument
warn=FALSE. Note how in constructing this meanRemoveNAVerbose() function, we
specify that the argument warn is TRUE by default in the arguments:

meanRemoveNAVerbose <- function(x, warn=TRUE) {
  # A function that removes missing values when calculating the mean
  # and warns us about it.
    if (any(is.na(x)) && warn) {
      warning("removing some missing values!")
    }
  mean(x, na.rm=TRUE)
}

Don’t try to type out long function definitions like meanRemoveNAVerbose() directly
in the R interpreter: functions over one line should be kept in a file and sent to the
interpreter. RStudio conveniently allows you to send a whole function definition at
once with Command-Option-f on a Mac and Control-Alt-f on Windows.

Function Scope

One of the benefits of using functions in your code is that they
organize code into separate units. One way functions separate code
is through scoping, which is how R’s function finds the value of
variables. The limited scope of R’s functions prevents mistakes due
to name collisions; for example:

> x <- 3
> fun <- function(y) {
    x <- 2.3
    x + y
  }
> fun(x)
[1] 5.3
> x
[1] 3

Note that although we’ve assigned x a new value in our fun() func‐
tion, this does not affect the value of x defined earlier in our global
environment. The technical name for R scoping rules is lexical
scoping. Fully understanding how lexical scoping works is outside
of the scope of this introductory chapter, but there are many good
resource on the subject. Hadley Wickham’s terrific book Advanced
R is a good place to start.
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There are several benefits to using functions in code. Functions can easily turn com‐
plex code into neatly contained, reusable, easy-to-debug blocks of code. Functions
also make code easier to read; it’s much easier to figure out what a function named
normalizeRNASeqCounts() does than looking at its code (though you should still
document your functions). In general, if you find yourself copying and pasting code,
this is almost surely a sign you’re repeating code that should be turned into a func‐
tion.

Digression: Debugging R Code
Functions are great because they help organize code into reusable containers. But this
can make debugging code more difficult, as without the right tools it can be hard to
poke around in misbehaving functions. Fortunately, R has numerous debugging
tools. Often it’s hard to convince new programmers to take the time to play around
and learn these debugging tools. If you’re doubtful about taking the time to learn R’s
debugging tools, I can promise you: you will have bugs in your code, and debugging
tools help you find and fix these frustrating bugs faster. With that advice, let’s take a
quick look.

One of the best ways to debug a function is to pause execution at a breakpoint in code
and poke around. With execution paused, you can step through code line by line,
look at variables’ values, and inspect what functions called other functions (known as
the call stack). The function browser() allows us to do this—let’s place a call to
browser() in a fake function foo():

foo <- function(x) {
  a <- 2
  browser()
  y <- x + a
  return(y)
}

Load this function into R, and then run:
> foo(1)
Called from: foo(1)
Browse[1]>

We use one-letter commands to control stepping through code with browser(). The
mostly frequently used are n (execute the next line), c (continue running the code),
and Q (exit without continuing to run code). You can see help(browser) for other
commands. Within browser(), we can view variables’ values:

Browse[1]> ls() # list all variables in local scope
[1] "a" "x"
Browse[1]> a
[1] 2
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If we step to the two next lines, our function assigns a value to y, which we can
inspect:

Browse[1]> n
debug at #4: y <- x + a
Browse[2]> n
debug at #5: return(y)
Browse[2]> y
[1] 3

Then, we can continue with c, and foo(1) runs normally and returns 3:
Browse[2]> c
[1] 3

Another useful debugging trick is to set options(error=recover). Setting this option
will drop you into an interactive debugging session anytime an error is encountered.
For example, if you were to have a buggy function bar():

> bar <- function(x) x + "1"
> bar(2)
Error in x + "1" : non-numeric argument to binary operator

There’s not much we can do here. But setting options(error=recover) allows us to
select which function (only one in this simple case) we’d like to enter to inspect:

> options(error=recover)
> bar(2)
Error in x + "1" : non-numeric argument to binary operator

Enter a frame number, or 0 to exit

1: bar(2)

Selection: 1
Selection: 1
Called from: top level
Browse[1]> # now at browser() prompt

To turn this off, enter options(error=NULL).

We’ve only scratched the surface of R’s debugging capabilities. See the help pages for
browser(), debug(), traceback(), and recover() for more detail.

More list apply functions: sapply() and mapply()
In the same family as lapply() are the functions sapply() and mapply(). The sap
ply() function is similar to lapply(), except that it simplifies the results into a vec‐
tor, array, or matrix (see “Other Apply Functions for Other R Data Structures” on
page 238 for a quick note about these other data structures). For example, if we were
to replace our earlier lapply() call with sapply():
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> sapply(ll, function(x) mean(x, na.rm=TRUE))
       a        b        c
1.216768 4.190030 5.535410

sapply() can simplify more complex data structures than this simple list, but occa‐
sionally sapply() simplifies something in a strange way, leading to more headaches
than it’s worth. In “Working with the Split-Apply-Combine Pattern” on page 239,
we’ll see other ways to combine data from lists into more interpretable structures.

The last apply function we’ll discuss is mapply(). mapply() is a multivariate version
of sapply(): the function you pass to mapply() can take in and use multiple argu‐
ments. Suppose you had two lists of genotypes and you wanted to see how many
alleles are shared by calling intersect() pairwise on both lists:

> ind_1 <- list(loci_1=c("T", "T"), loci_2=c("T", "G"), loci_3=c("C", "G"))
> ind_2 <- list(loci_1=c("A", "A"), loci_2=c("G", "G"), loci_3=c("C", "G"))
> mapply(function(a, b) length(intersect(a, b)), ind_1, ind_2)
loci_1 loci_2 loci_3
     0      1      2

Unlike lapply() and sapply(), mapply()’s first argument is the function you want to
apply. mapply() then takes as many vectors as there are needed arguments in the
function applied to the data. Here, each loci in these two lists is processed pairwise
using an anonymous function across the two lists ind_1 and ind_2. intersect() is
one of R’s set functions (see help(intersect) for some useful others).

Like sapply(), mapply() tries to simplify the result as much as possible. Unfortu‐
nately, sometimes this will wreak havoc on your resulting data. To prevent this, spec‐
ify SIMPLIFY=FALSE. Also, mapply(fun, x, y, SIMPLIFY=FALSE) is equivalent to
using the function Map() like Map(fun, x, y), which saves some typing.

Other Apply Functions for Other R Data Structures
There are two other R data structures we won’t cover in this chapter: arrays and
matrices. Both are simply R vectors with dimensions. Arrays can be any number of
dimensions; matrices are arrays with two dimensions (like the matrices from linear
algebra). Because arrays and matrices are simply vectors, they follow the same coer‐
cion rules and are of homogeneous type. We use dataframes rather than matrices
because most data we encounter has a mix of different column types. However, if you
need to implement lower-level statistical or mathematical functionality, you’ll likely
need to work with R’s arrays or matrices. While these topics are out of the scope of
this introductory chapter, it’s worth mentioning that these data structures have their
own useful apply functions—for example, see apply() and sweep().

238 | Chapter 8: A Rapid Introduction to the R Language



Working with the Split-Apply-Combine Pattern
Grouping data is a powerful method in exploratory data analysis. With data grouped
by a factor, per-group summaries can reveal interesting patterns we may have missed
by exploring ungrouped data. We’ve already used grouping implicitly with ggplot2,
through coloring or faceting plots by a factor column (such as motif sequence, repeat,
or the GC bins we created with cut()). For example, in Figure 8-9, binning GC con‐
tent and plotting depth densities per GC bin revealed that both low GC contents and
high GC content windows have lower sequencing depth. In this section, we’ll learn a
common data analysis pattern used to group data, apply a function to each group,
and then combine the results. This pattern is split-apply-combine, a widely used strat‐
egy in data analysis (see Hadley Wickham’s paper “The Split-Apply-Combine Strategy
for Data Analysis” for a nice detailed introduction). At first, we’ll use standard R
functions to implement the split-apply-combine pattern, but later in “Exploring
Dataframes with dplyr” on page 243 we’ll apply this same strategy using the dplyr
package.

Let’s get started with a simple example of split-apply-combine: finding the mean
depth for the three GC bins we created in Example 8-4 for the d dataframe. This will
give us some numeric summaries of the pattern we saw in Figure 8-9.

The first step is to split our data. Splitting data combines observations into groups
based on the levels of the grouping factor. We split a dataframe or vector using
split(x, f), where x is a dataframe/vector and f is a factor. In this example, we’ll
split the d$depth column into a list based on the factor column d$GC.binned:

> d_split <- split(d$depth, d$GC.binned)
> str(d_split)
List of 5
 $ (0.716,17.7]: num [1:6] 4.57 1.12 6.95 2.66 3.69 3.87
 $ (17.7,34.7] : num [1:4976] 8 8.38 9.02 10.31 12.09 ...
 $ (34.7,51.6] : num [1:45784] 6.68 9.06 10.26 8.06 7.05 ...
 $ (51.6,68.5] : num [1:8122] 3.41 7 6.63 7.15 6.97 4.77 5.18 ...
 $ (68.5,85.6] : num [1:252] 8.04 1.96 3.71 1.97 4.82 4.22 3.76 ...

Be sure to understand what’s happened here: split() returns a list with each element
containing all observations for a particular level of the factor used in grouping. The
elements in the list returned from split() correspond to the levels of the grouping
factor d$GC.binned. You can verify that the list returned by split() contains ele‐
ments corresponding to the levels of d$GC.binned using names(d_split), levels(d
$GC.binned), length(d_split), and nlevels(d$GC.binned).

With our data split into groups, we can then apply a function to each group using the
lapply() function we learned earlier. Continuing our example, let’s find the mean
depth of each GC bin by applying the function mean() to d_split:
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> lapply(d_split, mean)
$`(0.716,17.7]`
[1] 3.81
$`(17.7,34.7]`
[1] 8.788244
$`(34.7,51.6]`
[1] 8.296699
$`(51.6,68.5]`
[1] 7.309941
$`(68.5,85.6]`
[1] 4.037698

Finally, the last step is to combine this data together somehow (because it’s currently
split). In this case, the data in this list is already understandable without combining it
back together (though this won’t always be the case). But we can simplify our split-
apply results by converting it to a vector. One way to do this is to call unlist():

> unlist(lapply(d_split, mean))
(0.716,17.7]  (17.7,34.7]  (34.7,51.6]  (51.6,68.5]  (68.5,85.6]
    3.810000     8.788244     8.296699     7.309941     4.037698

unlist() returns a vector with the highest type it can (following R’s coercion rules;
see help(unlist) for more information). Equivalently, we could just replace our call
to lapply() with sapply():

> sapply(d_split, mean)
(0.716,17.7]  (17.7,34.7]  (34.7,51.6]  (51.6,68.5]  (68.5,85.6]
    3.810000     8.788244     8.296699     7.309941     4.037698

Now, let’s look at an example that involves a slightly trickier combine step: applying
the summary() function to each group. We’ll run both the split and apply steps in one
expression:

> dpth_summ <- lapply(split(d$depth, d$GC.binned), summary)
> dpth_summ
$`(0.716,17.7]`
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  1.120   2.918   3.780   3.810   4.395   6.950
$`(17.7,34.7]`
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  1.000   7.740   8.715   8.788   9.800  17.780

  [...]

dpth_summ is a list of depth summary tables for each GC bin. The routine way to
combine a list of vectors is by binding each element together into a matrix or data‐
frame using either cbind() (column bind) or rbind() (row bind). For example:

> rbind(dpth_summ[[1]], dpth_summ[[2]])
     Min. 1st Qu. Median  Mean 3rd Qu.  Max.
[1,] 1.12   2.918  3.780 3.810   4.395  6.95
[2,] 1.00   7.740  8.715 8.788   9.800 17.78
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> cbind(dpth_summ[[1]], dpth_summ[[2]])
         [,1]   [,2]
Min.    1.120  1.000
1st Qu. 2.918  7.740
Median  3.780  8.715
Mean    3.810  8.788
3rd Qu. 4.395  9.800
Max.    6.950 17.780

However, this approach won’t scale if we needed to bind together many list elements.
No one wants to type out rbind(x[[1]], x[[2]], x[[3]], … for a thousand list
entries. Fortunately, R’s do.call() function takes a function and a list as arguments,
and calls the function using the list as the function’s arguments (see the following tip).
We can use do.call() with rbind() to merge the list our split-apply steps produces
into a matrix:

> do.call(rbind, lapply(split(d$depth, d$GC.binned), summary))
             Min. 1st Qu. Median  Mean 3rd Qu.  Max.
(0.716,17.7] 1.12   2.918  3.780 3.810   4.395  6.95
(17.7,34.7]  1.00   7.740  8.715 8.788   9.800 17.78
(34.7,51.6]  1.00   7.100  8.260 8.297   9.470 21.91
(51.6,68.5]  1.00   6.030  7.250 7.310   8.540 21.18
(68.5,85.6]  1.00   2.730  3.960 4.038   5.152  9.71

Combining this data such that the quantiles and means are columns is the natural
way to represent it. Replacing rbind with cbind in do.call() would swap the rows
and columns.

There are a few other useful tricks to know about the split-apply-combine pattern
built from split(), lapply(), and do.call() with rbind() that we don’t have the
space to cover in detail here, but are worth mentioning. First, it’s possible to group by
more than one factor—just provide split() with a list of factors. split() will split
the data by all combinations of these factors. Second, you can unsplit a list back into
its original vectors using the function unsplit(). unsplit() takes a list and the same
factor (or list of factors) used as the second argument of split() to reconstruct the
new list back into its original form (see help(split) for more information). Third,
although we split single columns of a dataframe (which are just vectors), split() will
happily split dataframes. Splitting entire dataframes is necessary when your apply
step requires more than one column. For example, if you wanted to fit separate linear
models for each set of observations in a group, you could write a function that takes
each dataframe passed lapply() and fits a model using its column with lm().
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Understanding do.call()

If do.call() seems confusing, this is because it is at first. But
understanding do.call() will provide you with an essential tool in
problem solving in R. They key point about do.call() is that it
constructs and executes a function call. Function calls have two
parts: the name of the function you’re calling, and the arguments
supplied to the function. For example, in the function call
func(arg1, arg2, arg3), func is the name of the function and
arg1, arg2, arg3 are the arguments. All do.call() does is allow
you to construct and call a function using the function name and a
list of arguments. For example, calling func(arg1, arg2, arg3) is
the same as do.call(func, list(arg1, arg2, arg3)). If the list
passed to do.call() has named elements, do.call() will match
these named elements with named arguments in the function call.
For example, one could build a call to rnorm() using:

> do.call(rnorm, list(n=4, mean=3.3, sd=4))
[1] 8.351817 1.995067 8.619197 8.389717

do.call() may seem like a complex way to construct and execute a
function call, but it’s the most sensible way to handle situations
where the arguments we want to pass to a function are already in a
list. This usually occurs during data processing when we need to
combine a list into a single data structure by using functions like
cbind() or rbind() that take any number of arguments (e.g., their
first argument is ...).

Lastly, R has some convenience functions that wrap the split(), lapply(), and com‐
bine steps. For example, the functions tapply() and aggregate() can be used to cre‐
ate per-group summaries too:

> tapply(d$depth, d$GC.binned, mean)
(0.716,17.7]  (17.7,34.7]  (34.7,51.6]  (51.6,68.5]  (68.5,85.6]
    3.810000     8.788244     8.296699     7.309941     4.037698

> aggregate(d$depth, list(gc=d$GC.binned), mean)
            gc        x
1 (0.716,17.7] 3.810000
2  (17.7,34.7] 8.788244
3  (34.7,51.6] 8.296699
4  (51.6,68.5] 7.309941
5  (68.5,85.6] 4.037698

Both tapply() and aggregate() have the same split-apply-combine pattern at their
core, but vary slightly in the way they present their output. If you’re interested in sim‐
ilar functions in R, see the help pages for aggregate(), tapply(), and by().
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You may be wondering why we slogged through all of the split(), lapply(), and
do.call() material given how much simpler it is to call tapply() or aggregate().
The answer is twofold. First, R’s base functions like split(), lapply(), and
do.call() give you some raw power and flexibility in how you use the split-apply-
combine pattern. In working with genomics datasets (and with Bioconductor pack‐
ages), we often need this flexibility. Second, Hadley Wickham’s package dplyr (which
we see in the next section) is both simpler and more powerful than R’s built-in split-
apply-combine functions like tapply() and aggregate().

The take-home point of this section: the split-apply-combine pattern is an essential
part of data analysis. As Hadley Wickham’s article points out, this strategy is similar
to Google’s map-reduce framework and SQL’s GROUP BY and AGGREGATE functions
(which we cover in “SQLite Aggregate Functions” on page 442).

Exploring Dataframes with dplyr
Every data analysis you conduct will likely involve manipulating dataframes at some
point. Quickly extracting, transforming, and summarizing information from data‐
frames is an essential R skill. The split-apply-combine pattern implemented from R
base functions like split() and lapply() is versatile, but not always the fastest or
simplest approach. R’s split-apply-combine convenience functions like tapply() and
aggregate() simplify the split-apply-combine, but their output still often requires
some cleanup before the next analysis step. This is where Hadley Wickham’s dplyr
package comes in: dplyr consolidates and simplifies many of the common operations
we perform on dataframes. Also, dplyr is very fast; much of its key functionality is
written in C++ for speed.

dplyr has five basic functions for manipulating dataframes: arrange(), filter(),
mutate(), select(), and summarize(). None of these functions perform tasks you
can’t accomplish with R’s base functions. But dplyr’s advantage is in the added consis‐
tency, speed, and versatility of its data manipulation interface. dplyr’s design drasti‐
cally simplifies routine data manipulation and analysis tasks, allowing you to more
easily and effectively explore your data.

Because it’s common to work with dataframes with more rows and columns than fit
in your screen, dplyr uses a simple class called tbl_df that wraps dataframes so that
they don’t fill your screen when you print them (similar to using head()). Let’s con‐
vert our d dataframe into a tbl_df object with the tbl_df() function:

> install.packages("dplyr") # install dplyr if it's not already installed
> library(dplyr)
> d_df <- tbl_df(d)
> d_df
Source: local data frame [59,140 x 20]
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   start   end total.SNPs total.Bases depth unique.SNPs dhSNPs reference.Bases
1  55001 56000          0        1894  3.41           0      0             556
2  56001 57000          5        6683  6.68           2      2            1000
3  57001 58000          1        9063  9.06           1      0            1000
[...]
Variables not shown: Theta (dbl), Pi (dbl), Heterozygosity (dbl), percent.GC
  (dbl), Recombination (dbl), Divergence (dbl), Constraint (int), SNPs (int),
  cent (lgl), diversity (dbl), position (dbl), GC.binned (fctr)

Let’s start by selecting some columns from d_df using dplyr’s select() function:
> select(d_df, start, end, Pi, Recombination, depth)
Source: local data frame [59,140 x 5]

   start   end     Pi Recombination depth
1  55001 56000  0.000   0.009601574  3.41
2  56001 57000 10.354   0.009601574  6.68
3  57001 58000  1.986   0.009601574  9.06
[...]

This is equivalent to d[, c("start", "end", "Pi", "Recombination", "depth")],
but dplyr uses special evaluation rules that allow you to omit quoting column names
in select() (and the returned object is a tbl_df). select() also understands ranges
of consecutive columns like select(d_df, start:total.Bases). Additionally, you
can drop columns from a dataframe by prepending a negative sign in front of the col‐
umn name (and this works with ranges too):

> select(d_df, -(start:cent))
Source: local data frame [59,140 x 3]

   position   GC.binned diversity
1   55500.5 (51.6,68.5] 0.0000000
2   56500.5 (34.7,51.6] 0.0010354
3   57500.5 (34.7,51.6] 0.0001986
[...]

Similarly, we can select specific rows as we did using dataframe subsetting in “Explor‐
ing Data Through Slicing and Dicing: Subsetting Dataframes” on page 203 using the
dplyr function filter(). filter() is similar to subsetting dataframes using expres‐
sions like d[d$Pi > 16 & d$percent.GC > 80, ], though you can use multiple
statements (separated by commas) instead of chaining them with &:

> filter(d_df, Pi > 16, percent.GC > 80)
Source: local data frame [3 x 20]

     start      end total.SNPs total.Bases depth unique.SNPs dhSNPs
1 63097001 63098000          5         947  2.39           2      1
2 63188001 63189000          2        1623  3.21           2      0
3 63189001 63190000          5        1395  1.89           3      2
Variables not shown: reference.Bases (int), Theta (dbl), Pi (dbl),
  Heterozygosity (dbl), percent.GC (dbl), Recombination (dbl), Divergence
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  (dbl), Constraint (int), SNPs (int), cent (lgl), position (dbl), GC.binned
  (fctr), diversity (dbl)

To connect statements with logical OR, you need to use the standard logical operator
| we learned about in “Vectors, Vectorization, and Indexing” on page 183.

dplyr also simplifies sorting by columns with the function arrange(), which behaves
like d[order(d$percent.GC), ]:

> arrange(d_df, depth)
Source: local data frame [59,140 x 20]

      start      end total.SNPs total.Bases depth unique.SNPs dhSNPs
1   1234001  1235000          0         444     1           0      0
2   1584001  1585000          0         716     1           0      0
3   2799001  2800000          0         277     1           0      0
[...]

You can sort a column in descending order using arrange() by wrapping its name in
the function desc(). Also, additional columns can be specified to break ties:

> arrange(d_df, desc(total.SNPs), desc(depth))
Source: local data frame [59,140 x 20]

      start      end total.SNPs total.Bases depth unique.SNPs dhSNPs
1   2621001  2622000         93       11337 11.34          13     10
2  13023001 13024000         88       11784 11.78          11      1
3  47356001 47357000         87       12505 12.50           9      7
[...]

Using dplyr’s mutate() function, we can add new columns to our dataframe: For
example, we added a rescaled version of the Pi column as d$diversity—let’s drop d
$diversity using select() and then recalculate it:

> d_df <- select(d_df, -diversity) # remove our earlier diversity column
> d_df <- mutate(d_df, diversity = Pi/(10*1000))
> d_df
Source: local data frame [59,140 x 20]

   start   end total.SNPs total.Bases depth unique.SNPs dhSNPs reference.Bases
1  55001 56000          0        1894  3.41           0      0             556
2  56001 57000          5        6683  6.68           2      2            1000
3  57001 58000          1        9063  9.06           1      0            1000
[...]
..   ...   ...        ...         ...   ...         ...    ...             ...
Variables not shown: Theta (dbl), Pi (dbl), Heterozygosity (dbl), percent.GC
  (dbl), Recombination (dbl), Divergence (dbl), Constraint (int), SNPs (int),
  cent (lgl), position (dbl), GC.binned (fctr), diversity (dbl)

mutate() creates new columns by transforming existing columns. You can refer to
existing columns directly by name, and not have to use notation like d$Pi.
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So far we’ve been using dplyr to get our dataframes into shape by selecting columns,
filtering and arranging rows, and creating new columns. In daily work, you’ll need to
use these and other dplyr functions to manipulate and explore your data. While we
could assign output after each step to an intermediate variable, it’s easier (and more
memory efficient) to chain dplyr operations. One way to do this is to nest functions
(e.g., filter(select(hs_df, seqname, start, end, strand), strand == "+")).
However, reading a series of data manipulation steps from the inside of a function
outward is a bit unnatural. To make it easier to read and create data-processing pipe‐
lines, dplyr uses %>% (known as pipe) from the magrittr package. With these pipes,
the lefthand side is passed as the first argument of the righthand side function, so
d_df %>% filter(percent.GC > 40) becomes filter(d_df, percent.GC > 40.
Using pipes in dplyr allows us to clearly express complex data manipulation opera‐
tions:

>  d_df %>% mutate(GC.scaled = scale(percent.GC)) %>%
            filter(GC.scaled > 4, depth > 4) %>%
            select(start, end, depth, GC.scaled, percent.GC) %>%
            arrange(desc(depth))

Source: local data frame [18 x 5]
      start      end depth GC.scaled percent.GC
1  62535001 62536000  7.66  4.040263    73.9740
2  63065001 63066000  6.20  4.229954    75.3754
3  62492001 62493000  5.25  4.243503    75.4755
[...]

Pipes are a recent innovation, but one that’s been quickly adopted by the R commu‐
nity. You can learn more about magrittr’s pipes in help('%>%').

dplyr’s raw power comes from the way it handles grouping and summarizing data.
For these examples, let’s use the mtfs dataframe (loaded into R in “Merging and Com‐
bining Data: Matching Vectors and Merging Dataframes” on page 219), as it has some
nice factor columns we can group by:

> mtfs_df <- tbl_df(mtfs)

Now let’s group by the chromosome column chr. We can group by one or more col‐
umns by calling group_by() with their names as arguments:

> mtfs_df %>% group_by(chr)
Source: local data frame [20,050 x 10]
Groups: chr

    chr motif_start motif_end    dist recomb_start recomb_end  recom
1  chrX    35471312  35471325 39323.0     35430651   35433340 0.0015
2  chrX    35471312  35471325 36977.0     35433339   35435344 0.0015
[...]
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Note that dplyr’s output now includes a line indicating which column(s) the dataset
is grouped by. But this hasn’t changed the data; now dplyr’s functions will be applied
per group rather than on all data (where applicable). The most common use case is to
create summaries as we did with tapply() and aggregate() using the summarize()
function:

>  mtfs_df %>%
     group_by(chr) %>%
     summarize(max_recom = max(recom), mean_recom = mean(recom), num=n())

Source: local data frame [23 x 4]
     chr max_recom mean_recom  num
1   chr1   41.5648   2.217759 2095
2  chr10   42.4129   2.162635 1029
3  chr11   36.1703   2.774918  560
[...]

dplyr’s summarize() handles passing the relevant column to each function and auto‐
matically creates columns with the supplied argument names. Because we’ve grouped
this data by chromosome, summarize() computes per-group summaries. Try this
same expression without group_by().

dplyr provides some convenience functions that are useful in creating summaries.
Earlier, we saw that n() returns the number of observations in each group. Similarly,
n_distinct() returns the unique number of observations in each group, and
first(), last() and nth() return the first, last, and nth observations, respectively.
These latter three functions are mostly useful on data that has been sorted with
arrange() (because specific rows are arbitrary in unsorted data).

We can chain additional operations on these grouped and summarized results; for
example, if we wanted to sort by the newly created summary column max_recom:

>  mtfs_df %>%
     group_by(chr) %>%
     summarize(max_recom = max(recom), mean_recom = mean(recom), num=n()) %>%
     arrange(desc(max_recom))

Source: local data frame [23 x 4]
     chr max_recom mean_recom  num
1   chrX   74.0966   2.686840  693
2   chr8   62.6081   1.913325 1727
3   chr3   56.2775   1.889585 1409
4  chr16   54.9638   2.436250  535
[...]

dplyr has a few other functions we won’t cover in depth: distinct() (which returns
only unique values), and sampling functions like sample_n() and sample_frac()
(which sample observations). Finally, one of the best features of dplyr is that all of
these same methods also work with database connections. For example, you can
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manipulate a SQLite database (the subject of Chapter 13) with all of the same verbs
we’ve used here. See dplyr’s databases vignette for more information on this.

Working with Strings
In bioinformatics, we often need to extract data from strings. R has several functions
to manipulate strings that are handy when working with bioinformatics data in R.
Note, however, that for most bioinformatics text-processing tasks, R is not the prefer‐
red language to use for a few reasons. First, R works with all data stored in memory;
many bioinformatics text-processing tasks are best tackled with the stream-based
approaches (discussed in Chapters 3 and 7), which explicitly avoid loading all data in
memory at once. Second, R’s string processing functions are admittedly a bit clunky
compared to Python’s. Even after using these functions for years, I still have to con‐
stantly refer to their documentation pages.

Despite these limitations, there are many cases when working with strings in R is the
best solution. If we’ve already loaded data into R to explore, it’s usually easier to use
R’s string processing functions than to write and process data through a separate
Python script. In terms of performance, we’ve already incurred the costs of reading
data from disk, so it’s unlikely there will be performance gains from using Python or
another language. With these considerations in mind, let’s jump into R’s string pro‐
cessing functions.

First, remember that all strings in R are actually character vectors. Recall that this
means a single string like “AGCTAG” has a length of 1 (try length("AGCTAG")). If
you want to retrieve the number of characters of each element of a character vector,
use nchar(). Like many of R’s functions, nchar() is vectorized:

> nchar(c("AGCTAG", "ATA", "GATCTGAG", ""))
[1] 6 3 8 0

We can search for patterns in character vectors using either grep() or regexpr().
These functions differ slightly in their behavior, making both useful under different
circumstances. The function grep(pattern, x) returns the positions of all elements
in x that match pattern:

> re_sites <- c("CTGCAG", "CGATCG", "CAGCTG", "CCCACA")
> grep("CAG", re_sites)
[1] 1 3

By default, grep() uses POSIX extended regular expressions, so we could use more
sophisticated patterns:

> grep("CT[CG]", re_sites)
[1] 1 3

grep() and R’s other regular-expression handling functions (which we’ll see later)
support Perl Compatible Regular Expressions (PCRE) with the argument perl=TRUE,
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and fixed string matching (e.g., not interpreting special characters) with fixed=TRUE.
If a regular expression you’re writing isn’t working, it may be using features only
available in the more modern PCRE dialect; try enabling PCRE with perl=TRUE.

Because grep() is returning indices that match the pattern, grep() is useful as a
pattern-matching equivalent of match(). For example, we could use grep() to pull
out chromosome 6 entries from a vector of chromosome names with sloppy, incon‐
sistent naming:

> chrs <- c("chrom6", "chr2", "chr6", "chr4", "chr1", "chr16", " chrom8")
> grep("[^\\d]6", chrs, perl=TRUE)
[1] 1 3
> chrs[grep("[^\\d]6", chrs, perl=TRUE)]
[1] "chrom6" "chr6"

There are some subtle details in this example worth discussing. First, we can’t use a
simpler regular expression like chrs[grep("6", chrs)] because this would match
entries like "chr16". We prevent this by writing a restrictive pattern that is any non-
numeric character ([^\\d]) followed by a 6. Note that we need an additional back‐
slash to escape the backslash in \d. Finally, \d is a special symbol available in Perl
Compatible Regular Expressions, so we need to specify perl=TRUE. See help(regex)
for more information on R’s regular expressions.

The Double Backslash

The double backslash is a very important part of writing regular
expressions in R. Backslashes don’t represent themselves in R
strings (i.e., they are used as escape characters as in "\"quote\"
string" or the newline character \n). To actually include a black‐
slash in a string, we need to escape the backslash’s special meaning
with another backslash.

Unlike grep(), regexpr(pattern, x) returns where in each element of x it matched
pattern. If an element doesn’t match the pattern, regexpr() returns –1. For example:

> regexpr("[^\\d]6", chrs, perl=TRUE)
[1]  5 -1  3 -1 -1 -1 -1
attr(,"match.length")
[1]  2 -1  2 -1 -1 -1 -1
attr(,"useBytes")
[1] TRUE

regexpr() also returns the length of the matching string using attributes. We haven’t
discussed attributes, but they’re essentially a way to store meta-information alongside
objects. You can access attributes with the function attributes(). For more informa‐
tion on regexpr’s output, see help(regexpr).
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Clearly, the vector chromosome named chrs is quite messy and needs tidying. One
way to do this is to find the informative part of each name with regexpr() and
extract this part of the string using substr(). substr(x, start, stop) takes a string
x and returns the characters between start and stop:

> pos <- regexpr("\\d+", chrs, perl=TRUE)
> pos
[1] 6 4 4 4 4 4 7
attr(,"match.length")
[1] 1 1 1 1 1 2 1
attr(,"useBytes")
[1] TRUE
> substr(chrs, pos, pos + attributes(pos)$match.length)
[1] "6"  "2"  "6"  "4"  "1"  "16" "8"

While this solution introduced the helpful substr() function, it is fragile code and
we can improve upon it. The most serious flaw to this approach is that it isn’t robust
to all valid chromosome names. We’ve written code that solves our immediate prob‐
lem, but may not be robust to data this code may encounter in the future. If our code
were rerun on an updated input with chromosomes “chrY” or “chrMt,” our regular
expression would fail to match these. While it may seem like a far-fetched case to
worry about, consider the following points:

• These types of errors can bite you and are time consuming to debug.
• Our code should anticipate biologically realistic input data (like sex and mito‐

chondrial chromosomes).

We can implement a cleaner, more robust solution with the sub() function. sub()
allows us to substitute strings for other strings. Before we continue with our example,
let’s learn about sub() through a simple example that doesn’t use regular expressions.
sub(pattern, replacement, x) replaces the first occurrence of pattern with
replacement for each element in character vector x. Like regexpr() and grep(),
sub() supports perl=TRUE and fixed=TRUE:

> sub(pattern="Watson", replacement="Watson, Franklin,",
      x="Watson and Crick discovered DNA's structure.")
[1] "Watson, Franklin, and Crick discovered DNA's structure."

Here, we’ve replaced the string “Watson” with the string “Watson, Franklin,” using
sub(). Fixed text substitution like this works well for some problems, but to tidy our
chr vector we want to capture the informative part of chromosome name (e.g., 1, 2,
X, Y, or M) and substitute it into a consistent naming scheme (e.g., chr1, chr2, chrX,
or chrM). We do this with regular expression capturing groups. If you’re completely
unfamiliar with these, do study how they work in other scripting languages you use;
capturing groups are extremely useful in bioinformatics string processing tasks. In
this case, the parts of our regular expression in parentheses are captured and can be
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used later by referencing which group they are. Let’s look at a few simple examples
and then use sub() to help tidy our chromosomes:

> sub("gene=(\\w+)", "\\1", "gene=LEAFY", perl=TRUE) 
[1] "LEAFY"

> sub(">[^ ]+ *(.*)", "\\1", ">1 length=301354135 type=dna") 
[1] "length=301354135 type=dna"

> sub(".*(\\d+|X|Y|M)", "chr\\1", "chr19", perl=TRUE) 
[1] "chr9"

> sub(" *[chrom]+(\\d+|X|Y|M) *", "chr\\1", c("chr19", "chrY"), perl=TRUE) 
[1] "chr19" "chrY"

This line extracts a gene name from a string formatted as gene=<name>. We
anchor our expression with gene=, and then use the word character \\w. This
matches upper- and lowercase letters, digits, and underscores. Note that this reg‐
ular expression assumes our gene name will only include alphanumeric charac‐
ters and underscores; depending on the data, this regular expression may need to
be changed.

This expression extracts all text after the first space. This uses a common idiom:
specify a character class of characters not to match. In this case, [^ ]+ specifies
match all characters that aren’t spaces. Then, match zero or more spaces, and
capture one or more of any character (.*).

Here, we show a common problem with regular expressions and sub(). Our
intention was to extract the informative part of a chromosome name like “chr19”
(in this case, “19”). However, our regular expression was too greedy. Because the
part .* matches zero more of any character, this matches through to the “1” of
“chr19.” The “9” is still matched by the rest of the regular expression, captured,
and inserted into the replacement string. Note that this error is especially danger‐
ous because it silently makes your data incorrect.

This expression can be used to clean up the messy chromosome name data. Both
“chr” and “chrom” (as well as other combinations of these characters) are
matched. The informative part of each chromosome name is captured, and
replaced into the string “chr” to give each entry a consistent name. We’re assum‐
ing that we only have numeric, X, Y, and mitochondrion (M) chromosomes in
this example.

Parsing inconsistent naming is always a daily struggle for bioinformaticians. Incon‐
sistent naming isn’t usually a problem with genome data resources like Ensembl or
the UCSC Genome Browser; these resources are well curated and consistent. Data
input by humans is often the cause of problems, and unfortunately, no regular expres‐
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sion can handle all errors a human can make when inputting data. Our best strategy
is to try to write general parsers and explicitly test that parsed values make sense (see
the following tip).

Friendly Functions for Loud Code

The Golden Rule of Bioinformatics is to not trust your data (or
tools). We can be proactive about this in code by using functions
like stopifnot(), stop() warning(), and message() that stop exe‐
cution or let the user know of issues that occur when running code.
The function stopifnot() errors out if any of its arguments don’t
evaluate to TRUE. warning() and message() don’t stop execution,
but pass warnings and messages to users. Occasionally, it’s useful to
turn R warnings into errors so that they stop execution. We can
enable this behavior with options(warn=2) (and set
options(warn=0) to return to the default).

Another useful function is paste(), which constructs strings by “pasting” together
the parts. paste() takes any number of arguments and concatenates them together
using the separating string specified by the sep argument (which is a space by
default). Like many of R’s functions, paste() is vectorized:

> paste("chr", c(1:22, "X", "Y"), sep="")
 [1] "chr1"  "chr2"  "chr3"  "chr4"  "chr5"  "chr6"  "chr7"  "chr8"  "chr9"
[10] "chr10" "chr11" "chr12" "chr13" "chr14" "chr15" "chr16" "chr17" "chr18"
[19] "chr19" "chr20" "chr21" "chr22" "chrX"  "chrY"

Here, paste() pasted together the first vector (chr) and second vector (the autosome
and sex chromosome names), recycling the shorter vector chr. paste() can also paste
all these results together into a single string (see paste()’s argument collapse).

Extracting Multiple Values from a String

For some strings, like “chr10:158395-172881,” we might want to
extract several chunks. Processing the same string many times to
extract different parts is not efficient. A better solution is to com‐
bine sub() and strsplit():

> region <- "chr10:158395-172881"
> chunks <- sub("(chr[\\d+MYX]+):(\\d+)-(\\d+)",
                "\\1;;\\2;;\\3",
                region, perl=TRUE)
> strsplit(chunks, ";;")
[[1]]
[1] "chr10"  "158395" "172881"

252 | Chapter 8: A Rapid Introduction to the R Language



The final function essential to string processing in R is strsplit(x, split), which
splits string x by split. Like R’s other string processing functions, strsplit() sup‐
ports optional perl and fixed arguments. For example, if we had a string like
gene=LEAFY;locus=2159208;gene_model=AT5G61850.1 and we wished to extract
each part, we’d need to split by “;”:

> leafy <- "gene=LEAFY;locus=2159208;gene_model=AT5G61850.1"
> strsplit(leafy, ";")
[[1]]
[1] "gene=LEAFY"      "locus=2159208"      "gene_model=AT5G61850.1"

Also, like all of R’s other string functions, strsplit() is vectorized, so it can process
entire character vectors at once. Because the number of split chunks can vary,
strsplit() always returns results in a list.

Developing Workflows with R Scripts
In the last part of this section, we’ll focus on some topics that will help you develop
the data analysis techniques we’ve learned so far into reusable workflows stored in
scripts. We’ll look at control flow, R scripts, workflows for working with many files,
and exporting data.

Control Flow: if, for, and while
You might have noticed that we’ve come this far in the chapter without using any
control flow statements common in other languages, such as if, for, or while. Many
data analysis tasks in R don’t require modifying control flow, and we can avoid using
loops by using R’s apply functions like lapply(), sapply(), and mapply(). Still, there
are some circumstances where we need these classic control flow and looping state‐
ments. The basic syntax of if, for, and while are:

if (x == some_value) {
 # do some stuff in here
} else {
 # else is optional
}

for (element in some_vector) {
 # iteration happens here
}

while (something_is_true) {
 # do some stuff
}

You can break out of for and while loops with a break statement, and advance loops
to the next iteration with next. If you do find you need loops in your R code, read the
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additional notes about loops and pre-allocation in this chapter’s README on Git‐
Hub.

Iterating over Vectors

In for loops, it’s common to create a vector of indexes like:
for (i in 1:length(vec)) {
  # do something
}

However, there’s a subtle gotcha here—if the vector vec has no ele‐
ments, it’s length is 0, and 1:0 would return the sequence 1, 0. The
behavior we want is for the loop to not be evaluated at all. R pro‐
vides the function seq_along() to handle this situation safely:

> vec <- rnorm(3)
> seq_along(vec)
[1] 1 2 3
> seq_along(numeric(0)) # numeric(0) returns an empty
                        # numeric vector
integer(0)

seq_len(length.out) is a similar function, which returns a
sequence length.out elements long.

R also has a vectorized version of if: the ifelse function. Rather than control pro‐
gram flow, ifelse(test, yes, no) returns the yes value for all TRUE cases of test,
and no for all FALSE cases. For example:

> x <- c(-3, 1, -5, 2)
> ifelse(x < 0, -1, 1)
[1] -1  1 -1  1

Working with R Scripts
Although we’ve learned R interactively though examples in this chapter, in practice
your analyses should be kept in scripts that can be run many times throughout devel‐
opment. Scripts can be organized into project directories (see Chapter 2) and checked
into Git repositories (see Chapter 5). There’s also a host of excellent R tools to help in
creating well-documented, reproducible projects in R; see the following sidebar for
examples.

Reproducibility with Knitr and Rmarkdown
For our work to be reproducible (and to make our lives easier if we need to revisit
code in the future), it’s essential that our code is saved, version controlled, and well
documented. Although in-code comments are a good form of documentation, R has
two related packages that go a step further and create reproducible project reports:
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knitr and Rmarkdown. Both packages allow you to integrate chunks of R code into
your text documents (such as a lab notebook or manuscript), so you can describe
your data and analysis steps. Then, you can render (also known as “knit”) your docu‐
ment, which runs all R code and outputs the result in a variety of formats such as
HTML or PDF (using LaTeX). Images, tables, and other output created by your R
code will also appear in your finalized rendered document. Each document greatly
improves reproducibility by integrating code and explanation (an approach inspired
by Donald Knuth’s literate programming, which was discussed in “Unix Data Tools
and the Unix One-Liner Approach: Lessons from Programming Pearls” on page 125).

While we don’t have the space to cover these packages in this chapter, both are easy to
learn on your own with resources online. If you’re just beginning R, I’d recommend
starting with Rmarkdown. Rmarkdown is well integrated into RStudio and is very easy to
use. R code is simply woven between Markdown text using a simple syntax:

The following code draws 100 random normally distributed
value and finds their mean:

```{r}
set.seed(0)
x <- rnorm(100)
mean(x)
```

Then, you can save and call Rmarkdown’s render() on this file—creating an HTML
version containing the documentation, code, and the results of the R block between
```{r} and ```. There are numerous other options; the best introductions are:

• RStudio’s Rmarkdown tutorial
• Karl Broman’s knitr in a knutshell
• Minimal Examples of Knitr

You can run R scripts from R using the function source(). For example, to execute
an R script named my_analysis.R use:

> source("my_analysis.R")

As discussed in “Loading Data into R” on page 194, it’s important to mind R’s work‐
ing directory. Scripts should not use setwd() to set their working directory, as this is
not portable to other systems (which won’t have the same directory structure). For
the same reason, use relative paths like data/achievers.txt when loading in data, and
not absolute paths like /Users/jlebowski/data/achievers.txt (as point also made in
“Project Directories and Directory Structures” on page 21). Also, it’s a good idea to
indicate (either in comments or a README file) which directory the user should set
as their working directory.
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Alternatively, we can execute a script in batch mode from the command line with:
$ Rscript --vanilla my_analysis.R

This comes in handy when you need to rerun an analysis on different files or with
different arguments provided on the command line. I recommend using --vanilla
because by default, Rscript will restore any past saved environments and save its cur‐
rent environment after the execution completes. Usually we don’t want R to restore
any past state from previous runs, as this can lead to irreproducible results (because
how a script runs depends on files only on your machine). Additionally, saved envi‐
ronments can make it a nightmare to debug a script. See R --help for more
information.

Reproducibility and sessionInfo()
Versions of R and any R packages installed change over time. This can lead to repro‐
ducibility headaches, as the results of your analyses may change with the changing
version of R and R packages. Solving these issues is an area of ongoing development
(see, for example, the packrat package). At the very least, you should always record
the versions of R and any packages you use for an analysis. R actually makes this
incredibly easy to do—just call the sessionInfo() function:

> sessionInfo()
R version 3.1.2 (2014-10-31)
Platform: x86_64-apple-darwin14.0.0 (64-bit)

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

[...]

loaded via a namespace (and not attached):
 [1] assertthat_0.1   colorspace_1.2-4 DBI_0.3.1        digest_0.6.4
 [5] gtable_0.1.2     labeling_0.3     lattice_0.20-29  lazyeval_0.1.10
[17] scales_0.2.4     stringr_0.6.2    tools_3.1.2

[...]

Lastly, if you want to retrieve command-line arguments passed to your script, use R’s
commandArgs() with trailingOnly=TRUE. For example, this simple R script just
prints all arguments:

## args.R -- a simple script to show command line args
args <- commandArgs(TRUE)
print(args)

We run this with:
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$ Rscript --vanilla args.R arg1 arg2 arg3
[1] "arg1" "arg2" "arg3"

Workflows for Loading and Combining Multiple Files
In bioinformatics projects, sometimes loading data into R can be half the battle.
Loading data is nontrivial whenever data resides in large files and when it’s scattered
across many files. We’ve seen some tricks to deal with large files in “Loading Data into
R” on page 194 and we’ll see a different approach to this problem when we cover
databases in Chapter 13. In this section, we’ll learn some strategies and workflows for
loading and combining multiple files. These workflows tie together many of the R
tools we’ve learned so far: lapply(), do.call(), rbind(), and string functions like
sub().

Let’s step through how to load and combine multiple tab-delimited files in a direc‐
tory. Suppose you have a directory containing genome-wide hotspot data separated
into different files by chromosome. Data split across many files is a common result of
pipelines that have been parallelized by chromosome. I’ve created example data of
this nature in this chapter’s GitHub repository under the hotspots/ directory:

$ ls -l hotspots
[vinceb]% ls -l hotspots
total 1160
-rw-r--r--  1 vinceb  staff  42041 Feb 11 13:54 hotspots_chr1.bed
-rw-r--r--  1 vinceb  staff  26310 Feb 11 13:54 hotspots_chr10.bed
-rw-r--r--  1 vinceb  staff  24760 Feb 11 13:54 hotspots_chr11.bed
[...]

The first step to loading this data into R is to programmatically access these files from
R. If your project uses a well-organized directory structure and consistent filenames
(see Chapter 2), this is easy. R’s function list.files() lists all files in a specific direc‐
tory. Optionally, list.files() takes a regular-expression pattern used to select
matching files. In general, it’s wise to use this pattern argument to be as restrictive as
possible so as to prevent problems if a file accidentally ends up in your data directory.
For example, to load in all chromosomes’ .bed files:

> list.files("hotspots", pattern="hotspots.*\\.bed")
 [1] "hotspots_chr1.bed"  "hotspots_chr10.bed" "hotspots_chr11.bed"
 [4] "hotspots_chr12.bed" "hotspots_chr13.bed" "hotspots_chr14.bed"
[...]

Note that our regular expression needs to use two backslashes to escape the period in
the .bed extension. list.files() also has an argument that returns full relative paths
to each file:

> hs_files <- list.files("hotspots", pattern="hotspots.*\\.bed", full.names=TRUE)
> hs_files
 [1] "hotspots/hotspots_chr1.bed"  "hotspots/hotspots_chr10.bed"
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 [3] "hotspots/hotspots_chr11.bed" "hotspots/hotspots_chr12.bed"
[...]

We’ll use the hs_files vector because it includes the path to each file. list.files()
has other useful arguments; see help(list.files) for more information.

With list.files() programmatically listing our files, it’s then easy to lapply() a
function that loads each file in. For example:

> bedcols <- c("chr", "start", "end")
> loadFile <- function(x) read.delim(x, header=FALSE, col.names=bedcols)
> hs <- lapply(hs_files, loadFile)
> head(hs[[1]])
   chr   start     end
1 chr1 1138865 1161866
2 chr1 2173749 2179750
3 chr1 2246749 2253750
[...]

Often, it’s useful to name each list item with the filename (sans full path). For
example:

> names(hs) <- list.files("hotspots", pattern="hotspots.*\\.bed")

Now, we can use do.call() and rbind to merge this data together:
> hsd <- do.call(rbind, hs)
> head(hsd)
                     chr   start     end
hotspots_chr1.bed.1 chr1 1138865 1161866
hotspots_chr1.bed.2 chr1 2173749 2179750
hotspots_chr1.bed.3 chr1 2246749 2253750
[...]
> row.names(hsd) <- NULL

rbind() has created some row names for us (which aren’t too helpful), but you can
remove them with row.names(hsd) <- NULL.

Often, we need to include a column in our dataframe containing meta-information
about files that’s stored in each file’s filename. For example, if you had to load in mul‐
tiple samples’ data like sampleA_repl01.txt, sampleA_repl02.txt, …, sam‐
pleC_repl01.txt you will likely want to extract the sample name and replicate
information and attach these as columns in your dataframe. As a simple example of
this, let’s pretend we did not have the column chr in our hotspot files and needed to
extract this information from each filename using sub(). We’ll modify our load
File() function accordingly:

loadFile <- function(x) {
  # read in a BED file, extract the chromosome name from the file,
  # and add it as a column
  df <- read.delim(x, header=FALSE, col.names=bedcols)
  df$chr_name <- sub("hotspots_([^\\.]+)\\.bed", "\\1", basename(x))
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  df$file <- x
  df
}

This version of loadFile() uses sub() to extract part of each file’s name. Because we
don’t care about the path of each file, we use basename() to extract the nondirectory
part of each filepath (but depending on your directory structure, you may need to
extract information from the full path!). basename() works like:

> hs_files[[1]]
[1] "hotspots/hotspots_chr1.bed"
> basename(hs_files[[1]])
[1] "hotspots_chr1.bed"

Now, applying this new version of loadFile() to our data:
> hs <- lapply(hs_files, loadFile)
> head(hs[[1]])
   chr   start     end chr_name                       file
1 chr1 1138865 1161866     chr1 hotspots/hotspots_chr1.bed
2 chr1 2173749 2179750     chr1 hotspots/hotspots_chr1.bed
3 chr1 2246749 2253750     chr1 hotspots/hotspots_chr1.bed
[...]

Just as there’s more than one way to pet a cat, there are many ways to bulk load data
into R. Alternatively, one might use mapply() or Map() to loop over both file paths (to
load in files) and filenames (to extract relevant metadata from a filename).

Lastly, for projects with many large files, it may not be feasible to load all data in at
once and combine it into a single large dataframe. In this case, you might need to use
lapply() to apply a per-file summarizing function to this data. As a simple example,
let’s build a workflow that summarizes the number and average length of hotspots by
chromosome file. Using lapply(), this is actually quite easy:

loadAndSummarizeFile <- function(x) {
  df <- read.table(x, header=FALSE, col.names=bedcols)
  data.frame(chr=unique(df$chr), n=nrow(df), mean_len=mean(df$end - df$start))
}

After sourcing this function, let’s run it:
> chr_hs_summaries <- lapply(hs_files, loadAndSummarizeFile)
> chr_hs_summaries[1:2]
[[1]]
   chr    n mean_len
1 chr1 1753 10702.44

[[2]]
    chr    n mean_len
1 chr10 1080 10181.56
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If needed, you could use do.call(rbind, chr_hs_summaries) to merge this data
into a single dataframe.

Processing files this way is very convenient for large files, and is even more powerful
because it’s possible to parallelize data processing by simply replacing lapply() with
mclapply().

Exporting Data
At some point during an analysis, you’ll need to export data from R. We can export
dataframes to plain-text files using the R function write.table(). Unfortunately,
write.table() has some poorly chosen defaults that we usually need to adjust. For
example, if we wanted to write our dataframe mtfs to a tab-delimited file named hot‐
spot_motifs.txt, we would use:

> write.table(mtfs, file="hotspot_motifs.txt", quote=FALSE,
              sep="\t", row.names=FALSE, col.names=TRUE)

write.table()’s first two arguments are the dataframe (or matrix) to write to file and
the file path to save it to. By default, write.table() quotes factor and character col‐
umns and includes rownames—we disable these with quote=FALSE and
row.names=FALSE. We also can set the column separators to tabs with the sep argu‐
ment. A header can be included or excluded with the col.names argument.

Given how we saw in Chapters 6 and 7 that many Unix tools work well with Gzipped
files, it’s worth mentioning you can write a compressed version of a file directly from
R. In addition to a string file path, write.table’s file argument also handles open
file connections. So to write our dataframe to a compressed file, we open a gzipped
file connect with gzfile(). For example:

> hs_gzf <- gzfile("hotspot_motifs.txt.gz")
> write.table(mtfs, file=hs_gzf, quote=FALSE, sep="\t", row.names=FALSE,
              col.names=TRUE)

Functions like read.delim() and write.table() are for reading and writing plain-
text data. Throughout the book, we’ve seen how plain text is preferable to specialty
formats because it’s more portable, easy to read and understand, and works well with
Unix data tools. While plain-text formats are the preferable way to share tabular data‐
sets, it’s not the best way to save complex R data structures like lists or special R
objects. In these cases, it’s usually preferable to save R objects as R objects. Encoding
and saving objects to disk in a way that allows them to be restored as the original
object is known as serialization. R’s functions for saving and loading R objects are
save() and load(). For the sake of this example, let’s create a simple R data structure
using a list containing a vector and a dataframe and save this to file, remove the origi‐
nal object, and then reload it:
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> tmp <- list(vec=rnorm(4), df=data.frame(a=1:3, b=3:5))
> save(tmp, file="example.Rdata")
> rm(tmp) # remove the original 'tmp' list
> load("example.Rdata") # this fully restores the 'tmp' list from file
> str(tmp)
List of 2
 $ vec: num [1:4] -0.655 0.274 -1.724 -0.49
 $ df :'data.frame': 3 obs. of  2 variables:
  ..$ a: int [1:3] 1 2 3
  ..$ b: int [1:3] 3 4 5

The function save() has an analogous function called save.image() that saves all
objects in your workspace rather than just the objects you specify. Combined with
savehistory(), save.image() can be a quick way to store your past work in R in a
rush (personally, save.history() has saved my skin a few times when I’ve needed to
record past interactive work right before a server has crashed!).

Further R Directions and Resources
In this rapid R introduction, we’ve covered many key features of the R language and
seen how they can be used to explore, visualize, and understand data. But we’ve only
scratched the surface of R’s capabilities. As you continue to use and learn R, I recom‐
mend the following texts:

• Hadley Wickham’s Advanced R (Chapman & Hall, 2014)
• Joseph Adler’s R in a Nutshell (O’Reilly, 2010)
• Hadley Wickham’s ggplot2: Elegant Graphics for Data Analysis (Springer, 2010)
• Winston Chang’s R Graphics Cookbook (O’Reilly, 2012)
• Norman Matloff ’s The Art of R Programming: A Tour of Statistical Software Design

(No Starch Press, 2011)

One reason R is popular (and increasingly so) are the numerous R packages available
to scientists. New statistical methods are routinely published with R packages imple‐
mentations released on CRAN. In Chapter 9, we’ll use packages created and main‐
tained by the Bioconductor project extensively. Bioconductor is an open source R
software project focused on developing tools for high-throughput genomics and
molecular biology data. Another useful project is rOpenSci, which develops packages
that simplify accessing data from and submitting data to public repositories, mining
journal articles, and visualizing data. These R software projects have each fostered
healthy communities of scientists and statisticians creating and using R packages,
which continue to improve and advance R’s capabilities in the sciences.
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CHAPTER 9

Working with Range Data

Here is a problem related to yours and solved before. Could you use it? Could you use
its result? Could you use its method?

— How to Solve It George Pólya (1945)
Luckily for bioinformaticians, every genome from every branch of life on earth con‐
sists of chromosome sequences that can be represented on a computer in the same
way: as a set of nucleotide sequences (genomic variation and assembly uncertainty
aside). Each separate sequence represents a reference DNA molecule, which may cor‐
respond to a fully assembled chromosome, or a scaffold or contig in a partially
assembled genome. Although nucleotide sequences are linear, they may also repre‐
sent biologically circular chromosomes (e.g., with plasmids or mitochondria) that
have been cut. In addition to containing nucleotide sequences (the As, Ts, Cs, and Gs
of life), these reference sequences act as our coordinate system for describing the loca‐
tion of everything in a genome. Moreover, because the units of these chromosomal
sequences are individual base pairs, there’s no finer resolution we could use to specify
a location on a genome.

Using this coordinate system, we can describe location or region on a genome as a
range on a linear chromosome sequence. Why is this important? Many types of
genomic data are linked to a specific genomic region, and this region can be repre‐
sented as a range containing consecutive positions on a chromosome. Annotation
data and genomic features like gene models, genetic variants like SNPs and inser‐
tions/deletions, transposable elements, binding sites, and statistics like pairwise
diversity and GC content can all be represented as ranges on a linear chromosome
sequence. Sequencing read alignment data resulting from experiments like whole
genome resequencing, RNA-Seq, ChIP-Seq, and bisulfite sequencing can also be rep‐
resented as ranges.
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Once our genomic data is represented as ranges on chromosomes, there are numer‐
ous range operations at our disposal to tackle tasks like finding and counting over‐
laps, calculating coverage, finding nearest ranges, and extracting nucleotide
sequences from specific ranges. Specific problems like finding which SNPs overlap
coding sequences, or counting the number of read alignments that overlap an exon
have simple, general solutions once we represent our data as ranges and reshape our
problem into one we can solve with range operations.

As we’ll see in this chapter, there are already software libraries (like R’s
GenomicRanges) and command-line tools (bedtools) that implement range opera‐
tions to solve our problems. Under the hood, these implementations rely on special‐
ized data structures like interval trees to provide extremely fast range operations,
making them not only the easiest way to solve many problems, but also the fastest.

A Crash Course in Genomic Ranges and Coordinate
Systems
So what are ranges exactly? Ranges are integer intervals that represent a subsequence
of consecutive positions on a sequence like a chromosome. We use integer intervals
because base pairs are discrete—we can’t have a fractional genomic position like
50,403,503.53. Ranges alone only specify a region along a single sequence like a chro‐
mosome; to specify a genomic region or position, we need three necessary pieces of
information:

Chromosome name
This is also known as sequence name (to allow for sequences that aren’t fully
assembled, such as scaffolds or contigs). Each genome is made up of a set of
chromosome sequences, so we need to specify which one a range is on. Rather
unfortunately, there is no standard naming scheme for chromosome names
across biology (and this will cause you headaches). Examples of chromosome
names (in varying formats) include “chr17,” “22,” “chrX,” “Y,” and “MT” (for
mitochondrion), or scaffolds like “HE667775” or “scaffold_1648.” These chromo‐
some names are always with respect to some particular genome assembly ver‐
sion, and may differ between versions.

Range
For example, 114,414,997 to 114,693,772 or 3,173,498 to 3,179,449. Ranges are
how we specify a single subsequence on a chromosome sequence. Each range is
composed of a start position and an end position. As with chromosome names,
there’s no standard way to represent a range in bioinformatics. The technical
details of ranges are quite important, so we’ll discuss them in more detail next.
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Strand
Because chromosomal DNA is double-stranded, features can reside on either the
forward (positive) or reverse (negative) strand. Many features on a chromosome
are strand-specific. For example, because protein coding exons only make biolog‐
ical sense when translated on the appropriate strand, we need to specify which
strand these features are on.

These three components make up a genomic range (also know as a genomic interval).
Note that because reference genomes are our coordinate system for ranges, ranges are
completely linked to a specific genome version. In other words, genomic locations are
relative to reference genomes, so when working with and speaking about ranges we
need to specify the version of genome they’re relative to.

To get an idea of what ranges on a linear sequence look like, Figure 9-1 depicts three
ranges along a stretch of chromosome. Ranges x and y overlap each other (with a one
base pair overlap), while range z is not overlapping any other range (and spans just a
single base pair). Ranges x and z are both on the forward DNA strand (note the
directionality of the arrows), and their underlying nucleotide sequences are ACTT and
C, respectively; range y is on the reverse strand, and its nucleotide sequence would be
AGCCTTCGA.

Figure 9-1. Three ranges on an imaginary stretch of chromosome

Reference Genome Versions
Assembling and curating reference genomes is a continuous effort, and reference
genomes are perpetually changing and improving. Unfortunately, this also means that
our coordinate system will often change between genome versions, so a genomic
region like chr15:27,754,876-27,755,076 will not refer to the same genomic location
across different genome versions. For example, this 200bp range on human genome
version GRCh38 are at chr15:28,000,022-28,000,222 on version GRCh37/hg19,
chr15:25,673,617-25,673,817 on versions NCBI36/hg18 and NCBI35/hg17, and
chr15: 25,602,381-25,602,581 on version NCBI34/hg16! Thus genomic locations are
always relative to specific reference genomes versions. For reproducibility’s sake (and
to make your life easier later on), it’s vital to specify which version of reference
genome you’re working with (e.g., human genome version GRCh38, Heliconius mel‐
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pomene v1.1, or Zea mays AGPv3). It’s also imperative that you and collaborators use
the same genome version so any shared data tied to a genomic regions is comparable.

At some point, you’ll need to remap genomic range data from an older genome ver‐
sion’s coordinate system to a newer version’s coordinate system. This would be a tedi‐
ous undertaking, but luckily there are established tools for the task:

• CrossMap is a command-line tool that converts many data formats (BED, GFF/
GTF, SAM/BAM, Wiggle, VCF) between coordinate systems of different assem‐
bly versions.

• NCBI Genome Remapping Service is a web-based tool supporting a variety of
genomes and formats.

• LiftOver is also a web-based tool for converting between genomes hosted on the
UCSC Genome Browser’s site.

Despite the convenience that comes with representing and working with genomic
ranges, there are unfortunately some gritty details we need to be aware of. First, there
are two different flavors of range systems used by bioinformatics data formats (see
Table 9-1 for a reference) and software programs:

• 0-based coordinate system, with half-closed, half-open intervals.
• 1-based coordinate system, with closed intervals.

With 0-based coordinate systems, the first base of a sequence is position 0 and the last
base’s position is the length of the sequence - 1. In this 0-based coordinate system, we
use half-closed, half-open intervals. Admittedly, these half-closed, half-open intervals
can be a little unintuitive at first—it’s easiest to borrow some notation from mathe‐
matics when explaining these intervals. For some start and end positions, half-
closed, half-open intervals are written as [start, end). Brackets indicate a position
is included in the interval range (in other words, the interval is closed on this end),
while parentheses indicate that a position is excluded in the interval range (the inter‐
val is open on this end). So a half-closed, half-open interval like [1, 5) includes the
bases at positions 1, 2, 3, and 4 (illustrated in Figure 9-2). You may be wondering why
on earth we’d ever use a system that excludes the end position, but we’ll come to that
after discussing 1-based coordinate systems. In fact, if you’re familiar with Python,
you’ve already seen this type of interval system: Python’s strings (and lists) are 0-
indexed and use half-closed, half-open intervals for indexing portions of a string:

>>> "CTTACTTCGAAGGCTG"[1:5]
'TTAC'

The second flavor is 1-based. As you might have guessed, with 1-based systems the
first base of a sequence is given the position 1. Because positions are counted as we do
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natural numbers, the last position in a sequence is always equal to its length. With the
1-based systems we encounter in bioinformatics, ranges are represented as closed
intervals. In the notation we saw earlier, this is simply [start, end], meaning both
the start and end positions are included in our range. As Figure 9-2 illustrates, the
same bases that cover the 0-based range [1, 5) are covered in the 1-based range [2,
5]. R uses 1-based indexing for its vectors and strings, and extracting a portion of a
string with substr() uses closed intervals:

> substr("CTTACTTCGAAGGCTG", 2, 5)
[1] "TTAC"

If your head is spinning a bit, don’t worry too much—this stuff is indeed confusing.
For now, the important part is that you are aware of the two flavors and note which
applies to the data you’re working with.

Figure 9-2. Ranges on 0-based and 1-based coordinate systems (lines indicate ranges,
open circles indicate open interval endpoints, and closed circles indicate closed end‐
points)

Because most of us are accustomed to counting in natural numbers (i.e., 1, 2, 3, etc.),
there is a tendency to lean toward the 1-based system initially. Yet both systems have
advantages and disadvantages. For example, to calculate how many bases a range
spans (sometimes known as the range width) in the 0-based system, we use end -
start. This is simple and intuitive. With the 1-based system, we’d use the less intu‐
itive end - start + 1. Another nice feature of the 0-based system is that it supports
zero-width features, whereas with a 1-based system the smallest supported width is 1
base (though sometimes ranges like [30,29] are used for zero-width features). Zero-
width features are useful if we need to represent features between bases, such as where
a restriction enzyme would cut a DNA sequence. For example, a restriction enzyme
that cut at position [12, 12) in Figure 9-2 would leave fragments CTTACTTCGAAGG
and CTG.
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Table 9-1. Range types of common bioinformatics formats
Format/library Type

BED 0-based

GTF 1-based

GFF 1-based

SAM 1-based

BAM 0-based

VCF 1-based

BCF 0-based

Wiggle 1-based

GenomicRanges 1-based

BLAST 1-based

GenBank/EMBL Feature Table 1-based

The second gritty detail we need to worry about is strand. There’s little to say except:
you need to mind strand in your work. Because DNA is double stranded, genomic fea‐
tures can lie on either strand. Across nearly all range formats (BLAST results being
the exception), a range’s coordinates are given on the forward strand of the reference
sequence. However, a genomic feature can be either on the forward or reverse strand.
For genomic features like protein coding regions, strand matters and must be speci‐
fied. For example, a range representing a protein coding region only makes biological
sense given the appropriate strand. If the protein coding feature is on the forward
strand, the nucleotide sequence underlying this range is the mRNA created during
transcription. In contrast, if the protein coding feature is on the reverse strand, the
reverse complement of the nucleotide sequence underlying this range is the mRNA
sequence created during transcription.

We also need to mind strand when comparing features. Suppose you’ve aligned
sequencing reads to a reference genome, and you want to count how many reads
overlap a specific gene. Each aligned read creates a range over the region it aligns to,
and we want to count how many of these aligned read ranges overlap a gene range.
However, information about which strand a sequencing read came from is lost during
sequencing (though there are now strand-specific RNA-seq protocols). Aligned reads
will map to both strands, and which strand they map to is uninformative. Conse‐
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quently, when computing overlaps with a gene region that we want to ignore strand,
an overlap should be counted regardless of whether the aligned read’s strand and
gene’s strand are identical. Only counting overlapping aligned reads that have the
same strand as the gene would lead to an underestimate of the reads that likely came
from this gene’s region.

An Interactive Introduction to Range Data with
GenomicRanges
To get a feeling for representing and working with data as ranges on a chromosome,
we’ll step through creating ranges and using range operations with the Bioconductor
packages IRanges and GenomicRanges. Like those in Chapter 8, these examples will
be interactive so you grow comfortable exploring and playing around with your data.
Through interactive examples, we’ll also see subtle gotchas in working with range
operations that are important to be aware of.

Installing and Working with Bioconductor Packages
Before we get started with working with range data, let’s learn a bit about Bioconduc‐
tor and install its requisite packages. Bioconductor is an open source software project
that creates R bioinformatics packages and serves as a repository for them; it empha‐
sizes tools for high-throughput data. In this section, we’ll touch on some of Biocon‐
ductor’s core packages:

GenomicRanges
Used to represent and work with genomic ranges

GenomicFeatures
Used to represent and work with ranges that represent gene models and other
features of a genome (genes, exons, UTRs, transcripts, etc.)

Biostrings and BSgenome
Used for manipulating genomic sequence data in R (we’ll cover the subset of
these packages used for extracting sequences from ranges)

rtracklayer
Used for reading in common bioinformatics formats like BED, GTF/GFF, and
WIG

Bioconductor’s package system is a bit different than those on the Comprehensive R
Archive Network (CRAN). Bioconductor packages are released on a set schedule,
twice a year. Each release is coordinated with a version of R, making Bioconductor’s
versions tied to specific R versions. The motivation behind this strict coordination is
that it allows for packages to be thoroughly tested before being released for public
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use. Additionally, because there’s considerable code re-use within the Bioconductor
project, this ensures that all package versions within a Bioconductor release are com‐
patible with one another. For users, the end result is that packages work as expected
and have been rigorously tested before you use it (this is good when your scientific
results depend on software reliability!). If you need the cutting-edge version of a
package for some reason, it’s always possible to work with their development branch.

When installing Bioconductor packages, we use the biocLite() function. bio
cLite() installs the correct version of a package for your R version (and its corre‐
sponding Bioconductor version). We can install Bioconductor’s primary packages by
running the following (be sure your R version is up to date first, though):

> source("http://bioconductor.org/biocLite.R")
> biocLite()

One package installed by the preceding lines is BiocInstaller, which contains the
function biocLite(). We can use biocLite() to install the GenomicRanges package,
which we’ll use in this chapter:

> biocLite("GenomicRanges")

This is enough to get started with the ranges examples in this chapter. If you wish to
install other packages later on (in other R sessions), load the BiocInstaller package
with library(BiocInstaller) first. biocLite() will notify you when some of your
packages are out of date and need to be upgraded (which it can do automatically for
you). You can also use biocUpdatePackages() to manually update Bioconductor
(and CRAN) packages . Because Bioconductor’s packages are all tied to a specific ver‐
sion, you can make sure your packages are consistent with biocValid(). If you run
into an unexpected error with a Bioconductor package, it’s a good idea to run biocUp
datePackages() and biocValid() before debugging.

In addition to a careful release cycle that fosters package stability, Bioconductor also
has extensive, excellent documentation. The best, most up-to-date documentation for
each package will always be at Bioconductor. Each package has a full reference man‐
ual covering all functions and classes included in a package, as well as one or more
in-depth vignettes. Vignettes step through many examples and common workflows
using packages. For example, see the GenomicRanges reference manual and vignettes. 
I highly recommend that you read the vignettes for all Bioconductor packages you
intend to use—they’re extremely well written and go into a lot of useful detail.

Storing Generic Ranges with IRanges
Before diving into working with genomic ranges, we’re going to get our feet wet with
generic ranges (i.e., ranges that represent a contiguous subsequence of elements over
any type of sequence). Beginning this way allows us to focus more on thinking
abstractly about ranges and how to solve problems using range operations. The real
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power of using ranges in bioinformatics doesn’t come from a specific range library
implementation, but in tackling problems using the range abstraction (recall Pólya’s
quote at the beginning of this chapter). To use range libraries to their fullest potential
in real-world bioinformatics, you need to master this abstraction and “range think‐
ing.”

The purpose of the first part of this chapter is to teach you range thinking through
the use of use Bioconductor’s IRanges package. This package implements data struc‐
tures for generic ranges and sequences, as well as the necessary functions to work
with these types of data in R. This section will make heavy use of visualizations to
build your intuition about what range operations do. Later in this chapter, we’ll learn
about the GenomicRanges package, which extends IRanges by handling biological
details like chromosome name and strand. This approach is common in software
development: implement a more general solution than the one you need, and then
extend the general solution to solve a specific problem (see xkcd’s “The General Prob‐
lem” comic for a funny take on this).

Let’s get started by creating some ranges using IRanges. First, load the IRanges pack‐
age. The IRanges package is a dependency of the GenomicRanges package we installed
earlier with biocLite(), so it should already be installed:

> library(IRanges) # you might see some package startup
                   # messages when you run this

The ranges we create with the IRanges package are called IRanges objects. Each
IRanges object has the two basic components of any range: a start and end position.
We can create ranges with the IRanges() function. For example, a range starting at
position 4 and ending at position 13 would be created with:

> rng <- IRanges(start=4, end=13)
> rng
IRanges of length 1
    start end width
[1]     4  13    10

The most important fact to note: IRanges (and GenomicRanges) is 1-based, and uses
closed intervals. The 1-based system was adopted to be consistent with R’s 1-based
system (recall the first element in an R vector has index 1).

You can also create ranges by specifying their width, and either start or end position:
> IRanges(start=4, width=3)
IRanges of length 1
    start end width
[1]     4   6     3
> IRanges(end=5, width=5)
IRanges of length 1
    start end width
[1]     1   5     5
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Also, the IRanges() constructor (a function that creates a new object) can take vector
arguments, creating an IRanges object containing many ranges:

> x <- IRanges(start=c(4, 7, 2, 20), end=c(13, 7, 5, 23))
> x
IRanges of length 4
    start end width
[1]     4  13    10
[2]     7   7     1
[3]     2   5     4
[4]    20  23     4

Like many R objects, each range can be given a name. This can be accomplished by
setting the names argument in IRanges, or using the function names():

> names(x) <- letters[1:4]
> x
IRanges of length 4
    start end width names
[1]     4  13    10     a
[2]     7   7     1     b
[3]     2   5     4     c
[4]    20  23     4     d

These four ranges are depicted in Figure 9-3. If you wish to try plotting your ranges,
the source for the function I’ve used to create these plots, plotIRanges(), is available
in this chapter’s directory in the book’s GitHub repository.

While on the outside x may look like a dataframe, it’s not—it’s a special object with
class IRanges. In “Factors and classes in R” on page 191, we learned that an object’s
class determines its behavior and how we interact with it in R. Much of Bioconductor
is built from objects and classes. Using the function class(), we can see it’s an
IRanges object:

> class(x)
[1] "IRanges"
attr(,"package")
[1] "IRanges"
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Figure 9-3. An IRanges object containing four ranges

IRanges objects contain all information about the ranges you’ve created internally. If
you’re curious what’s under the hood, call str(x) to take a peek. Similar to how we
used the accessor function levels() to access a factor’s levels (“Factors and classes in
R” on page 191), we use accessor functions to get parts of an IRanges object. For
example, you can access the start positions, end positions, and widths of each range
in this object with the methods start(), end(), and width():

> start(x)
[1]  4  7  2 20
> end(x)
[1] 13  7  5 23
> width(x)
[1] 10  1  4  4

These functions also work with <- to set start, end, and width position. For example,
we could increment a range’s end position by 4 positions with:

> end(x) <- end(x) + 4
> x
IRanges of length 4
    start end width names
[1]     4  17    14     a
[2]     7  11     5     b
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[3]     2   9     8     c
[4]    20  27     8     d

Figure 9-4 shows this IRanges object before and after extending the end position.
Note that the y position in these plots is irrelevant; it’s chosen so that ranges can be
visualized clearly.

Figure 9-4. Before and after extending the range end position by 4

The range() method returns the span of the ranges kept in an IRanges object:
> range(x)
IRanges of length 1
    start end width
[1]     2  27    26

We can subset IRanges just as we would any other R objects (vectors, dataframes,
matrices), using either numeric, logical, or character (name) index:

> x[2:3]
IRanges of length 2
    start end width names
[1]     7  11     5     b
[2]     2   9     8     c
> start(x) < 5
[1]  TRUE FALSE  TRUE FALSE
> x[start(x) < 5]
IRanges of length 2
    start end width names
[1]     4  17    14     a
[2]     2   9     8     c
> x[width(x) > 8]
IRanges of length 1
    start end width names
[1]     4  17    14     a

274 | Chapter 9: Working with Range Data



> x['a']
IRanges of length 1
    start end width names
[1]     4  17    14     a

As with dataframes, indexing using logical vectors created by statements like
width(x) > 8 is a powerful way to select the subset of ranges you’re interested in.

Ranges can also be easily merged using the function c(), just as we used to combine
vectors:

> a <- IRanges(start=7, width=4)
> b <- IRanges(start=2, end=5)
> c(a, b)
IRanges of length 2
    start end width
[1]     7  10     4
[2]     2   5     4

With the basics of IRanges objects under our belt, we’re now ready to look at some
basic range operations.

Basic Range Operations: Arithmetic, Transformations,
and Set Operations
In the previous section, we saw how IRanges objects conveniently store generic range
data. So far, IRanges may look like nothing more than a dataframe that holds range
data; in this section, we’ll see why these objects are so much more. The purpose of
using a special class for storing ranges is that it allows for methods to perform speci‐
alized operations on this type of data. The methods included in the IRanges package
to work with IRanges objects simplify and solve numerous genomics data analysis
tasks. These same methods are implemented in the GenomicRanges package, and
work similarly on GRanges objects as they do generic IRanges objects.

First, IRanges objects can be grown or shrunk using arithmetic operations like +, -,
and * (the division operator, /, doesn’t make sense on ranges, so it’s not supported).
Growing ranges is useful for adding a buffer region. For example, we might want to
include a few kilobases of sequence up and downstream of a coding region rather
than just the coding region itself. With IRanges objects, addition (subtraction) will
grow (shrink) a range symmetrically by the value added (subtracted) to it:

> x <- IRanges(start=c(40, 80), end=c(67, 114))
> x + 4L
IRanges of length 2
    start end width
[1]    36  71    36
[2]    76 118    43
> x - 10L
IRanges of length 2
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    start end width
[1]    50  57     8
[2]    90 104    15

The results of these transformations are depicted in Figure 9-5. Multiplication trans‐
forms with the width of ranges in a similar fashion. Multiplication by a positive num‐
ber “zooms in” to a range (making it narrower), while multiplication by a negative
number “zooms out” (making it wider). In practice, most transformations needed in
genomics are more easily expressed by adding or subtracting constant amounts.

Figure 9-5. Ranges transformed by arithemetic operations

Sometimes, rather than growing ranges by some amount, we want to restrict ranges
within a certain bound. The IRanges package method restrict() cuts a set of ranges
such that they fall inside of a certain bound (pictured in Figure 9-6):

> y <- IRanges(start=c(4, 6, 10, 12), width=13)
> y
IRanges of length 4
    start end width
[1]     4  16    13
[2]     6  18    13
[3]    10  22    13
[4]    12  24    13
> restrict(y, 5, 10)
IRanges of length 3
    start end width
[1]     5  10     6
[2]     6  10     5
[3]    10  10     1
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Figure 9-6. Ranges transformed by restrict

Another important transformation is flank(), which returns the regions that flank
(are on the side of) each range in an IRanges object. flank() is useful in creating
ranges upstream and downstream of protein coding genes that could contain pro‐
moter sequences. For example, if our ranges demarcate the transition start site (TSS)
and transcription termination site (TTS) of a set of genes, flank() can be used to cre‐
ate a set of ranges upstream of the TSS that contain promoters. To make the example
(and visualization) clearer, we’ll use ranges much narrower than real genes:

> x
IRanges of length 2
    start end width
[1]    40  67    28
[2]    80 114    35
> flank(x, width=7)
IRanges of length 2
    start end width
[1]    33  39     7
[2]    73  79     7

By default, flank() creates ranges width positions upstream of the ranges passed to
it. Flanking ranges downstream can be created by setting start=FALSE:

> flank(x, width=7, start=FALSE)
IRanges of length 2
    start end width
[1]    68  74     7
[2]   115 121     7

Both upstream and downstream flanking by 7 positions are visualized in Figure 9-7.
flank() has many other options; see help(flank) for more detail.
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Figure 9-7. Ranges that have been flanked by 7 elements, both upstream and down‐
stream

Another common operation is reduce(). the reduce() operation takes a set of possi‐
bly overlapping ranges and reduces them to a set of nonoverlapping ranges that cover
the same positions. Any overlapping ranges are merged into a single range in the
result. reduce() is useful when all we care about is what regions of a sequence are
covered (and not about the specifics of the ranges themselves). Suppose we had many
ranges corresponding to read alignments and we wanted to see which regions these
reads cover. Again, for the sake of clarifying the example, we’ll use simple, small
ranges (here, randomly sampled):

> set.seed(0) # set the random number generator seed
> alns <- IRanges(start=sample(seq_len(50), 20), width=5)
> head(alns, 4)
IRanges of length 4
    start end width
[1]    45  49     5
[2]    14  18     5
[3]    18  22     5
[4]    27  31     5
> reduce(alns)
IRanges of length 3
    start end width
[1]     3  22    20
[2]    24  36    13
[3]    40  53    14

See Figure 9-8 for a visualization of how reduce() transforms the ranges alns.
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Figure 9-8. Ranges collapsed into nonoverlapping ranges with reduce

A similar operation to reduce() is gaps(), which returns the gaps (uncovered por‐
tions) between ranges. gaps() has numerous applications in genomics: creating
intron ranges between exons ranges, finding gaps in coverage, defining intragenic
regions between genic regions, and more. Here’s an example of how gaps() works
(see Figure 9-9 for an illustration):

> gaps(alns)
IRanges of length 2
    start end width
[1]    23  23     1
[2]    37  39     3
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Figure 9-9. Gaps between ranges created with gaps

By default, gaps() only returns the gaps between ranges, and does not include those
from the beginning of the sequence to the start position of the first range, and the end
of the last range to the end of the sequence. IRanges has a good reason for behaving
this way: IRanges doesn’t know where your sequence starts and ends. If you’d like
gaps() to include these gaps, specify the start and end positions in gaps (e.g.,
gaps(alns, start=1, end=60)).

Another class of useful range operations are analogous to set operations. Each range
can be thought of as a set of consecutive integers, so an IRange object like
IRange(start=4, end=7) is simply the integers 4, 5, 6, and 7. This opens up the abil‐
ity to think about range operations as set operations like difference (setdiff()),
intersection (intersect()), union (union()), and complement (which is simply the
function gaps() we saw earlier)—see Figure 9-10 for an illustration:

> a <- IRanges(start=4, end=13)
> b <- IRanges(start=12, end=17)
> intersect(a, b)
IRanges of length 1
    start end width
[1]    12  13     2
> setdiff(a, b)
IRanges of length 1
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    start end width
[1]     4  11     8
>  union(b, a)
IRanges of length 1
    start end width
[1]     4  17    14
> union(a, b)
IRanges of length 1
    start end width
[1]     4  17    14

Figure 9-10. Set operations with ranges

Sets operations operate on IRanges with multiple ranges (rows) as if they’ve been col‐
lapsed with reduce() first (because mathematically, overlapping ranges make up the
same set). IRanges also has a group of set operation functions that act pairwise, tak‐
ing two equal-length IRanges objects and working range-wise: psetdiff(), pinter
sect(), punion(), and pgap(). To save space, I’ve omitted covering these in detail,
but see help(psetdiff) for more information.

The wealth of functionality to manipulate range data stored in IRanges should con‐
vince you of the power of representing data as IRanges. These methods provide the
basic generalized operations to tackle common genomic data analysis tasks, saving
you from having to write custom code to solve specific problems. All of these func‐
tions work with genome-specific range data kept in GRanges objects, too.

Finding Overlapping Ranges
Finding overlaps is an essential part of many genomics analysis tasks. Computing
overlaps is how we connect experimental data in the form of aligned reads, inferred
variants, or peaks of alignment coverage to annotated biological features of the
genome like gene regions, methylation, chromatin status, evolutionarily conserved
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regions, and so on. For tasks like RNA-seq, overlaps are how we quantify our cellular
activity like expression and identify different transcript isoforms. Computing over‐
laps also exemplifies why it’s important to use existing libraries: there are advanced
data structures and algorithms that can make the computationally intensive task of
comparing numerous (potentially billions) ranges to find overlaps efficient. There are
also numerous very important technical details in computing overlaps that can have a
drastic impact on the end result, so it’s vital to understand the different types of over‐
laps and consider which type is most appropriate for a specific task.

We’ll start with the basic task of finding overlaps between two sets of IRanges objects
using the findOverlaps() function. findOverlaps() takes query and subject
IRanges objects as its first two arguments. We’ll use the following ranges (visualized
in Figure 9-11):

> qry <- IRanges(start=c(1, 26, 19, 11, 21, 7), end=c(16, 30, 19, 15, 24, 8),
                 names=letters[1:6])
> sbj <- IRanges(start=c(1, 19, 10), end=c(5, 29, 16), names=letters[24:26])
> qry
IRanges of length 6
    start end width names
[1]     1  16    16     a
[2]    26  30     5     b
[3]    19  19     1     c
[4]    11  15     5     d
[5]    21  24     4     e
[6]     7   8     2     f
> sbj
IRanges of length 3
    start end width names
[1]     1   5     5     x
[2]    19  29    11     y
[3]    10  16     7     z
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Figure 9-11. Subject ranges (x, y, and z) depicted in gray and query ranges (a through f)
depicted in white

Using the IRanges qry and sbj, we can now find overlaps. Calling findOver
laps(qry, sbj) returns an object with class Hits, which stores these overlaps:

> hts <- findOverlaps(qry, sbj)
> hts
Hits of length 6
queryLength: 6
subjectLength: 3
  queryHits subjectHits
   <integer>   <integer>
 1         1           1
 2         1           3
 3         2           2
 4         3           2
 5         4           3
 6         5           2

Thinking abstractly, overlaps represent a mapping between query and subject.
Depending on how we find overlaps, each query can have many hits in different sub‐
jects. A single subject range will always be allowed to have many query hits. Finding
qry ranges that overlap sbj ranges leads to a mapping similar to that shown in
Figure 9-12 (check that this follows your intuition from Figure 9-13).

Figure 9-12. Mapping between qry and sbj ranges representing any overlap
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The Hits object from findOverlaps() has two columns on indices: one for the query
ranges and one for the subject ranges. Each row contains the index of a query range
that overlaps a subject range, and the index of the subject range it overlaps. We can
access these indices by using the accessor functions queryHits() and subjectHits().
For example, if we wanted to find the names of each query and subject range with an
overlap, we could do:

> names(qry)[queryHits(hts)]
[1] "a" "a" "b" "c" "d" "e"
> names(sbj)[subjectHits(hts)]
[1] "x" "z" "y" "y" "z" "y"

Figure 9-13 shows which of the ranges in qry overlap the ranges in sbj. From this
graphic, it’s easy to see how findOverlaps() is computing overlaps: a range is consid‐
ered to be overlapping if any part of it overlaps a subject range. This type of overlap
behavior is set with the type argument to findOverlaps(), which is "any" by default.
Depending on our biological task, type="any" may not be the best form of overlap.
For example, we could limit our overlap results to only include query ranges that fall
entirely within subject ranges with type=within (Figure 9-14):

> hts_within <- findOverlaps(qry, sbj, type="within")
> hts_within
Hits of length 3
queryLength: 6
subjectLength: 3
  queryHits subjectHits
   <integer>   <integer>
 1         3           2
 2         4           3
 3         5           2

Figure 9-13. Ranges in qry that overlap sbj using findOverlaps
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Figure 9-14. Ranges in qry that overlap entirely within sbj

While type="any" and type="within" are the most common options in day-to-day
work, findOverlaps() supports other overlap types. See help(findOverlaps) to see
the others (and much more information about findOverlaps() and related func‐
tions).

Another findOverlaps() parameter that we need to consider when computing over‐
laps is select, which determines how findOverlaps() handles cases where a single
query range overlaps more than one subject range. For example, the range named a
in qry overlaps both x and y. By default, select="all", meaning that all overlapping
ranges are returned. In addition, select allows the options "first", "last", and
"arbitrary", which return the first, last, and an arbitrary subject hit, respectively.
Because the options "first", "last", and "arbitrary" all lead findOverlaps() to
return only one overlapping subject range per query (or NA if no overlap is found),
results are returned in an integer vector where each element corresponds to a query
range in qry:

> findOverlaps(qry, sbj, select="first")
[1]  1  2  2  3  2 NA
> findOverlaps(qry, sbj, select="last")
[1]  3  2  2  3  2 NA
> findOverlaps(qry, sbj, select="arbitrary")
[1]  1  2  2  3  2 NA
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Mind Your Overlaps (Part I)

What an overlap “is” may seem obvious at first, but the specifics
can matter a lot in real-life genomic applications. For example,
allowing for a query range to overlap any part of a subject range
makes sense when we’re looking for SNPs in exons. However, clas‐
sifying a 1kb genomic window as coding because it overlaps a sin‐
gle base of a gene may make less sense (though depends on the
application). It’s important to always relate your quantification
methods to the underlying biology of what you’re trying to under‐
stand.
The intricacies of overlap operations are especially important when
we use overlaps to quantify something, such as expression in an
RNA-seq study. For example, if two transcript regions overlap each
other, a single alignment could overlap both transcripts and be
counted twice—not good. Likewise, if we count how many align‐
ments overlap exons, it’s not clear how we should aggregate over‐
laps to obtain transcript or gene-level quantification. Again,
different approaches can lead to sizable differences in statistical
results. The take-home lessons are as follows:

• Mind what your code is considering an overlap.
• For quantification tasks, simple overlap counting is best

thought of as an approximation (and more sophisticated meth‐
ods do exist).

See Trapnell, et al., 2013 for a really nice introduction of these
issues in RNA-seq quantification.

Counting many overlaps can be a computationally expensive operation, especially
when working with many query ranges. This is because the naïve solution is to take a
query range, check to see if it overlaps any of the subject ranges, and then repeat
across all other query ranges. If you had Q query ranges and S subject ranges, this
would entail Q × S comparisons. However, there’s a trick we can exploit: ranges are
naturally ordered along a sequence. If our query range has an end position of 230,193,
there’s no need to check if it overlaps subject ranges with start positions larger than
230,193—it won’t overlap. By using a clever data structure that exploits this property,
we can avoid having to check if each of our Q query ranges overlap our S subject
ranges. The clever data structure behind this is the interval tree. It takes time to build
an interval tree from a set of subject ranges, so interval trees are most appropriate for
tasks that involve finding overlaps of many query ranges against a fixed set of subject
ranges. In these cases, we can build the subject interval tree once and then we can use
it over and over again when searching for overlaps with each of the query ranges.
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Implementing interval trees is an arduous task, but luckily we don’t have to utilize
their massive computational benefits. IRanges has an IntervalTree class that uses
interval trees under the hood. Creating an IntervalTree object from an IRanges
object is simple:

> sbj_it <- IntervalTree(sbj)
> sbj_it
IntervalTree of length 3
    start end width
[1]     1   5     5
[2]    19  29    11
[3]    10  16     7
> class(sbj_it)
[1] "IntervalTree"
attr(,"package")
[1] "IRanges"

Using this sbj_it object illustrates we can use findOverlaps() with IntervalTree
objects just as we would a regular IRanges object—the interfaces are identical:

> findOverlaps(qry, sbj_it)
Hits of length 6
queryLength: 6
subjectLength: 3
  queryHits subjectHits
   <integer>   <integer>
 1         1           1
 2         1           3
 3         2           2
 4         3           2
 5         4           3
 6         5           2

Note that in this example, we won’t likely realize any computational benefits from
using an interval tree, as we have few subject ranges.

After running findOverlaps(), we need to work with Hits objects to extract infor‐
mation from the overlapping ranges. Hits objects support numerous helpful methods
in addition to the queryHits() and subjectHits() accessor functions (see
help(queryHits) for more information):

> as.matrix(hts) 
     queryHits subjectHits
[1,]         1           1
[2,]         1           3
[3,]         2           2
[4,]         3           2
[5,]         4           3
[6,]         5           2
> countQueryHits(hts) 
[1] 2 1 1 1 1 0
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> setNames(countQueryHits(hts), names(qry))
a b c d e f
2 1 1 1 1 0
> countSubjectHits(hts) 
[1] 1 3 2
> setNames(countSubjectHits(hts), names(sbj))
x y z
1 3 2
> ranges(hts, qry, sbj) 
IRanges of length 6
    start end width
[1]     1   5     5
[2]    10  16     7
[3]    26  29     4
[4]    19  19     1
[5]    11  15     5
[6]    21  24     4

Hits objects can be coerced to matrix using as.matrix().

countQueryHits() returns a vector of how many subject ranges each query
IRanges object overlaps. Using the function setNames(), I’ve given the resulting
vector the same names as our original ranges on the next line so the result is
clearer. Look at Figure 9-11 and verify that these counts make sense.

The function countSubjectHits() is like countQueryHits(), but returns how
many query ranges overlap the subject ranges. As before, I’ve used setNames() to
label these counts with the subject ranges’ names so these results are clearly label‐
led.

Here, we create a set of ranges for overlapping regions by calling the ranges()
function using the Hits object as the first argument, and the same query and
subject ranges we passed to findOverlaps() as the second and third arguments.
These intersecting ranges are depicted in Figure 9-15 in gray, alongside the origi‐
nal subject and query ranges. Note how these overlapping ranges differ from the
set created by intersect(qry, sbj): while intersect() would create one range
for the regions of ranges a and d that overlap z, using ranges() with a Hits
object creates two separate ranges.
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Figure 9-15. Overlapping ranges created from a Hits object using the function ranges

A nice feature of working with ranges in R is that we can leverage R’s full array of data
analysis capabilities to explore these ranges. For example, after using ranges(hts,
qry, sbj) to create a range corresponding to the region shared between each over‐
lapping query and subject range, you could use summary(width(ranges(hts, qry,
sbj))) to get a summary of how large the overlaps are, or use ggplot2 to plot a histo‐
gram of all overlapping widths. This is one of the largest benefits of working with
ranges within R—you can interactively explore and understand your results immedi‐
ately after generating them.

The functions subsetByOverlaps() and countOverlaps() simplify some of the most
common operations performed on ranges once overlaps are found: keeping only the
subset of queries that overlap subjects, and counting overlaps. Both functions allow
you to specify the same type of overlap to use via the type argument, just as
findOverlaps() does. Here are some examples using the objects qry and sbj we cre‐
ated earlier:

> countOverlaps(qry, sbj) 
a b c d e f
2 1 1 1 1 0
> subsetByOverlaps(qry, sbj) 
IRanges of length 5
    start end width names
[1]     1  16    16     a
[2]    26  30     5     b
[3]    19  19     1     c
[4]    11  15     5     d
[5]    21  24     4     e

countOverlaps is similar to the solution using countQueryOverlaps() and set
Names().
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subsetByOverlaps returns the same as qry[unique(queryHits(hts))]. You can
verify this yourself (and think through why unique() is necessary).

Finding Nearest Ranges and Calculating Distance
Another common set of operations on ranges focuses on finding ranges that neighbor
query ranges. In the IRanges package, there are three functions for this type of opera‐
tion: nearest(), precede(), and follow(). The nearest() function returns the near‐
est range, regardless of whether it’s upstream or downstream of the query. precede()
and follow() return the nearest range that the query is upstream of or downstream
of, respectively. Each of these functions take the query and subject ranges as their first
and second arguments, and return an index to which subject matches (for each of the
query ranges). This will be clearer with examples and visualization:

> qry <- IRanges(start=6, end=13, name='query')
> sbj <- IRanges(start=c(2, 4, 18, 19), end=c(4, 5, 21, 24), names=1:4)
> qry
IRanges of length 1
    start end width names
[1]     6  13     8 query
> sbj
IRanges of length 4
    start end width names
[1]     2   4     3     1
[2]     4   5     2     2
[3]    18  21     4     3
[4]    19  24     6     4
> nearest(qry, sbj)
[1] 2
> precede(qry, sbj)
[1] 3
> follow(qry, sbj)
[1] 1

To keep precede() and follow() straight, remember that these functions are with
respect to the query: precede() finds ranges that the query precedes and follow()
finds ranges that the query follows. Also, illustrated in this example (seen in
Figure 9-16), the function nearest() behaves slightly differently than precede() and
follow(). Unlike precede() and follow(), nearest() will return the nearest range
even if it overlaps the query range. These subtleties demonstrate how vital it is to
carefully read all function documentation before using libraries.
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Figure 9-16. The ranges used in nearest, precede, and follow example

Note too that these operations are all vectorized, so you can provide a query IRanges
object with multiple ranges:

> qry2 <- IRanges(start=c(6, 7), width=3)
> nearest(qry2, sbj)
[1] 2 2

This family of functions for finding nearest ranges also includes distan
ceToNearest() and distance(), which return the distance to the nearest range and
the pairwise distances between ranges. We’ll create some random ranges to use in this
example:

> qry <- IRanges(sample(seq_len(1000), 5), width=10)
> sbj <- IRanges(sample(seq_len(1000), 5), width=10)
> qry
IRanges of length 5
    start end width
[1]   897 906    10
[2]   266 275    10
[3]   372 381    10
[4]   572 581    10
[5]   905 914    10
> sbj
IRanges of length 5
    start end width
[1]   202 211    10
[2]   898 907    10
[3]   943 952    10
[4]   659 668    10
[5]   627 636    10
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Now, let’s use distanceToNearest() to find neighboring ranges. It works a lot like
findOverlaps()—for each query range, it finds the closest subject range, and returns
everything in a Hits object with an additional column indicating the distance:

> distanceToNearest(qry, sbj)
Hits of length 5
queryLength: 5
subjectLength: 5
  queryHits subjectHits  distance
   <integer>   <integer> <integer>
 1         1           2         0
 2         2           1        54
 3         3           1       160
 4         4           5        45
 5         5           2         0

The method distance() returns each pairwise distance between query and subject
ranges:

> distance(qry, sbj)
[1] 685 622 561  77 268

Run Length Encoding and Views
The generic ranges implemented by IRanges can be ranges over any type of sequence. 
In the context of genomic data, these ranges’ coordinates are based on the underlying
nucleic acid sequence of a particular chromosome. Yet, many other types of genomic
data form a sequence of numeric values over each position of a chromosome
sequence. Some examples include:

• Coverage, the depth of overlap of ranges across the length of a sequence. Cover‐
age is used extensively in genomics, from being an important factor in how var‐
iants are called to being used to discover coverage peaks that indicate the
presence of some feature (as in a ChIP-seq study).

• Conservation tracks, which are base-by-base evolutionary conservation scores
between species, generated by a program like phastCons (see Siepel et al., 2005 as
an example).

• Per-base pair estimates of population genomics summary statistics like nucleo‐
tide diversity.

In this section, we’ll take a closer look at working with coverage data, creating ranges
from numeric sequence data, and a powerful abstraction called views. Each of these
concepts provides a powerful new way to manipulate sequence and range data. How‐
ever, this section is a bit more advanced than earlier ones; if you’re feeling over‐
whelmed, you can skim the section on coverage and then skip ahead to “Storing
Genomic Ranges with GenomicRanges” on page 299.
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Run-length encoding and coverage()
Long sequences can grow quite large in memory. For example, a track containing
numeric values over each of the 248,956,422 bases of chromosome 1 of the human
genome version GRCh38 would be 1.9Gb in memory. To accommodate working with
data this size in R, IRanges can work with sequences compressed using a clever trick:
it compresses runs of the same value. For example, imagine a sequence of integers
that represent the coverage of a region in a chromosome:

4 4 4 3 3 2 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 4 4 4 4 4 4 4

Data like coverage often exhibit runs: consecutive stretches of the same value. We can
compress these runs using a scheme called run-length encoding. Run-length encoding
compresses this sequence, storing it as: 3 fours, 2 threes, 1 two, 5 ones, 7 zeros, 3 ones,
7 fours. Let’s see how this looks in R:

> x <- as.integer(c(4, 4, 4, 3, 3, 2, 1, 1, 1, 1, 1, 0, 0, 0,
                 0, 0, 0, 0, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4))
> xrle <- Rle(x)
> xrle
integer-Rle of length 28 with 7 runs
  Lengths: 3 2 1 5 7 3 7
  Values : 4 3 2 1 0 1 4

The function Rle() takes a vector and returns a run-length encoded version. Rle() is
a function from a low-level Bioconductor package called S4Vectors, which is auto‐
matically loaded with IRanges. We can revert back to vector form with as.vector():

> as.vector(xrle)
 [1] 4 4 4 3 3 2 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 4 4 4 4 4 4 4

Run-length encoded objects support most of the basic operations that regular R vec‐
tors do, including subsetting, arithemetic and comparison operations, summary
functions, and math functions:

> xrle + 4L
integer-Rle of length 28 with 7 runs
  Lengths: 3 2 1 5 7 3 7
  Values : 8 7 6 5 4 5 8
> xrle/2
numeric-Rle of length 28 with 7 runs
  Lengths:   3   2   1   5   7   3   7
  Values :   2 1.5   1 0.5   0 0.5   2
> xrle > 3
logical-Rle of length 28 with 3 runs
  Lengths:     3    18     7
  Values :  TRUE FALSE  TRUE
> xrle[xrle > 3]
numeric-Rle of length 11 with 3 runs
  Lengths:   3   1   7
  Values :   4 100   4
> sum(xrle)
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[1] 56
> summary(xrle)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
   0.00    0.75    1.00    2.00    4.00    4.00
> round(cos(xrle), 2)
numeric-Rle of length 28 with 7 runs
  Lengths:     3     2     1     5     7     3     7
  Values : -0.65 -0.99 -0.42  0.54     1  0.54 -0.65

We can also access an Rle object’s lengths and values using the functions run
Lengths() and runValues():

> runLength(xrle)
[1] 3 2 1 5 7 3 7
> runValue(xrle)
[1] 4 3 2 1 0 1 4

While we don’t save any memory by run-length encoding vectors this short, run-
length encoding really pays off with genomic-sized data.

One place where we encounter run-length encoded values is in working with cover
age(). The coverage() function takes a set of ranges and returns their coverage as an
Rle object (to the end of the rightmost range). Simulating 70 random ranges over a
sequence of 100 positions:

> set.seed(0)
> rngs <- IRanges(start=sample(seq_len(60), 10), width=7)
> names(rngs)[9] <- "A" # label one range for examples later
> rngs_cov <- coverage(rngs)
> rngs_cov
integer-Rle of length 63 with 18 runs
  Lengths: 11  4  3  3  1  6  4  2  5  2  7  2  3  3  1  3  2  1
  Values :  0  1  2  1  2  1  0  1  2  1  0  1  2  3  4  3  2  1

These ranges and coverage can be seen in Figure 9-17 (as before, the y position of the
ranges does not mean anything; it’s chosen so they can be viewed without overlap‐
ping).
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Figure 9-17. Ranges and their coverage plotted

In Chapter 8, we saw how powerful R’s subsetting is at allowing us to extract and
work with specific subsets of vectors, matrices, and dataframes. We can work with
subsets of a run-length encoded sequence using similar semantics:

> rngs_cov > 3  # where is coverage greater than 3?
logical-Rle of length 63 with 3 runs
  Lengths:    56     1     6
  Values : FALSE  TRUE FALSE
> rngs_cov[as.vector(rngs_cov) > 3]  # extract the depths that are greater than 3
integer-Rle of length 1 with 1 run
  Lengths: 1
  Values : 4

Additionally, we also have the useful option of using IRanges objects to extract sub‐
sets of a run-length encoded sequence. Suppose we wanted to know what the cover‐
age was in the region overlapping the range labeled “A” in Figure 9-17. We can subset
Rle objects directly with IRanges objects:

> rngs_cov[rngs['A']]
integer-Rle of length 7 with 2 runs
  Lengths: 5 2
  Values : 2 1

If instead we wanted the mean coverage within this range, we could simply pass the
result to mean():

> mean(rngs_cov[rngs['A']])
[1] 1.714286
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Numerous analysis tasks in genomics involve calculating a summary of some
sequence (coverage, GC content, nucleotide diversity, etc.) for some set of ranges
(repetitive regions, protein coding sequences, low-recombination regions, etc.).
These calculations are trivial once our data is expressed as ranges and sequences, and
we use the methods in IRanges. Later in this chapter, we’ll see how GenomicRanges
provides nearly identical methods tailored to these tasks on genomic data.

Going from run-length encoded sequences to ranges with slice()
Earlier, we used rngs_cov > 3 to create a run-length encoded vector of TRUE/FALSE
values that indicate whether the coverage for a position was greater than 3. Suppose
we wanted to now create an IRanges object containing all regions where coverage is
greater than 3. What we want is an operation that’s the inverse of using ranges to sub‐
set a sequence—using a subset of sequence to define new ranges. In genomics, we use
these types of operations that define new ranges quite frequently—for example, tak‐
ing coverage and defining ranges corresponding to extremely high-coverage peaks, or
a map of per-base pair recombination estimates and defining a recombinational hot‐
spot region.

It’s very easy to create ranges from run-length encoded vectors. The function slice()
takes a run-length encoded numeric vector (e.g., of coverage) as its argument and sli‐
ces it, creating a set of ranges where the run-length encoded vector has some minimal
value. For example, we could take our coverage Rle object rngs_cov and slice it to
create ranges corresponding to regions with more than 2x coverage:

> min_cov2 <- slice(rngs_cov, lower=2)
> min_cov2
Views on a 63-length Rle subject

views:
    start end width
[1]    16  18     3 [2 2 2]
[2]    22  22     1 [2]
[3]    35  39     5 [2 2 2 2 2]
[4]    51  62    12 [2 2 2 3 3 3 4 3 3 3 2 2]

This object that’s returned is called a view. Views combine a run-length encoded vec‐
tors and ranges, such that each range is a “view” of part of the sequence. In this case,
each view is a view on to the part of the sequence that has more than 2x coverage.
The numbers to the right of the ranges are the underlying elements of the run-length
encoded vector in this range. If you’re simply interested in ranges, it’s easy to extract
out the underlying ranges:

> ranges(min_cov2)
IRanges of length 4
    start end width
[1]    16  18     3
[2]    22  22     1
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[3]    35  39     5
[4]    51  62    12

The slice() method is quite handy when we need to define coverage peaks—regions
where coverage of experimental data like aligned reads is high such that could indi‐
cate something biologically interesting. For example, after looking at a histogram of
genome-wide coverage, we could define a coverage threshold that encapsulates outli‐
ers, use slice() to find the regions with high coverage, and then see where these
regions fall and if they overlap other interesting biological features.

Advanced IRanges: Views
Before we go any further, the end of this section goes into some deeper, slightly more
complex material. If you’re struggling to keep up at this point, it may be worth skip‐
ping to “Storing Genomic Ranges with GenomicRanges” on page 299 and coming
back later to this section.

OK, intrepid reader, let’s dig a bit deeper into these Views objects we saw earlier.
While they may seem a bit strange at first, views are incredibly handy. By combining
a sequence vector and ranges, views simplify operations that involve aggregating a
sequence vector by certain ranges. In this way, they’re similar to calculating per-group
summaries as we did in Chapter 8, but groups are ranges.

For example, we could summarize the views we created earlier using slice() using
functions like viewMeans(), viewMaxs(), and even viewApply(), which applies an
arbitrary function to views:

> viewMeans(min_cov2)
[1] 2.000000 2.000000 2.000000 2.666667
> viewMaxs(min_cov2)
[1] 2 2 2 4
> viewApply(min_cov2, median)
[1] 2 2 2 3

Each element of these returned vectors is a summary of a range’s underlying run-
length encoded vector (in this case, our coverage vector min_cov2 summarized by the
ranges we carved out using slice()). Also, there are a few other built-in view sum‐
marization methods; see help(viewMeans) for a full list.

Using Views, we can also create summaries of sequences by window/bin. In the views
lingo, we create a set of ranges for each window along a sequence and then summa‐
rize the views onto the underlying sequence these windows create. For example, if we
wanted to calculate the average coverage for windows 5-positions wide:

> length(rngs_cov) 
[1] 63
> bwidth <- 5L 
> end <- bwidth * floor(length(rngs_cov) / bwidth) 
> windows <- IRanges(start=seq(1, end, bwidth), width=bwidth) 
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> head(windows)
IRanges of length 6
    start end width
[1]     1   5     5
[2]     6  10     5
[3]    11  15     5
[4]    16  20     5
[5]    21  25     5
[6]    26  30     5
> cov_by_wnd <- Views(rngs_cov, windows) 
> head(cov_by_wnd)
Views on a 63-length Rle subject

views:
    start end width
[1]     1   5     5 [0 0 0 0 0]
[2]     6  10     5 [0 0 0 0 0]
[3]    11  15     5 [0 1 1 1 1]
[4]    16  20     5 [2 2 2 1 1]
[5]    21  25     5 [1 2 1 1 1]
[6]    26  30     5 [1 1 1 0 0]
> viewMeans(cov_by_wnd) 
 [1] 0.0 0.0 0.8 1.6 1.2 0.6 0.8 1.8 0.2 0.4 2.4 3.2

There’s a bit of subtle arithmetic going on here, so let’s step through piece by piece.

First, note that our coverage vector is 63 elements long. We want to create con‐
secutive windows along this sequence, with each window containing 5 elements.
If we do so, we’ll have 3 elements of the coverage vector hanging off the end (63
divided by 5 is 12, with a remainder of 3). These overhanging ends are a common
occurrence when summarizing data by windows, and it’s common to just ignore
these last elements. While cutting these elements off seems like a strange
approach, a summary calculated over a smaller range will have a higher variance
that can lead to strange results. Dropping this remainder is usually the simplest
and best option.

We’ll set bwidth to be our bin width.

Now, we compute the end position of our window. To do so, we divide our cover‐
age vector length by the bin width, and chop off the remainder using the floor()
function. Then, we multiply by the bin width to give the end position.

Next, we create our windows using IRanges. We use seq() to generate the start
positions: a start position from 1 to our end (60, as we just programmatically cal‐
culated), moving by 5 each time. If we wanted a different window step width, we
could change the third (by) argument of seq() here. With our start position
specified, we simply set width=bwidth to give each window range a width of 5.
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With our run-length encoded coverage vector and our windows as IRanges
objects, we create our Views object. Views effectively groups each element of the
coverage vector rngs_cov inside a window.

Finally, we compute summaries on these Views. Here we use viewMeans() to get
the mean coverage per window. We could use any other summarization view
method (e.g., viewMaxs(), viewSums(), etc.) or use viewApply() to apply any
function to each view.

Summarizing a sequence of numeric values by window over a sequence such as a
chromosome is a common task in genomics. The techniques used to implement the
generic solution to this problem with ranges, run-length encoded vectors, and views
are directly extensible to tackling this problem with real genomics data.

Because GenomicRanges extends IRanges, everything we’ve learned in the previous
sections can be directly applied to the genomic version of an IRanges object,
GRanges. None of the function names nor behaviors differ much, besides two added
complications: dealing with multiple chromosomes and strand. As we’ll see in the
next sections, GenomicRanges manages these complications and greatly simplifies our
lives when working with genomic data.

Storing Genomic Ranges with GenomicRanges
The GenomicRanges package introduces a new class called GRanges for storing
genomic ranges. The GRanges builds off of IRanges. IRanges objects are used to store
ranges of genomic regions on a single sequence, and GRanges objects contain the two
other pieces of information necessary to specify a genomic location: sequence name
(e.g., which chromosome) and strand. GRanges objects also have metadata columns,
which are the data linked to each genomic range. We can create GRanges objects
much like we did with IRanges objects:

> library(GenomicRanges)
> gr <- GRanges(seqname=c("chr1", "chr1", "chr2", "chr3"),
                ranges=IRanges(start=5:8, width=10),
                strand=c("+", "-", "-", "+"))
> gr
GRanges with 4 ranges and 0 metadata columns:
      seqnames    ranges strand
         <Rle> <IRanges>  <Rle>
  [1]     chr1   [5, 14]      +
  [2]     chr1   [6, 15]      -
  [3]     chr2   [7, 16]      -
  [4]     chr3   [8, 17]      +
  ---
  seqlengths:
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   chr1 chr2 chr3
     NA   NA   NA

Using the GRanges() constructor, we can also add arbitrary metadata columns by
specifying additional named arguments:

> gr <- GRanges(seqname=c("chr1", "chr1", "chr2", "chr3"),
                ranges=IRanges(start=5:8, width=10),
                strand=c("+", "-", "-", "+"), gc=round(runif(4), 3))
> gr
GRanges with 4 ranges and 1 metadata column:
      seqnames    ranges strand |        gc
         <Rle> <IRanges>  <Rle> | <numeric>
  [1]     chr1   [5, 14]      + |     0.897
  [2]     chr1   [6, 15]      - |     0.266
  [3]     chr2   [7, 16]      - |     0.372
  [4]     chr3   [8, 17]      + |     0.573
  ---
  seqlengths:
   chr1 chr2 chr3
     NA   NA   NA

This illustrates the structure of GRanges objects: genomic location specified by
sequence name, range, and strand (on the left of the dividing bar), and metadata col‐
umns (on the right). Each row of metadata corresponds to a range on the same row.

All metadata attached to a GRanges object are stored in a DataFrame, which behaves
identically to R’s base data.frame, but supports a wider variety of column types. For
example, DataFrames allow for run-length encoded vectors to save memory (whereas
R’s base data.frame does not). Whereas in the preceding example metadata columns
are used to store numeric data, in practice we can store any type of data: identifiers
and names (e.g., for genes, transcripts, SNPs, or exons), annotation data (e.g., conser‐
vation scores, GC content, repeat content, etc.), or experimental data (e.g., if ranges
correspond to alignments, data like mapping quality and the number of gaps). As
we’ll see throughout the rest of this chapter, the union of genomic location with any
type of data is what makes GRanges so powerful.

Also, notice seqlengths in the gr object we’ve just created. Because GRanges (and
genomic range data in general) is always with respect to a particular genome version,
we usually know beforehand what the length of each sequence/chromosome is.
Knowing the length of chromosomes is necessary when computing coverage and
gaps (because we need to know where the end of the sequence is, not just the last
range). We can specify the sequence lengths in the GRanges constructor, or set it after
the object has been created using the seqlengths() function:

> seqlens <- c(chr1=152, chr2=432, chr3=903)
> gr <- GRanges(seqname=c("chr1", "chr1", "chr2", "chr3"),
                ranges=IRanges(start=5:8, width=10),
                strand=c("+", "-", "-", "+"),
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                gc=round(runif(4), 3),
                seqlengths=seqlens)
> seqlengths(gr) <- seqlens # another way to do the same as above
> gr
GRanges with 4 ranges and 1 metadata column:
      seqnames    ranges strand |        gc
         <Rle> <IRanges>  <Rle> | <numeric>
  [1]     chr1   [5, 14]      + |     0.897
  [2]     chr1   [6, 15]      - |     0.266
  [3]     chr2   [7, 16]      - |     0.372
  [4]     chr3   [8, 17]      + |     0.573
  ---
  seqlengths:
   chr1 chr2 chr3
    152  432 903

We access data in GRanges objects much like we access data from IRanges objects:
with accessor functions. Accessors for start position, end position, and width are the
same as with IRanges object:

> start(gr)
[1] 5 6 7 8
> end(gr)
[1] 14 15 16 17
> width(gr)
[1] 10 10 10 10

For the GRanges-specific data like sequence name and strand, there are new accessor
functions—seqnames and strand:

> seqnames(gr)
factor-Rle of length 4 with 3 runs
  Lengths:    2    1    1
  Values : chr1 chr2 chr3
Levels(3): chr1 chr2 chr3
> strand(gr)
factor-Rle of length 4 with 3 runs
  Lengths: 1 2 1
  Values : + - +
Levels(3): + - *

The returned objects are all run-length encoded. If we wish to extract all IRanges
ranges from a GRanges object, we can use the ranges accessor function:

> ranges(gr)
IRanges of length 4
    start end width
[1]     5  14    10
[2]     6  15    10
[3]     7  16    10
[4]     8  17    10
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Like most objects in R, GRanges has a length that can be accessed with length(), and
supports names:

> length(gr)
[1] 4
> names(gr) <- letters[1:length(gr)]
> gr
GRanges with 4 ranges and 1 metadata column:
    seqnames    ranges strand |        gc
       <Rle> <IRanges>  <Rle> | <numeric>
  a     chr1   [5, 14]      + |     0.897
  b     chr1   [6, 15]      - |     0.266
  c     chr2   [7, 16]      - |     0.372
  d     chr3   [8, 17]      + |     0.573
  ---
  seqlengths:
   chr1 chr2 chr3
    100  100  100

The best part of all is that GRanges objects support the same style of subsetting you’re
already familiar with (i.e., from working with other R objects like vectors and data‐
frames). For example, if you wanted all ranges with a start position greater than 7:

> start(gr) > 7
[1] FALSE FALSE FALSE  TRUE
> gr[start(gr) > 7]
GRanges with 1 range and 1 metadata column:
    seqnames    ranges strand |        gc
       <Rle> <IRanges>  <Rle> | <numeric>
  d     chr3   [8, 17]      + |     0.573
  ---
  seqlengths:
   chr1 chr2 chr3
    100  100  100

Once again, there’s no magic going on; GRanges simply interprets a logical vector of
TRUE/FALSE values given by start(gr) > 7 as which rows to include/exclude. Using
the seqname() accessor, we can count how many ranges there are per chromosome
and then subset to include only ranges for a particular chromosome:

> table(seqnames(gr))

chr1 chr2 chr3
   2    1    1
> gr[seqnames(gr) == "chr1"]
GRanges with 2 ranges and 1 metadata column:
    seqnames    ranges strand |        gc
       <Rle> <IRanges>  <Rle> | <numeric>
  a     chr1   [5, 14]      + |     0.897
  b     chr1   [6, 15]      - |     0.266
  ---
  seqlengths:
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   chr1 chr2 chr3
    100  100  100

The mcols() accessor is used access metadata columns:
> mcols(gr)
DataFrame with 4 rows and 1 column
         gc
  <numeric>
1     0.897
2     0.266
3     0.372
4     0.573

Because this returns a DataFrame and DataFrame objects closely mimic data.frame, $
works to access specific columns. The usual syntactic shortcut for accessing a column
works too:

> mcols(gr)$gc
[1] 0.897 0.266 0.372 0.573
> gr$gc
[1] 0.897 0.266 0.372 0.573

The real power is when we combine subsetting with the data kept in our metadata
columns. Combining these makes complex queries trivial. For example, we could
easily compute the average GC content of all ranges on chr1:

> mcols(gr[seqnames(gr) == "chr1"])$gc
[1] 0.897 0.266
> mean(mcols(gr[seqnames(gr) == "chr1"])$gc)
[1] 0.5815

If we wanted to find the average GC content for all chromosomes, we would use the
same split-apply-combine strategy we learned about in Chapter 9. We’ll see this later
on.

Grouping Data with GRangesList
In Chapter 8, we saw how R’s lists can be used to group data together, such as after
using split() to split a dataframe by a factor column. Grouping data this way is use‐
ful for both organizing data and processing it in chunks. GRanges objects also have
their own version of a list, called GRangesList, which are similar to R’s lists. GRanges
Lists can be created manually:

> gr1 <- GRanges(c("chr1", "chr2"), IRanges(start=c(32, 95), width=c(24, 123)))
> gr2 <- GRanges(c("chr8", "chr2"), IRanges(start=c(27, 12), width=c(42, 34)))
> grl <- GRangesList(gr1, gr2)
> grl
GRangesList of length 2:
[[1]]
GRanges with 2 ranges and 0 metadata columns:
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      seqnames    ranges strand
         <Rle> <IRanges>  <Rle>
  [1]     chr1 [32,  55]      *
  [2]     chr2 [95, 217]      *

[[2]]
GRanges with 2 ranges and 0 metadata columns:
      seqnames   ranges strand
  [1]     chr8 [27, 68]      *
  [2]     chr2 [12, 45]      *

---
seqlengths:
 chr1 chr2 chr8
   NA   NA   NA

GRangesList objects behave almost identically to R’s lists:
> unlist(grl) 
GRanges with 4 ranges and 0 metadata columns:
      seqnames    ranges strand
         <Rle> <IRanges>  <Rle>
  [1]     chr1 [32,  55]      *
  [2]     chr2 [95, 217]      *
  [3]     chr8 [27,  68]      *
  [4]     chr2 [12,  45]      *
  ---
  seqlengths:
   chr1 chr2 chr8
     NA   NA   NA

> doubled_grl <- c(grl, grl) 
> length(doubled_grl)
[1] 4

unlist() combines all GRangesList elements into a single GRanges object (much
like unlisting an R list of vectors to create one long vector).

We can combine many GRangesList objects with c().

Accessing certain elements works exactly as it did with R’s lists. Single brackets return
GRangesList objects, and double brackets return what’s in a list element—in this case,
a GRanges object:

> doubled_grl[2]
GRangesList of length 1:
[[1]]
GRanges with 2 ranges and 0 metadata columns:
      seqnames    ranges strand
         <Rle> <IRanges>  <Rle>
  [1]     chr8  [27, 68]      *
  [2]     chr2  [12, 45]      *
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---
seqlengths:
 chr1 chr2 chr8
   NA   NA   NA
> doubled_grl[[2]]
GRanges with 2 ranges and 0 metadata columns:
      seqnames    ranges strand
         <Rle> <IRanges>  <Rle>
  [1]     chr8  [27, 68]      *
  [2]     chr2  [12, 45]      *
  ---
  seqlengths:
   chr1 chr2 chr8
     NA   NA   NA

Like lists, we can also give and access list element names with the function names().
GRangesList objects also have some special features. For example, accessor functions
for GRanges data (e.g., seqnames(), start(), end(), width(), ranges(), strand(),
etc.) also work on GRangesList objects:

> seqnames(grl)
RleList of length 2
[[1]]
factor-Rle of length 2 with 2 runs
  Lengths:    1    1
  Values : chr1 chr2
Levels(3): chr1 chr2 chr8

[[2]]
factor-Rle of length 2 with 2 runs
  Lengths:    1    1
  Values : chr8 chr2
Levels(3): chr1 chr2 chr8

> start(grl)
IntegerList of length 2
[[1]] 32 95
[[2]] 27 12

Note the class of object Bioconductor uses for each of these: RleList and Integer
List. While these are classes we haven’t seen before, don’t fret—both are analogous to
GRangesList: a list for a specific type of data. Under the hood, both are specialized,
low-level data structures from the S4Vectors package. RleList are lists for run-
length encoded vectors, and IntegerList objects are lists for integers (with added
features). Both RleList and IRangesList are a bit advanced for us now, but suffice to
say they behave a lot like R’s lists and they’re useful for intermediate and advanced
GenomicRanges users. I’ve included some resources about these in the README file
in this chapter’s directory on GitHub.
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In practice, we’re usually working with too much data to create GRanges objects man‐
ually with GRangesList(). More often, GRangesLists come about as the result of
using the function split() on GRanges objects. For example, I’ll create some random
GRanges data, and demonstrate splitting by sequence name:

> chrs <- c("chr3", "chr1", "chr2", "chr2", "chr3", "chr1")
> gr <- GRanges(chrs, IRanges(sample(1:100, 6, replace=TRUE),
                width=sample(3:30, 6, replace=TRUE)))
> head(gr)
GRanges with 6 ranges and 0 metadata columns:
      seqnames    ranges strand
         <Rle> <IRanges>  <Rle>
  [1]     chr3 [90,  93]      *
  [2]     chr1 [27,  34]      *
  [3]     chr2 [38,  44]      *
  [4]     chr2 [58,  79]      *
  [5]     chr3 [91, 103]      *
  [6]     chr1 [21,  44]      *
  ---
  seqlengths:
   chr3 chr1 chr2
     NA   NA   NA

> gr_split <- split(gr, seqnames(gr))
> gr_split[[1]]
GRanges with 4 ranges and 0 metadata columns:
      seqnames    ranges strand
         <Rle> <IRanges>  <Rle>
  [1]     chr3 [90,  93]      *
  [2]     chr3 [91, 103]      *
  [3]     chr3 [90, 105]      *
  [4]     chr3 [95, 117]      *
  ---
  seqlengths:
   chr3 chr1 chr2
     NA   NA   NA
> names(gr_split)
[1] "chr3" "chr1" "chr2"

Bioconductor also provides an unsplit() method to rejoin split data on the same
factor that was used to split it. For example, because we created gr_split by splitting
on seqnames(gr), we could unsplit gr_split with unsplit(gr_split, seq
names(gr)).

So why split GRanges objects into GRangesList objects? The primary reason is that
GRangesList objects, like R’s base lists, are a natural way to group data. For example,
if we had a GRanges object containing all exons, we may want to work with exons
grouped by what gene or transcript they belong to. With all exons grouped in a
GRangesList object, exons for a particular gene or transcript can be returned by
accessing a particular list element.
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Grouped data is also the basis of the split-apply-combine pattern (covered in “Work‐
ing with the Split-Apply-Combine Pattern” on page 239). With R’s base lists, we could
use lapply() and sapply() to iterate through all elements and apply a function. Both
of these functions work with GRangesLists objects, too:

> lapply(gr_split, function(x) order(width(x))) 
$chr3
[1] 1 2 3 4

$chr1
[1] 1 2

$chr2
[1] 1 4 2 3
> sapply(gr_split, function(x) min(start(x))) 
chr3 chr1 chr2
  90   21   38
> sapply(gr_split, length) 
chr3 chr1 chr2
   4    2    4
> elementLengths(gr_split) 
chr3 chr1 chr2
   4    2    4

Return the order of widths (smallest range to largest) of each GRanges element in
a GRangesList.

Return the start position of the earliest (leftmost) range.

The number of ranges in every GRangesList object can be returned with this R
idiom.

However, a faster approach to calculating element lengths is with the specialized
function elementLengths().

lapply() and sapply() (as well as mapply()) give you the most freedom to write and
use your own functions to apply to data. However, for many overlap operation func‐
tions (e.g., reduce(), flank(), coverage(), and findOverlaps()), we don’t need to
explicitly apply them—they can work directly with GRangesList objects. For exam‐
ple, reduce() called on a GRangesList object automatically works at the list-element
level:

> reduce(gr_split)
GRangesList of length 3:
$chr3
GRanges with 1 range and 0 metadata columns:
      seqnames    ranges strand
         <Rle> <IRanges>  <Rle>
  [1]     chr3 [90, 117]      *
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$chr1
GRanges with 1 range and 0 metadata columns:
      seqnames   ranges strand
  [1]     chr1 [21, 44]      *

$chr2
GRanges with 2 ranges and 0 metadata columns:
      seqnames   ranges strand
  [1]     chr2 [38, 44]      *
  [2]     chr2 [58, 96]      *

---
seqlengths:
 chr3 chr1 chr2
   NA   NA   NA

reduce() illustrates an important (and extremely helpful) property of GRangesList
objects: many methods applied to GRangesList objects work at the grouped-data
level automatically. Had this list contained exons grouped by transcript, only overlap‐
ping exons within a list element (transcript) would be collapsed with reduce(). findO
verlaps() behaves similarly; overlaps are caclulated at the list-element level. We’ll see
a more detailed example of findOverlaps() with GRangesList objects once we start
working with real annotation data in the next section.

Working with Annotation Data: GenomicFeatures and rtracklayer
We’ve been working a lot with toy data thus far to learn basic range concepts and
operations we can perform on ranges. Because the GenomicRanges package shines
when working interactively with moderately large amounts of data, let’s switch gears
and learn about two Bioconductor packages for importing and working with external
data. Both packages have different purposes and connect with GenomicRanges. The
first, GenomicFeatures, is designed for working with transcript-based genomic anno‐
tations. The second, rtracklayer, is designed for importing and exporting annota‐
tion data into a variety of different formats. As with other software covered in this
book, both of these packages have lots of functionality that just can’t be covered in a
single section; I highly recommend that you consult both packages’ vignettes.

GenomicFeatures is a Bioconductor package for creating and working with
transcript-based annotation. GenomicFeatures provides methods for creating and
working with TranscriptDb objects. These TranscriptDb objects wrap annotation
data in a way that allows genomic features, like genes, transcripts, exons, and coding
sequences (CDS), to be extracted in a consistent way, regardless of the organism and
origin of the annotation data. In this section, we’ll use a premade TranscriptDb
object, contained in one of Bioconductor’s transcript annotation packages. Later on,
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we’ll see some functions GenomicFeatures has for creating TranscriptDb objects (as
well as transcript annotation packages) from external annotation data.

R Packages for Data

While it may sound strange to use an R package that contains data
rather than R code, it’s actually a clever and appropriate use of an R
package. Bioconductor uses packages for many types of data,
including transcript and organism annotation data, experimental
data, compressed reference genomes, and microarray and SNP
platform details. Packages are a terrific way to unite data from mul‐
tiple sources into a single easily loaded and explicitly versioned
shared resource. Using data packages can eliminate the hassle of
coordinating which files and what versions (and from what web‐
sites) collaborators need to download and use for an analysis.
Overall, working with data from packages facilitates reproducibil‐
ity; if you’re working with annotation data in R, use the appropriate
package if it exists.

Let’s start by installing GenomicFeatures and the transcript annotation package for
mouse, Mus musculus. We’ve already installed Bioconductor’s package installer, so we
can install GenomicFeatures with:

> library(BiocInstaller)
> biocLite("GenomicFeatures")

Now, we need to install the appropriate Mus musculus transcript annotation package.
We can check which annotation packages are available on the Bioconductor annota‐
tion package page. There are a few different packages for Mus musculus. At the time
I’m writing this, TxDb.Mmusculus.UCSC.mm10.ensGene is the most recent. Let’s install
this version:

> biocLite("TxDb.Mmusculus.UCSC.mm10.ensGene")

While this is installing, notice the package’s naming scheme. All transcript annotation
packages use the same consistent naming scheme—that is,
TxDb.<organism>.<annotation-source>.<annotation-version>. This annotation
is for mouse genome version mm10 (Genome Reference Consortium version
GRCm38), and the annotation comes from UCSC’s Ensembl track. Once these pack‐
ages have installed, we’re ready to load them and start working with their data:

> library(TxDb.Mmusculus.UCSC.mm10.ensGene)
> txdb <- TxDb.Mmusculus.UCSC.mm10.ensGene
> txdb
TranscriptDb object:
| Db type: TranscriptDb
| Supporting package: GenomicFeatures
| Data source: UCSC
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| Genome: mm10
| Organism: Mus musculus
| UCSC Table: ensGene
| Resource URL: http://genome.ucsc.edu/
| Type of Gene ID: Ensembl gene ID
| Full dataset: yes
| miRBase build ID: NA
| transcript_nrow: 94647
| exon_nrow: 348801
| cds_nrow: 226282
| Db created by: GenomicFeatures package from Bioconductor
| Creation time: 2014-03-17 16:22:04 -0700 (Mon, 17 Mar 2014)
| GenomicFeatures version at creation time: 1.15.11
| RSQLite version at creation time: 0.11.4
| DBSCHEMAVERSION: 1.0
> class(txdb)
[1] "TranscriptDb"
attr(,"package")
[1] "GenomicFeatures"

Loading TxDb.Mmusculus.UCSC.mm10.ensGene gives us access to a transcriptDb
object with the same name as the package. The package name is quite long and would
be a burden to type, so it’s conventional to alias it to txdb. When we look at the tran
scriptDb object txdb, we get a lot of metadata about this annotation object’s version
(how it was created, when it was created, etc.). Under the hood, this object simply
represents a SQLite database contained inside this R package (we’ll learn more about
these in Chapter 13). We don’t need to know any SQLite to interact with and extract
data from this object; the GenomicFeatures package provides all methods we’ll need.
This may sound a bit jargony now, but will be clear after we look at a few examples.

First, suppose we wanted to access all gene regions in Mus musculus (in this version
of Ensembl annotation). There’s a simple accessor function for this, unsurprisingly
named genes():

> mm_genes <- genes(txdb)
> head(mm_genes)
> head(mm_genes)
GRanges with 6 ranges and 1 metadata column:
                     seqnames                 ranges strand |            gene_id
                        <Rle>              <IRanges>  <Rle> |    <CharacterList>
  ENSMUSG00000000001     chr3 [108107280, 108146146]      - | ENSMUSG00000000001
  ENSMUSG00000000003     chrX [ 77837901,  77853623]      - | ENSMUSG00000000003
  ENSMUSG00000000028    chr16 [ 18780447,  18811987]      - | ENSMUSG00000000028
  ENSMUSG00000000031     chr7 [142575529, 142578143]      - | ENSMUSG00000000031
  ENSMUSG00000000037     chrX [161117193, 161258213]      + | ENSMUSG00000000037
  ENSMUSG00000000049    chr11 [108343354, 108414396]      + | ENSMUSG00000000049
  ---
  seqlengths:
                   chr1                 chr2 ...       chrUn_JH584304
              195471971            182113224 ...               114452
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> length(mm_genes)
[1] 39017

GenomicFeatures returns the data in a GRanges object, so all the tricks we’ve learned
for working with GRanges can be used to work with this data.

Note that the GRanges object containing all mouse genes has 39,014 ranges. This
includes coding genes, short noncoding genes, long noncoding genes, and pseudo‐
genes—everything that comprises the entire ensGene track on UCSC (and all genes
with an Ensembl gene identifier). It’s always a good idea to make sure you know what
you’re getting with gene annotation; you should also validate that the totals make
sense against an external source. For example, I’ve validated that the total number of
genes is consistent with Ensembl’s gene annotation summary page for mouse genome
version mm10.

GenomicFeatures has other functions for retrieving all transcripts, exons, coding
sequences (CDS), and promoters—the functions transcripts(), exons(), cds(),
and promoters(). Consult the documentation for this family of functions for extract‐
ing information from transcriptDb objects at help(transcripts).

It’s often more natural to work with a GRangesList object of these types of features
grouped by some other type of feature than working with a massive GRanges list
object of everything. For example, we might want to retrieve all exons grouped by
transcript or gene:

> mm_exons_by_tx <- exonsBy(txdb, by="tx")
> mm_exons_by_gn <- exonsBy(txdb, by="gene")
> length(mm_exons_by_tx)
[1] 94647
> length(mm_exons_by_gn)
[1] 39017

These functions that extract grouped features all take the transcriptDb object as
their first argument and which type of feature to group by (e.g., gene, tx, exon, or cds)
as their second argument. There are variety of these types of functions—for example,
transcriptsBy(), exonsBy(), cdsBy(), intronsBy(), fiveUTRsByTranscript(), and
threeUTRsByTranscript() (see help(transcriptsBy) for more information).

GenomicFeatures also provides functions for extracting subsets of features that over‐
lap a specific chromosome or range. We can limit our queries to use a subset of chro‐
mosomes by setting which sequences our transcriptDb should query using the
following approach:

> seqlevels(txdb, force=TRUE) <- "chr1"
> chr1_exons <- exonsBy(txdb, "tx")
> all(unlist(seqnames(chr1_exons)) == "chr1")
[1] TRUE
> txdb <- restoreSeqlevels(txdb) # restore txdb so it queries all sequences
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To extract feature data that only overlaps a specific region, use the following family of
functions: transcriptsByOverlaps(), exonsByOverlaps(), and cdsByOverlaps()
(see help(transcriptByOverlaps() for more information). For example, say a QTL
study has identified a quantitative trait loci in the region roughly on chromosome 8,
from 123,260,562 to 123,557,264. Our coordinates are rough, so we’ll add 10kbp.
Recall that with IRanges, we grow ranges by a fixed number of bases by adding that
number of bases to the object (from “Basic Range Operations: Arithmetic, Transfor‐
mations, and Set Operations” on page 275); the same method is used to resize
GRanges objects. So we can get all genes within this expanded region with:

> qtl_region <- GRanges("chr8", IRanges(123260562, 123557264))
> qtl_region_expanded <- qtl_region + 10e3
> transcriptsByOverlaps(txdb, qtl_region_expanded)
GRanges with 73 ranges and 2 metadata columns:
       seqnames                 ranges strand   |     tx_id            tx_name
          <Rle>              <IRanges>  <Rle>   | <integer>        <character>
   [1]     chr8 [119910841, 124345722]      +   |     47374 ENSMUST00000127664
   [2]     chr8 [123254195, 123269745]      +   |     47530 ENSMUST00000001092
   [3]     chr8 [123254271, 123257636]      +   |     47531 ENSMUST00000150356
   [4]     chr8 [123254284, 123269743]      +   |     47532 ENSMUST00000156896
   [5]     chr8 [123254686, 123265070]      +   |     47533 ENSMUST00000154450
   ...      ...                    ...    ... ...       ...                ...
  [69]     chr8 [123559201, 123559319]      -   |     49320 ENSMUST00000178208
  [70]     chr8 [123560888, 123561006]      -   |     49321 ENSMUST00000179143
  [71]     chr8 [123562595, 123562713]      -   |     49322 ENSMUST00000178297
  [72]     chr8 [123564286, 123564404]      -   |     49323 ENSMUST00000179019
  [73]     chr8 [123565969, 123566087]      -   |     49324 ENSMUST00000179081
  ---
  seqlengths:
                   chr1                 chr2 ...       chrUn_JH584304
              195471971            182113224 ...               114452

transcriptByOverlaps() returns all transcripts overlapping this range. All functions
in this family also take a maxgap argument, which can be used to specify how large a
gap between ranges is considered an overlap (0 by default). Setting the maxgap argu‐
ment to 10kbp has the same effect as widening our ranges and then extracting ele‐
ments as we did in the preceding example.

Creating TranscriptDb Objects
If there isn’t a transcript annotation package containing a transcriptDb object for
your organism, annotation track, or genome version of choice, GenomicFeatures pro‐
vides a multitude of methods to create one. If the annotation track you’d like to use is
on the UCSC Genome Browser or a BioMart (e.g., a data management system used by
databases Ensembl and WormBase), GenomicFeatures contains the functions make
TranscriptDbFromUCSC() and makeTranscriptDbFromBiomart() for creating
transcriptDb from these databases. For some nonmodel systems, annotation only
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exists as a Gene Transfer Format (GTF) or Gene Feature Format (GFF) file. In this
case, a transcriptDb object can be created with the makeTranscriptDbFromGFF()
method. Once you’ve created a transcriptDb object using one of these methods, you
can save the underlying SQLite database with saveDb() and load it again with
loadDb(). As a demonstration of how easy this is, the following line downloads all
required annotation data from Ensembl to create a transcriptDb object for Platypus:

> species <- "oanatinus_gene_ensembl"
> platypus_txdb <- makeTranscriptDbFromBiomart("ensembl", species)

Although creating transcriptDb directly and saving these objects as SQLite databases
certainly works, GenomicFeatures makes it easy to create a transcript annotation
package directly from tracks from the UCSC Genome Browser, Biomart, or from a
transcriptDb object. See the functions makeTxDbPackageFromUCSC(), makeTxDbPack
ageFromBiomart(), and makeTxDbPackage(), and the GenomicFeatures vignette or
documentation for more detail on how to use these functions.

The transcriptDb objects and the methods provided by the GenomicFeatures pack‐
age provide a consistent representation of transcript-based annotation and consistent
functions for interacting with these objects. However, like everything in life, there are
trade-offs. Convenience and consistency can come at the cost of flexibility. The
rtracklayer package includes flexible functions for importing and exporting data
that stores ranges from a variety of formats like GTF/GFF, BED, BED Graph, and
Wiggle. These functions automatically convert entries to GRanges objects and handle
technicalities like missing values and assigning columns in the file to metadata col‐
umns—features that general solutions like read.delim() don’t have. Let’s look at how
the rtracklayer function import() loads the Mus_musculus.GRCm38.75_chr1.gtf.gz
file (available on this book’s GitHub page):

> mm_gtf <- import('Mus_musculus.GRCm38.75_chr1.gtf.gz')
> colnames(mcols(mm_gtf)) # metadata columns read in
 [1] "source"            "type"              "score"
 [4] "phase"             "gene_id"           "gene_name"
 [7] "gene_source"       "gene_biotype"      "transcript_id"
[10] "transcript_name"   "transcript_source" "tag"
[13] "exon_number"       "exon_id"           "ccds_id"
[16] "protein_id"

The function import() detects the file type (with hints from the file extension—
another reason to use the proper extension) and imports all data as a GRanges object.
There are also specific functions (e.g., import.bed(), import.gff(), import.wig(),
etc.) that can you can use if you want to specify the format.

The rtracklayer package also provides export methods, for taking range data and
saving it to a variety of common range formats. For example, suppose we wanted to
write five random pseudogenes to a GTF file. We could use:
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> set.seed(0)
> pseudogene_i <- which(mm_gtf$gene_biotype == "pseudogene" &
  mm_gtf$type == "gene")
> pseudogene_sample <- sample(pseudogene_i, 5)
> export(mm_gtf[pseudogene_sample], con="five_random_pseudogene.gtf",
  format="GTF")

If we didn’t care about the specifics of these ranges (e.g., the information stored in the
metadata columns), the BED file format may be more appropriate. BED files require
at a minimum three columns: chromosomes (or sequence name), start position, and
end position (sometimes called the BED3 format). The easiest way to save only this
information would be:

> bed_data <- mm_gtf[pseudogene_sample]
> mcols(bed_data) <- NULL # clear out metadata columns
> export(bed_data, con="five_random_pseudogene.bed", format="BED")

Finally, it’s worth noting that we’re just scratching the surface of rtracklayer’s capa‐
bilities. In addition to its import/export functions, rtracklayer also interfaces with
genome browsers like UCSC’s Genome Browser. Using rtracklayer, one can create
tracks for UCSC’s browser directly from GRanges objects and send these to a UCSC
Genome Browser web session directly from R. If you find yourself using the UCSC
Genome Browser frequently, it’s worth reading the rtracklayer vignette and learn‐
ing how to interact with it through R.

Retrieving Promoter Regions: Flank and Promoters
Now, let’s start seeing how the range operations in GenomicRanges can solve real bio‐
informatics problems. For example, suppose we wanted to grab the promoter regions
of all protein-coding genes from the GRCh38 Mus musculus Ensembl GTF annota‐
tion track for chromosome 1 we loaded in using rtracklayer in the previous section.
We’ll use this object rather than extracting genes from a transcriptDb object because
it contains additional information about the type of transcript (such as the gene_bio
type and type columns we used in the previous section to find pseudogenes). So, first
we could find the subset of genes we’re interested in—in this case, let’s say all protein
coding genes:

> table(mm_gtf$gene_biotype) 

       antisense                lincRNA                  miRNA
             480                    551                    354
        misc_RNA polymorphic_pseudogene   processed_transcript
              93                     61                    400
  protein_coding             pseudogene                   rRNA
           77603                    978                     69
  sense_intronic      sense_overlapping                 snoRNA
              21                      4                    297
           snRNA
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> chr1_pcg <- mm_gtf[mm_gtf$type == "gene" & 
                     mm_gtf$gene_biotype == "protein_coding"]
> summary(width(chr1_pcg))
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
     78    9429   25750   60640   62420 1076000
> length(chr1_pcg)
[1] 1240
> chr1_pcg_3kb_up <- flank(chr1_pcg, width=3000) 
>

First, let’s do some basic EDA. We know we want to select protein coding genes,
which we can do by subsetting the gene_bioype column. Calling table() on it
returns the number of features of each biotype. A full list of biotypes can be
found on the GENCODE website. We see that there are around 78,000 features
with the protein coding biotype.

Next, we can subset all features that have type “gene” (rather than exon, CDS,
transcript, etc.) and biotype “protein_coding.” As a sanity check, we make sure
that the length distribution and number of features makes sense (remember, this
is just chromosome 1 data).

Then, we can use flank to grab 3kbp upstream of each feature. Read
help(flank) to refresh your memory of this method. You first question should
be, “how does flank() handle strand?” Looking at the documentation, we see
that by default flank() takes strand into consideration (option
ignore.strand=FALSE), so we just specify the width of our flanking region. Note
that our promoter regions are those defined from the start of our gene region to
3kbp upstream.

Extracting promoter regions is such a common operation that GenomicRanges pack‐
ages have a convenience function to make it even simpler: promoters(). promoters()
default arguments extract 3kbp upstream of each range, and 200bp downstream. For
example, we could mimic our flank() call and show that the results are identical
with:

> chr1_pcg_3kb_up2 <- promoters(chr1_pcg, upstream=3000, downstream=0)
> identical(chr1_pcg_3kb_up, chr1_pcg_3kb_up2)
[1] TRUE

Retrieving Promoter Sequence: Connection GenomicRanges with
Sequence Data
Once we’ve created promoter ranges using flank() (or promoters()), we can use
these to grab the promoter nucleotide sequences from a genome. There are two dif‐
ferent ways we could do this:
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• Entirely through Bioconductor’s packages (as we’ll see in this section)
• By exporting the GenomicRanges objects to a range file format like BED, and

using a command-line tool like BEDTools

Either method works, but the Bioconductor approach requires that genome sequen‐
ces be stored in a special R package (similar to the annotation packages we encoun‐
tered earlier). If your organism doesn’t have a premade genome package, it may be
faster to write the promoter ranges to a file and use BEDTools. Because our example
promoter regions are in mouse (a model organism), Bioconductor has a premade
genome package we can download and use:

> library(BiocInstaller)
> biocLite("BSgenome")
# Note: this file is about 712MB, so be ensure you have enough
# disk space before installing!
> biocLite("BSgenome.Mmusculus.UCSC.mm10")

This is a BSgenome package, where BS stands for Biostrings, a Bioconductor package
that contains classes for storing sequence data and methods for working with it.
BSgenome packages contain the full reference genome for a particular organism,
compressed and wrapped in a user-friendly package with common accessor methods.
We’ll just scratch the surface of these packages in this section, so it’s definitely worth
reading their vignettes on Bioconductor’s website.

Let’s first load the BSgenome.Mmusculus.UCSC.mm10 package and poke around:
> library(BSgenome.Mmusculus.UCSC.mm10)
> mm_gm <- BSgenome.Mmusculus.UCSC.mm10
> organism(mm_gm)
[1] "Mus musculus"
> providerVersion(mm_gm)
[1] "mm10"
> provider(mm_gm)
[1] "UCSC"

organisim(), providerVersion(), and provider() are all accessor functions to
extract information from BSgenome packages.

We can use the accessor function seqinfo() to look at sequence information. BSge‐
nome packages contain sequences for each chromosome, stored in a list-like struc‐
ture we can access using indexing:

> seqinfo(mm_gm)
Seqinfo of length 66
seqnames       seqlengths isCircular genome
chr1            195471971      FALSE   mm10
chr2            182113224      FALSE   mm10
[...]
> mm_gm$chrM
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  16299-letter "DNAString" instance
seq: GTTAATGTAGCTTAATAACAAAGCAAAGCACTGAAA...TCTAATCATACTCTATTACGCAATAAACATTAACAA
> mm_gm[[22]]
  16299-letter "DNAString" instance
seq: GTTAATGTAGCTTAATAACAAAGCAAAGCACTGAAA...TCTAATCATACTCTATTACGCAATAAACATTAACAA

While we won’t go into this topic in detail, it’s worth mentioning that BSgenome
objects can be searched using the string-matching and alignment functions in the Bio
strings packages. These are meant for a few, quick queries (certainly not large-scale
alignment or mapping!). For example:

> library(Biostrings)
> matchPattern("GGCGCGCC", mm_gm$chr1)
  Views on a 195471971-letter DNAString subject
subject: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN...NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
views:
          start       end width
  [1]   4557138   4557145     8 [GGCGCGCC]
  [2]   4567326   4567333     8 [GGCGCGCC]
  [3]   6960128   6960135     8 [GGCGCGCC]
  [4]   7397441   7397448     8 [GGCGCGCC]
  [5]   7398352   7398359     8 [GGCGCGCC]

Using these promoter regions and the Mus musculus promoter regions we created in
the previous section, we’re ready to extract promoter sequences. Unfortunately, we
need to adjust our promoter GRanges object first because the genome annotation file
Mus_musculus.GRCm38.75_chr1.gtf.gz uses chromosome names like “1”, “2”, etc.
while the BSgenome.Mmusculus.UCSC.mm10 package uses names like “chr1”, “chr2”,
etc. Having to remap one chromosome naming scheme to another is quite a common
operation as there is no standard chromosome naming scheme. Bioconductor pro‐
vides some nice functions to make this as simple and safe as possible. We’ll see the
problem, how to fix is manually, and how to fix it using convenience functions:

> all(seqlevels(chr1_pcg_3kb_up) %in% seqlevels(mm_gm)) 
[1] FALSE
> gr <- GRanges(c("chr1", "chr2"), IRanges(start=c(3, 4), width=10)) 
> seqlevels(gr)
[1] "chr1" "chr2"
> seqlevels(gr) <- c("1", "2") 
> seqlevels(gr)
[1] "1" "2"

> seqlevelsStyle(chr1_pcg_3kb_up) 
[1] "NCBI"
> seqlevelsStyle(mm_gm)
[1] "UCSC"
> seqlevelsStyle(chr1_pcg_3kb_up) <- "UCSC" 
> all(seqlevels(chr1_pcg_3kb_up) %in% seqlevels(mm_gm))
[1] TRUE
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First, always check that all sequences we want to grab are in the BSgenome
object. Because the BSgenome.Mmusculus.UCSC.mm10 file uses the UCSC chro‐
mosome name style and our annotation file uses Ensembl/NCBI style, this is not
the case.

Let’s create a test GRanges object so we can show how we can manually change
chromosome names. Bioconductor packages treat sequence names much like the
factors we saw in “Factors and classes in R” on page 191. We can access and set
the names of these levels using the seqlevels() function.

Here, we change the sequence levels using seqlevels(). We provide the
sequence level names in the same order as the original sequence levels.

Because having to switch between the style “chr1” (UCSC style) and “1”
(Ensembl/NCBI style) is common, Bioconductor provides a convenience func‐
tion seqlevelsStyle(). Here, we see that the style of chr1_pcg_3kb_up is indeed
“NCBI”.

Now, we set the style to “UCSC”. After (as demonstrated on the next line), the
sequence levels are consistent between the two objects.

With our chromosome names consistent between our GRanges promoter regions and
the mouse BSgenome package, it’s easy to grab the sequences for particular regions
kept in a GRanges object:

> chr1_3kb_seqs <- getSeq(mm_gm, chr1_pcg_3kb_up)
> chr1_3kb_seqs
  A DNAStringSet instance of length 1240
       width seq
   [1]  3000 ATTCTGAGATGTGGTTACTAGATCAATGGGAT...CGGCTAGCCGGGCCCAGCGCCCAGCCCCGCGG
   [2]  3000 GAAGTGGTATATCTGCCTAGTCTAGGTGTGCA...GCTGTACTTAATCTGTGAGCACACATGCTAGT
   [3]  3000 CTTAAAAACCTAGATATTCTATTTTTTTTTTT...CTTTGATAACGTCGTGAGCTCGGCTTCCAACA
   [4]  3000 GAATTGGCACAGTTTCACATGATTGGTCCATT...GTACGGCCGCTGCAGCGCGACAGGGGCCGGGC
   [5]  3000 AAATATAAAGTTAACATACAAAAACTAGTCGC...TCGGGGCGCGAGCTCGGGGCCGAACGCGAGGA
   ...   ... ...
[1236]  3000 CAACATGGGTAGTAGTGGGGGAGCTTTAGTTC...GAGGGGCTGGCCTCACCAAGACGCAACAGGGA
[1237]  3000 AGGTGTGTTATATAATAATTGGTTTGACACTG...CTTAAAACTTGCTCTCTGGCTTCCTGGCGCCC
[1238]  3000 TTGGCCAGGTGATTGATCTTGTCCAACTGGAA...GTAAGGCCGGGCTATATGCAAACCGAGTTCCC
[1239]  3000 GGCATTCCCCTATACTGGGGCATAGAACCTTC...ATTTAAGGGTCTGCTCCCCACTGCTTACAGCC
[1240]  3000 GTAAATTTTCAGGTATATTTCTTTCTACTCTT...CTTTGATATTTCTGTGGTCCTTATTTCTAGGT

The method getSeq() takes a BSgenome object and a GRanges object, and returns the
sequences for each range. We could then write these sequences to a FASTA file using:

> writeXStringSet(chr1_3kb_seqs, file="mm10_chr1_3kb_promoters.fasta",
  format="fasta")

318 | Chapter 9: Working with Range Data



It’s worth mentioning that Bioconductor has many other packages for working with
promoter sequences, extracting motifs, and creating sequence logo plots. This func‐
tionality is well documented in a detailed workflow on the Bioconductor website.

Getting Intergenic and Intronic Regions: Gaps, Reduce, and Setdiffs in
Practice
As another example, let’s look at gaps() applied to GRanges objects. The gaps()
method illustrates a rather important point about applying range operations to
genomic data: we need to consider how range operations will work with strand and
work across difference chromosomes/sequences. With IRanges, gaps were simple:
they’re just the areas of a sequence with a range on them. With genomic ranges, gaps
are calculated on every combination of strand and sequence. Here’s an example of
this on a toy GRanges object so it’s clear what’s happening:

> gr2 <- GRanges(c("chr1", "chr2"), IRanges(start=c(4, 12), width=6),
                 strand=c("+", "-"), seqlengths=c(chr1=21, chr2=41))
> gr2 # so we can see what these ranges look like
GRanges with 2 ranges and 0 metadata columns:
      seqnames    ranges strand
         <Rle> <IRanges>  <Rle>
  [1]     chr1  [ 4,  9]      +
  [2]     chr2  [12, 17]      -
  ---
  seqlengths:
   chr1 chr2
     21   41
> gaps(gr2)
GRanges with 8 ranges and 0 metadata columns:
      seqnames    ranges strand
         <Rle> <IRanges>  <Rle>
  [1]     chr1  [ 1,  3]      +
  [2]     chr1  [10, 21]      +
  [3]     chr1  [ 1, 21]      -
  [4]     chr1  [ 1, 21]      *
  [5]     chr2  [ 1, 41]      +
  [6]     chr2  [ 1, 11]      -
  [7]     chr2  [18, 41]      -
  [8]     chr2  [ 1, 41]      *
  ---
  seqlengths:
   chr1 chr2
     21   41

That’s a lot of gaps—a lot more than we’d expect from two ranges! What’s going on?
This function is dealing with the complexities of strands. When applied to GRanges,
gaps() creates ranges for all sequences (chr1 and chr2 here) and all strands (+, -, and
ambiguous strand *). For sequence-strand combinations without any ranges, the gap
spans the entire chromosome. GRanges does this because this is the safest way to return
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gaps: anything less would lead to a loss of information. If we just care about gaps irre‐
spective of strand, we could take the original gr2 ranges, ditch strand information,
and then create gaps with these (ignoring the gaps across entire chromosome-strand
combinations):

> gr3 <- gr2
> strand(gr3) <- "*"
> gaps(gr3)[strand(gaps(gr3)) == "*"]
GRanges with 4 ranges and 0 metadata columns:
      seqnames    ranges strand
         <Rle> <IRanges>  <Rle>
  [1]     chr1  [ 1,  3]      *
  [2]     chr1  [10, 21]      *
  [3]     chr2  [ 1, 11]      *
  [4]     chr2  [18, 41]      *
  ---
  seqlengths:
   chr1 chr2
     21   41

Replacing strand with the ambiguous strand * is a common trick when we don’t care
about keeping strand information. With gaps, we usually don’t care about the
specifics of strand—we usually say a region is covered by a range, or it’s a gap.

Another approach to creating gaps using range operations is to use the set operations
covered in “Basic Range Operations: Arithmetic, Transformations,
and Set Operations” on page 275. A good illustration of the advantage of using set
operations on GRanges objects is creating intergenic regions from all transcripts. This
can be thought of as taking a set of ranges that represent entire chromosomes, and
taking the set difference of these and all transcripts:

> chrom_grngs <- as(seqinfo(txdb), "GRanges") 
> head(chrom_grngs, 2)
GRanges with 2 ranges and 0 metadata columns:
       seqnames         ranges strand
          <Rle>      <IRanges>  <Rle>
  chr1     chr1 [1, 195471971]      *
  chr2     chr2 [1, 182113224]      *
  ---
  seqlengths:
                   chr1                 chr2 ...       chrUn_JH584304
              195471971            182113224 ...               114452
> collapsed_tx <- reduce(transcripts(txdb)) 
> strand(collapsed_tx) <- "*" 
> intergenic <- setdiff(chrom_grngs, collapsed_tx) 

First, we use the as() method to coerce the TranscriptDb object’s chromosome
information (such as names, lengths, etc.) into a GRanges object representing the
ranges for entire chromosomes. In general, Bioconductor packages include many
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helpful coercion methods through the as() method. As the next line demon‐
strates, the result of this is indeed a GRanges object representing entire chromo‐
somes.

Next, we take all transcripts from our txdb TranscriptDb object and reduce
them, so overlapping transcripts are collapsed into a single range. We collapse
these overlapping ranges because we don’t care about the gaps between each tran‐
script, but rather any region covered by a transcript (which is what reduce()
returns).

As before, we ditch strand because we want all regions uncovered by a transcript
on either strand.

Finally, we take the set difference between ranges representing an entire chromo‐
some, and those that represent transcripts on those ranges. This leaves all regions
without a transcript, which are the intergenic regions. Technically, this is a more
inclusive set of intergenic ranges, as we’re saying a “gene” is any transcript, not
just protein coding transcripts. This is yet another example where a common
bioinformatics task can be easily accomplished with range operations and range-
thinking. Try drawing the reduced transcript ranges and chromosome ranges out
and seeing what setdiff() does to understand what’s going on.

Now, let’s look at how to create GRanges objects representing the introns of tran‐
scripts. We’re going to do this two ways: first, using a simple convenience function
appropriately named intronsByTranscripts(), then using range set operations. The
former method is simple and fast (it gives you a fish), while the latter method teaches
you really important range manipulations that will allow you to solve many other
range problems (it teaches you to fish). First, let’s consider the simple solution that
uses the TranscriptDb object txdb we loaded earlier:

> mm_introns <- intronsByTranscript(txdb)
> head(mm_introns[['18880']], 2) # get first two introns for transcript 18880
GRanges with 2 ranges and 0 metadata columns:
      seqnames                 ranges strand
         <Rle>              <IRanges>  <Rle>
  [1]     chr3 [113556174, 113558092]      -
  [2]     chr3 [113558219, 113558321]      -
  ---
  seqlengths:
                   chr1                 chr2 ...       chrUn_JH584304
              195471971            182113224 ...               114452

We’ll now look at the manual approach that uses range set operations. This is a bit
advanced, so if you’re feeling lost, you can skip ahead and come back to this later (but
it does illustrate some awesome range manipulation tricks). We’ll make this example
simpler by only creating the introns for a single gene, amylase 1 (which from the
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Ensembl website has gene identifier ENSMUSG00000074264). The set operation
approach we’ll take considers introns as the set difference between transcripts range
and the exons’ ranges for these transcripts. Each set difference is computed pairwise
between the exons of a particular transcript and the transcript’s range. Let’s first get
the transcripts for the amylase 1 gene:

> amy1 <- transcriptsBy(txdb, 'gene')$ENSMUSG00000074264
> amy1
GRanges with 5 ranges and 2 metadata columns:
      seqnames                 ranges strand |     tx_id            tx_name
         <Rle>              <IRanges>  <Rle> | <integer>        <character>
  [1]     chr3 [113555710, 113577830]      - |     18879 ENSMUST00000067980
  [2]     chr3 [113555953, 113574762]      - |     18880 ENSMUST00000106540
  [3]     chr3 [113556149, 113562018]      - |     18881 ENSMUST00000172885
  [4]     chr3 [113562690, 113574272]      - |     18882 ENSMUST00000142505
  [5]     chr3 [113564987, 113606699]      - |     18883 ENSMUST00000174147
  ---
  seqlengths:
                   chr1                 chr2 ...       chrUn_JH584304
              195471971            182113224 ...               114452

There are five transcripts in the amylase 1 gene that we need to create introns for.
Each of these transcripts contains a different set of exons. We’ll extract all exons from
the TranscriptDb object first, and then subset out the ones we need for these tran‐
scripts later:

> mm_exons <- exonsBy(txdb, "tx")
> mm_exons[[18881]]  # an example exon GRanges object to see what it looks like
GRanges object with 5 ranges and 3 metadata columns:
      seqnames                 ranges strand |   exon_id   exon_name exon_rank
         <Rle>              <IRanges>  <Rle> | <integer> <character> <integer>
  [1]     chr3 [113561824, 113562018]      - |     68132        <NA>         1
  [2]     chr3 [113561632, 113561731]      - |     68130        <NA>         2
  [3]     chr3 [113558322, 113558440]      - |     68129        <NA>         3
  [4]     chr3 [113558093, 113558218]      - |     68128        <NA>         4
  [5]     chr3 [113556149, 113556173]      - |     68127        <NA>         5
  -------
  seqinfo: 66 sequences (1 circular) from mm10 genome

mm_exons contains all mouse exons, so we first need to extract only the exons belong‐
ing to our amylase 1 gene transcripts. A nice feature of GRangesList objects created
by the split() method is that each list element is given the name of the vector used
to split the ranges. Similarly, each list element created by exonsBy(txdb, "tx") is
also named, using the transcript names (because we used by="tx"). Thus, we can
easily match up our transcripts and exons by transcript identifiers, which are the ele‐
ment names of both the GRangesList objects amy1_tx and mm_exons. Matching these
two GRangesList objects is then just a matter of using match():

> amy1_exons <- mm_exons[match(names(amy1_tx), names(mm_exons))]

322 | Chapter 9: Working with Range Data



Here’s what amy1_exons now looks like (only one transcript’s exons shown):
> amy1_exons
GRangesList object of length 5:
$18879
GRanges object with 11 ranges and 3 metadata columns:
       seqnames                 ranges strand   |   exon_id   exon_name  [...]
          <Rle>              <IRanges>  <Rle>   | <integer> <character>  [...]
   [1]     chr3 [113577701, 113577830]      -   |     68142        <NA>  [...]
   [2]     chr3 [113569845, 113570057]      -   |     68139        <NA>  [...]
   [3]     chr3 [113569382, 113569528]      -   |     68138        <NA>  [...]
   [4]     chr3 [113564869, 113565066]      -   |     68136        <NA>  [...]
   [5]     chr3 [113563445, 113563675]      -   |     68135        <NA>  [...]
[...]

Now, we want to process each transcript and its exons pairwise. Our exons are already
grouped by transcript, but our transcripts are in a single GRanges object (because
these are transcripts grouped by gene, and we’re looking at one gene). So we split up
transcript ranges into a GRangeList object, this time grouping by transcript identi‐
fier:

> amy1_tx <- split(amy1, amy1$tx_id)
> amy1_tx
GRangesList object of length 5:
$18879
GRanges object with 1 range and 2 metadata columns:
      seqnames                 ranges strand |     tx_id            tx_name
         <Rle>              <IRanges>  <Rle> | <integer>        <character>
  [1]     chr3 [113555710, 113577830]      - |     18879 ENSMUST00000067980

$18880
GRanges object with 1 range and 2 metadata columns:
      seqnames                 ranges strand | tx_id            tx_name
  [1]     chr3 [113555953, 113574762]      - | 18880 ENSMUST00000106540
[...]

With both our exons and transcripts grouped by transcript, we can finally take the
pairwise set difference (with psetdiff()) which creates the set of introns for each
transcript. Remember, it’s imperative when using pairwise set functions to make sure
your two objects are correctly matched up!

> all(names(amy1_tx) == names(amy1_exons))  # check everything's matched up
[1] TRUE
> amy1_introns <- psetdiff(amy1_tx, amy1_exons)
> head(amy1_introns[['18880']], 2) # the first two introns of amylase
                                   # 1 transcript 18880
GRanges with 2 ranges and 0 metadata columns:
      seqnames                 ranges strand
         <Rle>              <IRanges>  <Rle>
  [1]     chr3 [113556174, 113558092]      -
  [2]     chr3 [113558219, 113558321]      -
  ---
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  seqlengths:
                   chr1                 chr2 ...       chrUn_JH584304
              195471971            182113224 ...               114452

Are the introns we created manually for this gene identical to those created by the
function intronsByTranscripts()? It’s always a good idea to validate your methods
through comparison to another method or visual inspection using a genome browser.
Here, we compare to the introns found with intronsByTranscript():

> identical(mm_introns[names(amy1_tx)], amy1_introns)
[1] TRUE

Indeed, the manual method using psetdiff() works.

Finding and Working with Overlapping Ranges
Finding and counting overlaps are probably the most important operations in work‐
ing with GRanges objects and ranges in general. Bioconductor’s GenomicRanges pack‐
age has functions for finding overlaps, subsetting by overlaps, and counting overlaps
that are nearly identical to methods found in the IRanges package. There are a couple
exceptions:

• Overlap methods that work with GRanges objects.
• Only consider overlaps of ranges on the same chromosome or sequence.
• You have the choice to consider how strands are handled.

Mind Your Overlaps (Part II)
Overlaps get quite complex very quickly (as discussed in a warning earlier). Nowhere
is this more apparent than with RNA-seq, where many technical issues can make the
simple act of estimating transcript abundance (by counting how many aligned
sequencing reads overlap a transcript region) incredibly complicated. First, counting
overlaps in RNA-seq yields quantitative results that are used in downstream statistical
analyses (e.g., the abundance of estimates for a particular transcript). This means that
bias and noise that enter the range overlap quantification process could lead to inac‐
curacies in differential expression tests. Second, sequencing reads may align ambigu‐
ously—to multiple spots in the genome equally well. Do we count these multiple
mapping reads (sometimes known as “multireads”)? Or discard them entirely? Some
modern RNA-seq quantification methods like RSEM (Li et al., 2011) attempt to res‐
cue these multireads. Third, some reads may align uniquely, but overlap an exon that’s
shared by two or more transcripts’ isoforms. Should we ignore this read, count it once
for each transcript (leading to double counting), or assign it to a transcript? All of
these rather technical decisions in finding and counting overlaps can unfortunately
lead to different biological results. Accurate RNA-seq quantification is still an actively
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researched area, and methods are still being developed and improving. In general, the
methods in this section are only appropriate for simple overlap operations, and may
not be appropriate for quantification tasks like estimating transcript abundance for
RNA-seq.

Some popular RNA-seq quantification tools are:

• RSEM, or RNA-Seq by Expectation Maximization (Li et al., 2011).
• TopHat and The TopHat and Cufflinks suite of tools (Trapnell et al., 2009; Trap‐

nell et al., 2012).
• HTSeq (Anders et al., 2014).
• The GenomicAlignments Bioconductor package (Lawrence et al., 2013). This new

package from Bioconductor has special structures for storing genomic align‐
ments and working with these alignments. This package also contains a summari
zeOverlaps() method, which supports specific overlap options (and works
directly on BAM files).

To demonstrate how findOverlaps() can be used with GRanges objects, we’ll load in
a BED file of dbSNP (build 137) variants (in addition to SNPs, dbSNP also includes
other types of variants like insertions/deletions, short tandem repeats, multi-
nucleotide polymorphisms) for mouse chromosome 1. This BED file is available in
the book’s GitHub repository, in the directory for this chapter. Using rtracklayer,
we’ll load these in:

> library(rtracklayer)
> dbsnp137 <- import("mm10_snp137_chr1_trunc.bed.gz")

Suppose we want to find out how many of these variants fall into exonic regions, and
how many do not. Using the mouse TranscriptDb object we loaded earlier (txdb) we
can extract and collapse all overlapping exons with reduce(). We’ll also subset so that
we’re only looking at chromosome 1 exons (because our variants are only from chro‐
mosome 1):

> collapsed_exons <- reduce(exons(txdb), ignore.strand=TRUE)
> chr1_collapsed_exons <- collapsed_exons[seqnames(collapsed_exons) == "chr1"]

Let’s explore our dbsnp137 object before looking for overlaps (remember the Golden
Rule: don’t trust your data). Let’s look at the length distribution of our variants:

> summary(width(dbsnp137))
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  0.000   1.000   1.000   1.138   1.000 732.000
> dbsnp137$name[which.max(width(dbsnp137))]
[1] "rs232497063"
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The variant that’s 732 bases long is a bit large, so we find out which entry it is and
grab its RS identifier. Checking on the dbSNP website, we see that this is indeed a real
variant—a rather large insertion/deletion on chromosome 1. From our summary(),
we see that the vast majority of variants are 1 nucleotide long, which are either SNPs
or 1 basepair insertons/deletions. Note that the minimum width is zero—there are
also variants with zero widths. Using dbsnp137[width(dbsnp137) == 0], we can take
look at a few of these. In most cases, these correspond to insertions into the reference
genome (these can be easily verified with the dbSNP or UCSC Genome Browser web‐
sites). Zero-width ranges will not overlap any feature, as they don’t have any region to
overlap another range (create some range with zero widths and validate this). These
technical details are rather annoying, but illustrate why it’s important to inspect and
understand our data and not just blindly apply functions. To count these zero-width
features too, we’ll resize using the resize() function:

> dbsnp137_resized <- dbsnp137
> zw_i <- width(dbsnp137_resized) == 0
> dbsnp137_resized[zw_i] <- resize(dbsnp137_resized[zw_i], width=1)

With this set of ranges, it’s easy now to find out how many variants overlap our chro‐
mosome 1 exon regions. We’ll use findOverlaps() to create a Hits object. We’ll tell
findOverlaps() to ignore strand:

> hits <- findOverlaps(dbsnp137_resized, chr1_collapsed_exons,
  ignore.strand=TRUE)
> hits
Hits of length 58346
queryLength: 2700000
subjectLength: 15048
      queryHits subjectHits
       <integer>   <integer>
 1          1250           1
 2          1251           1
 3          1252           1
 4          1253           1
 5          1254           1
[...]
> length(unique(queryHits(hits)))
[1] 58343
> length(unique(queryHits(hits)))/length(dbsnp137_resized)
[1] 0.02160852

The number of dbSNP variants on chromosome 1 that overlap our exons is given by
the number of unique query hits in the Hits object: 118,594. This represents about
2% of the variants on chromosome 1, a figure that makes sense given that exonic
regions make up small proportion of chromosome 1 (you should be able to work out
what proportion of this is using GenomicRanges methods fairly easily).

326 | Chapter 9: Working with Range Data

http://bit.ly/ref-snp


Suppose we now wanted to look at the variants that do overlap these exons. We could
do this by using the indices in the Hits object, but a simpler method is to use the
method subsetByOverlaps():

> subsetByOverlaps(dbsnp137_resized, chr1_collapsed_exons, ignore.strand=TRUE)
GRanges with 118594 ranges and 2 metadata columns:
           seqnames                 ranges strand   |        name     score
              <Rle>              <IRanges>  <Rle>   | <character> <numeric>
       [1]     chr1     [3054535, 3054535]      +   |  rs30525614         0
       [2]     chr1     [3054556, 3054556]      +   | rs233033126         0
       [3]     chr1     [3054666, 3054666]      +   |  rs51218981         0
       [4]     chr1     [3054674, 3054674]      +   |  rs49979360         0
       [5]     chr1     [3054707, 3054707]      +   | rs108510965         0
[...]

Note that the length of this GRanges object matches up with the number of overlap‐
ping variants that overlap exons earlier.

GenomicRanges also includes a method for counting overlaps, countOverlaps(). So
suppose we wanted to count the number of variants that overlap each exonic region.
Because we want the counts to be based on the exonic regions (which were the sub‐
ject ranges in these operations), we reverse the order of the arguments:

> var_counts <- countOverlaps(chr1_collapsed_exons, dbsnp137_resized,
  ignore.strand=TRUE)
> head(var_counts)
[1]  6  0 35 48  2  5

To make these easier to follow, let’s append them to our chromosome 1 exonic
regions GRanges object as a metadata column:

> chr1_collapsed_exons$num_vars <- var_counts
> chr1_collapsed_exons
GRanges with 15048 ranges and 1 metadata column:
          seqnames                 ranges strand   |  num_vars
             <Rle>              <IRanges>  <Rle>   | <integer>
      [1]     chr1     [3054233, 3054733]      *   |         6
      [2]     chr1     [3102016, 3102125]      *   |         0
      [3]     chr1     [3205901, 3207317]      *   |        35
      [4]     chr1     [3213439, 3216968]      *   |        48
      [5]     chr1     [3421702, 3421901]      *   |         2
[...]

At this point, it wouldn’t be a bad idea to visit some of these regions (like
“chr1:3054233-3054733”) on the mouse UCSC Genome Browser and check that the
number of variants on the dbSNP track matches up with the number we see here (6).

Calculating Coverage of GRanges Objects
The same coverage methods we saw with IRanges also work with GRanges and
GRangesList objects. Let’s generate some random fake 150bp reads on chromosome
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19 (because it’s the smallest chromosome) of our mouse genome and then empirically
measure their coverage. We’ll target 5x coverage. Using the famous Lander-Waterman
coverage equation for coverage (C = LN/G, where C is coverage, L is the read length,
N is the sequence length, and N is the number of reads), we see that for 150bp reads,
a chromosome length of 61,431,566bp, and a target of 5x coverage, we need:
5*61,431,566/150 = 2,047,719 reads. Let’s generate these using R’s sample() function:

> set.seed(0)
> chr19_len <- seqlengths(txdb)['chr19']
> chr19_len
   chr19
61431566
> start_pos <- sample(1:(chr19_len-150), 2047719, replace=TRUE)
> reads <- GRanges("chr19", IRanges(start=start_pos, width=150))

Now, let’s use the coverage() method from GenomicRanges to calculate the coverage
of these random reads:

> cov_reads <- coverage(reads)

Coverage is calculated per every chromosome in the ranges object, and returned as a
run-length encoded list (much like sequence names are returned by seqnames() from
a GRangesList). We can calculate mean coverage per chromosome easily:

> mean(cov_reads)
   chr19
5.000001

It’s also easy to calculate how much of this chromosome has no reads covering it (this
will happen with shotgun sequencing, due to the random nature of read placement).
We can do this two ways. First, we could use == and table():

> table(cov_reads == 0)
         FALSE     TRUE
chr19 61025072   406487

Or, we could use some run-length encoding tricks (these are faster, and scale to larger
data better):

> sum(runLength(cov_reads)[runValue(cov_reads) == 0])
 chr19
406487
> 406487/chr19_len
      chr19
0.006616908

So, about 0.6% of our chromosome 19 remains uncovered. Interestingly, this is very
close to the proportion of uncovered bases expected under Lander-Waterman, which
is Poisson distributed with λ = c (where c is coverage). Under the Poisson distribu‐
tion, the expected proportion of uncovered genome is e-c where c is coverage, which
in this case is e-c ~ 0.0067 (where e is Napier/Euler’s constant).
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Working with Ranges Data on the Command Line with
BEDTools
While Bioconductor’s IRanges, GenomicRanges, and GenomicFeatures packages are
all powerful libraries for working with genomic interval data in R, for some tasks
working with range data on the command line can be more convenient. While
GenomicRanges offers the huge advantage of allowing interactive work, there’s a cost
to loading all data into memory at once so we can work with it. For example, suppose
you wanted to calculate the coverage across a genome for each of 300 BED files. A
single command that reads a BED file and calculates coverage would would be easier
to run than loading the data into R, writing (simple) code to calculate coverage, and
saving the results to file. While a custom solution allows more fine-tuned control, this
means more work. A specialized command-line tool may offer less flexibility, but it’s
easier to get up and running and parallelize in Unix (we’ll see how we could parallel‐
ize this in Chapter 12).

The BEDTools suite is a set of command-line tools for working directly with data
kept in range file formats like BED, GTF, and GFF. Much like Git, BEDTools is a sin‐
gle command that uses a series of subcommands that do specific tasks. Each of these
subcommands has similarities with one or more range operations we’ve seen in
IRanges and GenomicRanges. The skills you’ve learned for manipulating IRanges and
GenomicRanges objects are directly applicable to the range operations you’ll perform
with BEDTools. Because you’re likely very familiar with range operations and “range-
thinking” by now, we’ll move through this material quickly, mostly as a demonstra‐
tion of how powerful BEDTools is and when it will be useful in your work.

First, let’s download the toy data we’ll be playing with. All of these files are available in
this chapter’s directory in the GitHub repository. We’ll continue using the data from
Mus musculus, genome version mm10. Specifically, we’ll use the following files:

• ranges-qry.bed is a simple BED file containing six ranges. These are the query
ranges used in the GenomicRanges findOverlaps examples (except, because these
are in BED format, they are 0-indexed).

• ranges-sbj.bed is the counterpart of ranges-sbj; these are the subject ranges used
in the GenomicRanges findOverlaps examples. Both ranges-sbj.bed and ranges-
qry.bed are depicted in Figure 9-11 (though, this visualization uses 1-based coor‐
dinates).

• Mus_musculus.GRCm38.75_chr1.gtf.gz are features on chromosome 1 of
Mus_musculus.GRCm38.75.gtf.gz. The latter file is Ensembl’s annotation file for
mm10 (which is the same as GRCh38) and was downloaded from Ensembl’s FTP
site.

Working with Ranges Data on the Command Line with BEDTools | 329

http://bit.ly/mus-dl
http://bit.ly/mus-dl


• Mus_musculus.GRCm38_genome.txt is a tab-delimited file of all chromosome
names and lengths from the mm10/GRCm38 genome version.

As a Unix command-line tool that works with plain-text range formats like BED,
GTF, and GFF, BEDTools is desgined to be used in collaboration with other Unix
tools like cut, sort, grep, and awk. For example, while BEDTools has its own sortBed
command, it’s more efficient to use Unix sort. Also, BEDTools operations that can be
applied to many independent files can also be parallelized using Unix tools like xargs
or GNU parallel (covered in Chapter 12).

Computing Overlaps with BEDTools Intersect
Overlaps are the most commonly used range-based operations in bioinformatics, so
they’re a natural place to start with BEDTools. The BEDTools intersect subcom‐
mand computes the overlaps between two sets of ranges. Run in the default mode,
bedtools intersect works exactly like the GenomicRanges intersect() function.
Let’s use the BED files ranges-qry.bed and ranges-sbj.bed, which contain the same
ranges used in the findOverlaps() example. Rather than thinking about ranges as
query and subject, BEDTools labels ranges “A” and “B.” We specify the input BED files
“A” and “B” through the options -a and -b. We’ll use BED files, but a nice feature of
BEDTools is that its commands also work with GTF/GFF files.

Below, we calculate the intersection using bedtools intersect.
$ cat ranges-qry.bed
chr1    0       15      a
chr1    25      29      b
chr1    18      18      c
chr1    10      14      d
chr1    20      23      e
chr1    6       7       f
$ cat ranges-sbj.bed
chr1    0       4       x
chr1    18      28      y
chr1    9       15      z
$ bedtools intersect -a ranges-qry.bed -b ranges-sbj.bed
chr1    0       4       a
chr1    9       15      a
chr1    25      28      b
chr1    18      18      c
chr1    10      14      d
chr1    20      23      e

bedtools intersect returns the intersecting ranges with names from the file passed
to the -a argument. Like GenomicRanges intersect(), only the overlap region is
returned. For example, only the sections of range a in ranges-qry.bed that overlap the
x and z ranges in ranges-sbj.bed are returned.
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Alignment Files with BEDTools

While we’re focusing on annotation/track formats like BED and
GFF/GTF, BEDTools also has full support to work with BAM files, 
a binary alignment format we’ll talk about in much detail in Chap‐
ter 10. For now, note that for subcommands like intersect and
genomecov, you can also work with BAM files directly. BEDTools
also has a subcommand to convert BAM files to BED files (bed
tools bamtobed), but usually it’s best to work with BAM files
directly: the conversion from BAM to BED loses information
stored about each alignment.

Often, we don’t want just the intersect of overlapping query and subject ranges, but
the entire query range. This is akin to using findOverlaps() to create a Hits object,
and taking all query ranges with an overlap (covered in “Finding Overlapping
Ranges” on page 281). With BEDTools, we can do this using the option -wa, which
returns the ranges in “A” that overlap “B”:

$ bedtools intersect -a ranges-qry.bed -b ranges-sbj.bed -wa
chr1    0       15      a
chr1    0       15      a
chr1    25      29      b
chr1    18      18      c
chr1    10      14      d
chr1    20      23      e

Now, note that because the range “a” overlaps two subjects (x and z), the full “a” range
is reported twice, one for each subject. If you don’t want these duplicates, you could
specify the flag -u (for unique).

Similarly, there’s a -wb option too:
$ bedtools intersect -a ranges-qry.bed -b ranges-sbj.bed -wb
chr1    0       4       a       chr1    0       4       x
chr1    9       15      a       chr1    9       15      z
chr1    25      28      b       chr1    18      28      y
chr1    18      18      c       chr1    18      28      y
chr1    10      14      d       chr1    9       15      z
chr1    20      23      e       chr1    18      28      y

Here, the overlapping region is first reported (this is the same as bedtools inter
sect without any additional arguments), followed by the full ranges of “B” that “A”
overlaps. Flags -wa and -wb can be combined to return the full “A” and “B” ranges that
are overlapping:

$ bedtools intersect -a ranges-qry.bed -b ranges-sbj.bed -wa -wb
chr1    0       15      a       chr1    0       4       x
chr1    0       15      a       chr1    9       15      z
chr1    25      29      b       chr1    18      28      y
chr1    18      18      c       chr1    18      28      y
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chr1    10      14      d       chr1    9       15      z
chr1    20      23      e       chr1    18      28      y

Running bedtools intersect on large files can use a lot of your system’s memory.
For very large files, it can be much more efficient to first sort both “A” and “B” files by
chromosome and position, and then compute intersects on these sorted input files.
bedtools intersect has a special algorithm that works faster (and uses less mem‐
ory) on sorted input files; we enable this with -sorted. For example, using the fake
files query-sorted.bed and subject-sorted.bed:

$ bedtools intersect -a query-sorted.bed -b subject-sorted.bed --sorted

These BED files would have to be sorted first, as we did in “Sorting Plain-Text Data
with Sort” on page 147 with sort -k1,1 -k2,2n. Note that the performance benefits
pay off most when intersecting large files; with small files, the benefits may be too
small to notice or might be swamped out by fixed costs.

BEDTools’s intersect has lots of functionality beyond just overlaps. For example,
you can also return the number of overlapping bases with the -wo argument:

$ bedtools intersect -a ranges-qry.bed -b ranges-sbj.bed -wo
chr1    0       15      a       chr1    0       4       x       4
chr1    0       15      a       chr1    9       15      z       6
chr1    25      29      b       chr1    18      28      y       3
chr1    18      18      c       chr1    18      28      y       0
chr1    10      14      d       chr1    9       15      z       4
chr1    20      23      e       chr1    18      28      y       3

Like grep -v (which returns nonmatching lines), bedtools intersect also has a -v
option, which returns all nonoverlapping ranges.

$ bedtools intersect -a ranges-qry.bed -b ranges-sbj.bed -v
chr1    6       7       f

Getting Help in BEDTools

Much like Git, BEDTools has extensive documentation built into
the BEDTools command (and luckily, it’s much less technical and
easier to understand than Git’s documentation). We can see all
BEDTools subcommands by simply running bedtools without any
arguments. Running a subcommand such as bedtools intersect
without any arguments prints out the arguments, options, and use‐
ful notes for this command.

This test data isn’t stranded, but with real data we need to be concerned with strand.
bedtools intersect does not consider strand by default, so if you want to only look
for intersects of features on the same strand, you must specify -s.
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This is just a quick demonstration of bedtools intersect; see the full documenta‐
tion for much more information.

BEDTools Slop and Flank
Like GenomicRanges, BEDTools has support for increasing the size of features and
extracting flanking sequences. Earlier we saw how we could grow GRanges objects
using arithemetic operators like + or the resize() function. With BEDTools, we grow
ranges with bedtools slop. Unlike bedtools intersect, slop takes a single input
range file through the argument -i. We also need to provide bedtools slop with a
tab-delimited genome file that specifies the length of each chromosome—this is what
BEDTools uses to ensure that ranges don’t grow past the end of the of the chromo‐
some. For our fake test data, we’ll create this using echo, but in general we could use
bioawk (discussed in “Bioawk: An Awk for Biological Formats” on page 163):

$ bioawk -c fastx '{print $name"\t"length($seq)}' your_genome.fastq > genome.txt

So for our test data, we’d use:
$ echo -e "chr1\t100" > genome.txt
$ bedtools slop -i ranges-qry.bed -g genome.txt -b 4 
chr1    0       19      a
chr1    21      33      b
chr1    14      22      c
chr1    6       18      d
chr1    16      27      e
chr1    2       11      f
$ bedtools slop -i ranges-qry.bed -g genome.txt -l 3 -r 5 
chr1    0       20      a
chr1    22      34      b
chr1    15      23      c
chr1    7       19      d
chr1    17      28      e
chr1    3       12      f

Here, the argument -b 4 tells bedtools slop to grow both sides of each range by
4 base pairs. If this runs past the beginning or end of the chromosome (as range a
in ranges-qry.bed does), this will return 0 or the total chromosome length, respec‐
tively.

Optionally, you can specify how many bases to add to the left (-l) and right (-r)
sides of each range. Either can be set to zero to resize only one side.

BEDTools also has a tool for extracting flanking ranges, which is handy for getting
promoter sequences. As with slop, flank needs a genome file containing the lengths
of each chromosome sequence. Let’s use bedtools flank to extract some promoter
regions for genes. We’ll use the Mus_musculus.GRCm38.75_chr1.gtf.gz GTF file.
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However, this file contains all types of features: exons, transcripts, CDS, noncoding
regions, and so on (look at it with zless for confirmation). If we only want to use
promoters for each protein coding gene, we can use the Unix tricks of Chapter 7 to
extract only these ranges:

$ bioawk -cgff '{if ($feature == "gene") print $0}' \
               Mus_musculus.GRCm38.75_chr1.gtf.gz | \
  grep 'gene_biotype "protein_coding";' > mm_GRCm38.75_protein_coding_genes.gtf

Mind Your Chromosome Names

It’s very likely that when working with data (annotation or other
data) from other sources, you’ll run into the different chromosome
naming scheme problem. For example, the UCSC Genome
Browser gives Mus musculus chromosome names like “chr1,”
“chrX,” etc. while Ensembl uses named like “1,” “X,” etc. BEDTools
is good about warning you when it can’t find a sequence length in a
genome file, but it won’t warn for subcommands that don’t require
a genome file (like intersect). Always check that your chromo‐
some names across different data sources are compatible.

Now, using these protein coding gene feature and the mm10/GRCm38 genome file in
this chapter’s GitHub repository, we can extract 3kbp left of each range:

$ bedtools flank -i mm_GRCm38.75_protein_coding_genes.gtf \
                 -g Mus_musculus.GRCm38_genome.txt \
                 -l 3000 -r 0 > mm_GRCm38_3kb_promoters.gtf
$ cut -f1,4,5,7 mm_GRCm38.75_protein_coding_genes.gtf | head -n 3
1       3205901 3671498 -
1       4343507 4360314 -
1       4490928 4496413 -
$ cut -f1,4,5,7 mm_GRCm38_3kb_promoters.gtf | head -n 3
1       3671499 3674498 -
1       4360315 4363314 -
1       4496414 4499413 -

Check that these upstream ranges make sense, minding the very important fact that
these are all on the negative strand (a common stumbling block).

We can use the bedtools getfasta subcommand to extract sequences for a given set
of ranges. For example, we could use bedtools getfasta to extract the promoter
sequences for the ranges we’ve just created. Including the entire mouse genome in
this book’s GitHub repository would be a bit too much, so rather than using the full
genome, we’ll use the chromosome 1 file, Mus_musculus.GRCm38.75.dna_rm.tople‐
vel_chr1.fa. You’ll need to unzip this first from Mus_muscu‐
lus.GRCm38.75.dna_rm.toplevel_chr1.fa.gz, then run bedtools getfasta:
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$ gunzip Mus_musculus.GRCm38.75.dna_rm.toplevel_chr1.fa.gz
$ bedtools getfasta -fi Mus_musculus.GRCm38.75.dna_rm.toplevel_chr1.fa \ 
   -bed mm_GRCm38_3kb_promoters.gtf -fo mm_GRCm38_3kb_promoters.fasta    

The input FASTA file with -fi.

Input BED file is specified with -bed and output FASTA file of extracted sequen‐
ces is specified with -fo.

Coverage with BEDTools
BEDTools’s genomecov subcommand is a versatile tool for summarizing the coverage
of features along chromosome sequences. By default, it summarizes the coverage per
chromosome sequence (and across the entire genome) as a histogram. A simple
example will make this clearer:

$ cat ranges-cov.bed
chr1    4       9
chr1    1       6
chr1    8       19
chr1    25      30
chr2    0       20
$ cat cov.txt
chr1    30
chr2    20
$ bedtools genomecov -i ranges-cov.bed -g cov.txt
chr1    0       7       30      0.233333 
chr1    1       20      30      0.666667
chr1    2       3       30      0.1
chr2    1       20      20      1 
genome  0       7       50      0.14 
genome  1       40      50      0.8
genome  2       3       50      0.06

By default, genomecov summarizes the number of bases covered at a certain
depth, per chromosome. The columns are depth, how many bases covered at this
depth, total number of bases per chromosome, and proportion of bases covered
at this depth. Here, we see that 23% of chr1’s bases are not covered (coverage of
zero); 7/30 is around 0.23.

chr2 is entirely covered by the only range on this sequence, so its proportion cov‐
ered at depth 1 is 1.

genomecov also includes genome-wide statistics on coverage.
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Sorting Chromosomes

BEDTools genomecov requires that all ranges from a particular
chromosome are grouped together—in other words, consecutive in
the BED file. Because the first column of a BED file is the chromo‐
some, we can easily group features with Unix sort, using: sort -
k1,1 ranges.bed > ranges.sorted.bed. See “Sorting Plain-Text
Data with Sort” on page 147 for more information on Unix sort.

With bedtools genomecov, it’s also possible to get per-base pair coverage. This is
much like GenomicRanges coverage():

$ bedtools genomecov -i ranges-cov.bed -g cov.txt -d  | head -n5
chr1    1       0
chr1    2       1
chr1    3       1
chr1    4       1
chr1    5       2

These three columns correspond to the chromosome, the position on that chromo‐
some, and the coverage at that position. As you might imagine, this is not the most
compact format for per-base coverage statistics. A much better solution is to use the
BedGraph format. BedGraph is similar to the run-length encoding we encountered
earlier, except runs of the same depth are stored as the ranges. We can tell genomecov
to output data in BedGraph format using:

$ bedtools genomecov -i ranges-cov.bed -g cov.txt -bg
chr1    1       4       1
chr1    4       6       2
chr1    6       8       1
chr1    8       9       2
chr1    9       19      1
chr1    25      30      1
chr2    0       20      1

Other BEDTools Subcommands and pybedtools
There are many other useful subcommands in the BEDTools suite that we don’t have
the space to discuss. BEDTools subcommands are extensively well documented
though, both within the command itself (discussed earlier) and online at the BED‐
Tools documentation site. The following are a few useful subcommands worth read‐
ing about:

bedtools annotate
This is an incredibly useful command that takes a set of files (e.g., BED files for
CpG islands, conservation tracks, methylation regions, etc.) and annotates how
much coverage each of these files has over another input file (e.g., exonic
regions).
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bedtools merge
merge is a lot like the GenomicRanges reduce() method; it merges overlapping
ranges into a single range.

bedtools closest
This subcommand is a lot like the GenomicRanges nearest() method.

bedtools complement
This is the BEDTools version of gaps() (similar to setdiff() too).

bedtools multicov
multicov counts the number of alignments in multiple BAM files that overlap a
specified BED file. This is an incredibly useful tool for counting overlaps across
numerous BED files, which could represent different samples or treatments.

bedtools multiinter
This subcommand is similar to bedtools intersect, but works with multiple
file inputs. multiinter will return whether each input BED file overlaps a given
feature. This is useful for comparing whether experimental data (e.g., ChIP-Seq
peaks or DNase I hypersensitivity sites) for many samples intersect features dif‐
ferently across samples. Similarly, the subcommand bedtools jaccard can cal‐
culate similarity metrics for pairs of datasets to summarize similarities across
samples through a simple statistic (Jaccard Similarity).

bedtools unionbedg
This subcommand merges multiple BedGraph files into a single file.

This is not an exhaustive subcommand list; see the full listing at the BEDTools docu‐
mentation website.

Finally, it’s worth mentioning the Pybedtools library (Dale et al., 2011). Pybedtools is
an excellent Python wrapper for BEDTools that allows you to employ BEDTools’s
range operations from within Python.
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CHAPTER 10

Working with Sequence Data

One of the core issues of Bioinformatics is dealing with a profusion of (often poorly
defined or ambiguous) file formats. Some ad hoc simple human readable formats have
over time attained the status of de facto standards.

—Peter Cock et al. (2010)
Good programmers know what to write. Great ones know what to rewrite (and reuse).

— The Cathedral and the Bazaar Eric
S. Raymond

Nucleotide (and protein) sequences are stored in two plain-text formats widespread
in bioinformatics: FASTA and FASTQ—pronounced fast-ah (or fast-A) and fast-Q,
respectively. We’ll discuss each format and their limitations in this section, and then
see some tools for working with data in these formats. This is a short chapter, but one
with an important lesson: beware of common pitfalls when working with ad hoc bio‐
informatics formats. Simple mistakes over minor details like file formats can con‐
sume a disproportionate amount of time and energy to discover and fix, so mind
these details early on.

The FASTA Format
The FASTA format originates from the FASTA alignment suite, created by William R.
Pearson and David J. Lipman. The FASTA format is used to store any sort of sequence
data not requiring per-base pair quality scores. This includes reference genome files,
protein sequences, coding DNA sequences (CDS), transcript sequences, and so on.
FASTA can also be used to store multiple alignment data, but we won’t discuss this
specialized variant of the format here. We’ve encountered the FASTA format in earlier
chapters, but in this section, we’ll cover the format in more detail, look at common
pitfalls, and introduce some tools for working with this format.
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FASTA files are composed of sequence entries, each containing two parts: a descrip‐
tion and the sequence data. The description line begins with a greater than symbol (>)
and contains the sequence identifier and other (optional) information. The sequence
data begins on the next line after the description, and continues until there’s another
description line (a line beginning with >) or the file ends. The egfr_flank.fasta file in
this chapter’s GitHub directory is an example FASTA file:

$ head -10 egfr_flank.fasta
>ENSMUSG00000020122|ENSMUST00000138518
CCCTCCTATCATGCTGTCAGTGTATCTCTAAATAGCACTCTCAACCCCCGTGAACTTGGT
TATTAAAAACATGCCCAAAGTCTGGGAGCCAGGGCTGCAGGGAAATACCACAGCCTCAGT
TCATCAAAACAGTTCATTGCCCAAAATGTTCTCAGCTGCAGCTTTCATGAGGTAACTCCA
GGGCCCACCTGTTCTCTGGT
>ENSMUSG00000020122|ENSMUST00000125984
GAGTCAGGTTGAAGCTGCCCTGAACACTACAGAGAAGAGAGGCCTTGGTGTCCTGTTGTC
TCCAGAACCCCAATATGTCTTGTGAAGGGCACACAACCCCTCAAAGGGGTGTCACTTCTT
CTGATCACTTTTGTTACTGTTTACTAACTGATCCTATGAATCACTGTGTCTTCTCAGAGG
CCGTGAACCACGTCTGCAAT

The FASTA format’s simplicity and flexibility comes with an unfortunate downside:
the FASTA format is a loosely defined ad hoc format (which unfortunately are quite
common in bioinformatics). Consequently, you might encounter variations of the
FASTA format that can lead to subtle errors unless your programs are robust to these
variations. This is why it’s usually preferable to use existing FASTA/FASTQ parsing
libraries instead of implementing your own; existing libraries have already been vet‐
ted by the open source community (more on this later).

Most troubling about the FASTA format is that there’s no universal specification for
the format of an identifier in the description. For example, should the following
FASTA descriptions refer to the same entry?

>ENSMUSG00000020122|ENSMUST00000138518
> ENSMUSG00000020122|ENSMUST00000125984
>ENSMUSG00000020122|ENSMUST00000125984|epidermal growth factor receptor
>ENSMUSG00000020122|ENSMUST00000125984|Egfr
>ENSMUSG00000020122|ENSMUST00000125984|11|ENSFM00410000138465

Without a standard scheme for identifiers, we can’t use simple exact matching to
check if an identifier matches a FASTA entry header line. Instead, we would need to
rely on fuzzy matching between FASTA descriptions and our identifier. This could get
quite messy quickly: how permissive should our pattern be? Do we run the risk of
matching the wrong sequence with too permissive of a regular expression? Funda‐
mentally, fuzzy matching is a fragile strategy.

Fortunately, there’s a better solution to this problem (and it’s quite simple, too): rather
than relying on post-hoc fuzzy matching to correct inconsistent naming, start off
with a strict naming convention and be consistent. Then, run any data from outside
sources through a few sanity checks to ensure it follows your format. These checks
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don’t need to be complex (check for duplicate names, inspect some entries by hand,
check for errant spaces between the > and the identifier, check the overlap in names
between different files, etc.).

If you need to tidy up outside data, always keep the original file and write a script that
writes a corrected version to a new file. This way, the script can be easily rerun on any
new version of the original dataset you receive (but you’ll still need to check every‐
thing—don’t blindly trust data!).

A common naming convention is to split the description line into two parts at the
first space: the identifier and the comment. A sequence in this format would look like:

>gene_00284728 length=231;type=dna
GAGAACTGATTCTGTTACCGCAGGGCATTCGGATGTGCTAAGGTAGTAATCCATTATAAGTAACATGCGCGGAATATCCG
GAGGTCATAGTCGTAATGCATAATTATTCCCTCCCTCAGAAGGACTCCCTTGCGAGACGCCAATACCAAAGACTTTCGTA
GCTGGAACGATTGGACGGCCCAACCGGGGGGAGTCGGCTATACGTCTGATTGCTACGCCTGGACTTCTCTT

Here gene_00284728 is the identifier, and length=231;type=dna is the comment.
Additionally, the ID should be unique. While certainly not a standard, the convention
of treating everything before the first space as identifier and everything after as non‐
essential is common in bioinformatics programs (e.g., BEDtools, Samtools, and BWA
all do this). With this convention in place, finding a particular sequence by identifier
is easy—we’ll see how to do this efficiently with indexed FASTA files at the end of this
chapter.

The FASTQ Format
The FASTQ format extends FASTA by including a numeric quality score to each base
in the sequence. The FASTQ format is widely used to store high-throughput sequenc‐
ing data, which is reported with a per-base quality score indicating the confidence of
each base call. Unfortunately like FASTA, FASTQ has variants and pitfalls that can
make the seemingly simple format frustrating to work with.

The FASTQ format looks like:
@DJB775P1:248:D0MDGACXX:7:1202:12362:49613 
TGCTTACTCTGCGTTGATACCACTGCTTAGATCGGAAGAGCACACGTCTGAA 
+ 
JJJJJIIJJJJJJHIHHHGHFFFFFFCEEEEEDBD?DDDDDDBDDDABDDCA 
@DJB775P1:248:D0MDGACXX:7:1202:12782:49716
CTCTGCGTTGATACCACTGCTTACTCTGCGTTGATACCACTGCTTAGATCGG
+
IIIIIIIIIIIIIIIHHHHHHFFFFFFEECCCCBCECCCCCCCCCCCCCCCC

The description line, beginning with @. This contains the record identifier and
other information.

Sequence data, which can be on one or many lines.
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The line beginning with +, following the sequence line(s) indicates the end of the
sequence. In older FASTQ files, it was common to repeat the description line
here, but this is redundant and leads to unnecessarily large FASTQ files.

The quality data, which can also be on one or many lines, but must be the same
length as the sequence. Each numeric base quality is encoded with ASCII charac‐
ters using a scheme we’ll discuss later (“Base Qualities” on page 344).

As with FASTA, it’s a common convention in FASTQ files to split description lines by
the first space into two parts: the record identifier and comment.

FASTQ is deceivingly tricky to parse correctly. A common pitfall is to treat every line
that begins with @ as a description line. However, @ is also a valid quality character.
FASTQ sequence and quality lines can wrap around to the next line, so it’s possible
that a line beginning with @ could be a quality line and not a header line. Conse‐
quently, writing a parser that always treats lines beginning with @ as header lines can
lead to fragile and incorrect parsing. However, we can use the fact that the number of
quality score characters must be equal to the number of sequence characters to relia‐
bly parse this format—which is how the readfq parser introduced later on works.

The Ins and Outs of Counting FASTA/FASTQ Entries
As plain-text formats, it’s easy to work with FASTQ and FASTA with Unix tools. A
common command-line bioinformatics idiom is:

$ grep -c "^>" egfr_flank.fasta
5

As shown in “Pipes in Action: Creating Simple Programs with Grep and Pipes” on
page 47 you must quote the > character to prevent the shell from interpreting it as a
redirection operator (and overwriting your FASTA file!). This is a safe way to count
FASTA files because, while the format is loosely defined, every sequence has a one-
line description, and only these lines start with >.

We might be tempted to use a similar approach with FASTQ files, using @ instead of >:
$ grep -c "^@" untreated1_chr4.fq
208779

Which tells us untreated1_chr4.fq has 208,779 entries. But by perusing untrea‐
ted1_chr4.fq, you’ll notice that each FASTQ entry takes up four lines, but the total
number of lines is:

$ wc -l untreated1_chr4.fq
  817420 untreated1_chr4.fq

and 817,420/4 = 204,355 which is quite different from what grep -c gave us! What
happened? Remember, @ is a valid quality character, and quality lines can begin with
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this character. You can use grep "^@" untreated1_chr4.fq | less to see examples
of this.

If you’re absolutely positive your FASTQ file uses four lines per sequence entry, you
can estimate the number of sequences by estimating the number of lines with wc -l
and dividing by four. If you’re unsure if some of your FASTQ entries wrap across 
many lines, a more robust way to count sequences is with bioawk:

$ bioawk -cfastx 'END{print NR}' untreated1_chr4.fq
204355

Nucleotide Codes
With the basic FASTA/FASTQ formats covered, let’s look at the standards for encod‐
ing nucleotides and base quality scores in these formats. Clearly, encoding nucleoti‐
des is simple: A, T, C, G represent the nucleotides adenine, thymine, cytosine, and
guanine. Lowercase bases are often used to indicate soft masked repeats or low com‐
plexity sequences (by programs like RepeatMasker and Tandem Repeats Finder). 
Repeats and low-complexity sequences may also be hard masked, where nucleotides
are replaced with N (or sometimes an X).

Degenerate (or ambiguous) nucleotide codes are used to represent two or more bases.
For example, N is used to represent any base. The International Union of Pure and
Applied Chemistry (IUPAC) has a standardized set of nucleotides, both unambiguous
and ambiguous (see Table 10-1).

Table 10-1. IUPAC nucleotide codes
IUPAC code Base(s) Mnemonic

A Adenine Adenine

T Thymine Thymine

C Cytosine Cytosine

G Guanine Guanine

N A, T, C, G aNy base

Y C, T pYrimidine

R A, G puRine

S G, C Strong bond
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IUPAC code Base(s) Mnemonic

W A, T Weak bond

K G, T Keto

M A, C aMino

B C, G, T All bases except A, B follows A

D A, G, T All bases except C, D follows C

H A, C, T All bases except G, H follows G

V A, C, G All bases except T or U (for Uracil), V
follows U

Some bioinformatics programs may handle ambiguous nucleotide differently. For
example, the BWA read alignment tool converts ambiguous nucleotide characters in
the reference genome to random bases (Li and Durbin, 2009), but with a random
seed set so regenerating the alignment index twice will not lead to two different ver‐
sions.

Base Qualities
Each sequence base of a FASTQ entry has a corresponding numeric quality score in
the quality line(s). Each base quality scores is encoded as a single ASCII character.
Quality lines look like a string of random characters, like the fourth line here:

@AZ1:233:B390NACCC:2:1203:7689:2153
GTTGTTCTTGATGAGCCATGAGGAAGGCATGCCAAATTAAAATACTGGTGCGAATTTAAT
+
CCFFFFHHHHHJJJJJEIFJIJIJJJIJIJJJJCDGHIIIGIGIJIJIIIIJIJJIJIIH

(This FASTQ entry is in this chapter’s README file if you want to follow along.)

Remember, ASCII characters are just represented as integers between 0 and 127
under the hood (see man ascii for more details). Because not all ASCII characters
are printable to screen (e.g., character echoing "\07" makes a “ding” noise), qualities
are restricted to the printable ASCII characters, ranging from 33 to 126 (the space
character, 32, is omitted).

All programming languages have functions to convert from a character to its decimal
ASCII representation, and from ASCII decimal to character. In Python, these are the
functions ord() and chr(), respectively. Let’s use ord() in Python’s interactive inter‐
preter to convert the quality characters to a list of ASCII decimal representations:
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>>> qual = "JJJJJJJJJJJJGJJJJJIIJJJJJIGJJJJJIJJJJJJJIJIJJJJHHHHHFFFDFCCC"
>>> [ord(b) for b in qual]
[74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 71, 74, 74, 74, 74, 74, 73,
 73, 74, 74, 74, 74, 74, 73, 71, 74, 74, 74, 74, 74, 73, 74, 74, 74, 74, 74,
 74, 74, 73, 74, 73, 74, 74, 74, 74, 72, 72, 72, 72, 72, 70, 70, 70, 68, 70,
 67, 67, 67]

Unfortunately, converting these ASCII values to meaningful quality scores can be
tricky because there are three different quality schemes: Sanger, Solexa, and Illumina
(see Table 10-2). The Open Bioinformatics Foundation (OBF), which is responsible
for projects like Biopython, BioPerl, and BioRuby, gives these the names fastq-
sanger, fastq-solexa, and fastq-illumina. Fortunately, the bioinformatics field has
finally seemed to settle on the Sanger encoding (which is the format that the quality
line shown here is in), so we’ll step through the conversion process using this scheme.

Table 10-2. FASTQ quality schemes (adapted from Cock et al., 2010 with permission)
Name ASCII character range Offset Quality score type Quality score range

Sanger, Illumina (versions 1.8 onward) 33–126 33 PHRED 0–93

Solexa, early Illumina (before 1.3) 59–126 64 Solexa 5–62

Illumina (versions 1.3–1.7) 64–126 64 PHRED 0–62

First, we need to subtract an offset to convert this Sanger quality score to a PHRED
quality score. PHRED was an early base caller written by Phil Green, used for fluores‐
cence trace data written by Phil Green. Looking at Table 10-2, notice that the Sanger
format’s offset is 33, so we subtract 33 from each quality score:

>>> phred = [ord(b)-33 for b in qual]
>>> phred
[41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 38, 41, 41, 41, 41, 41, 40,
 40, 41, 41, 41, 41, 41, 40, 38, 41, 41, 41, 41, 41, 40, 41, 41, 41, 41, 41,
 41, 41, 40, 41, 40, 41, 41, 41, 41, 39, 39, 39, 39, 39, 37, 37, 37, 35, 37,
 34, 34, 34]

Now, with our Sanger quality scores converted to PHRED quality scores, we can
apply the following formula to convert quality scores to the estimated probability the
base is correct:

P = 10-Q/10

To go from probabilities to qualities, we use the inverse of this function:

Q = -10 log10P

In our case, we want the former equation. Applying this to our PHRED quality
scores:

Base Qualities | 345



>>> [10**(-q/10) for q in phred]
[1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05,
 1e-05, 0.0001, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 0.0001, 0.0001, 1e-05,
 1e-05, 1e-05, 1e-05, 1e-05, 0.0001, 0.0001, 1e-05, 1e-05, 1e-05, 1e-05,
 1e-05, 0.0001, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 0.0001,
 1e-05, 0.0001, 1e-05, 1e-05, 1e-05, 1e-05, 0.0001, 0.0001, 0.0001, 0.0001,
 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001]

Converting between Illumina (version 1.3 to 1.7) quality data is an identical process,
except we use the offset 64 (see Table 10-2). The Solexa conversion is a bit trickier
because this scheme doesn’t use the PHRED function that maps quality scores to
probabilities. Instead, it uses Q = (10P/10 + 1)-1. See Cock et al., 2010 for more details
about this format.

Example: Inspecting and Trimming Low-Quality Bases
Notice how the bases’ accuracies decline in the previous example; this a characteristic
error distribution for Illumina sequencing. Essentially, the probability of a base being
incorrect increases the further (toward the 3’ end) we are in a read produced by this
sequencing technology. This can have a profound impact on downstream analyses!
When working with sequencing data, you should always

• Be aware of your sequencing technology’s error distributions and limitations
(e.g., whether it’s affected by GC content)

• Consider how this might impact your analyses

All of this is experiment specific, and takes considerable planning.

Our Python list of base accuracies is useful as a learning tool to see how to convert
qualities to probabilities, but it won’t help us much to understand the quality profiles
of millions of sequences. In this sense, a picture is worth a thousand words—and
there’s software to help us see the quality distributions across bases in reads. The most
popular is the Java program FastQC, which is easy to run and outputs useful graphics
and quality metrics. If you prefer to work in R, you can use a Bioconductor package
called qrqc (written by yours truly). We’ll use qrqc in examples so we can tinker with
how we visualize this data ourselves.

Let’s first install all the necessary programs for this example. First, install qrqc in R
with:

> library(BiocInstaller)
> biocLite('qrqc')

Next, let’s install two programs that will allow us to trim low-quality bases: sickle
and seqtk. seqtk is a general-purpose sequence toolkit written by Heng Li that con‐
tains a subcommand for trimming low-quality bases off the end of sequences (in

346 | Chapter 10: Working with Sequence Data

http://bit.ly/FastQC
http://bit.ly/quick-qc
http://bit.ly/quick-qc
http://github.com/najoshi/sickle
http://github.com/lh3/seqtk


addition to many other useful functions). Both sickle and seqtk are easily installa‐
ble on Mac OS X with Homebrew (e.g., with brew install seqtk and brew install
sickle).

After getting these programs installed, let’s trim the untreated1_chr4.fq FASTQ file in
this chapter’s directory in the GitHub repository. This FASTQ file was generated from
the untreated1_chr4.bam BAM file in the pasillaBamSubset Bioconductor package
(see the README file in this chapter’s directory for more information). To keep
things simple, we’ll use each program’s default settings. Starting with sickle:

$ sickle se -f untreated1_chr4.fq -t sanger -o untreated1_chr4_sickle.fq

FastQ records kept: 202866
FastQ records discarded: 1489

sickle takes an input file through -f, a quality type through -t, and trimmed output
file with -o.

Now, let’s run seqtk trimfq, which takes a single argument and outputs trimmed
sequences through standard out:

$ seqtk trimfq untreated1_chr4.fq > untreated1_chr4_trimfq.fq

Let’s compare these results in R. We’ll use qrqc to collect the distributions of quality
by position in these files, and then visualize these using ggplot2. We could load these
in one at a time, but a nice workflow is to automate this with lapply():

# trim_qual.R -- explore base qualities before and after trimming
library(qrqc)

# FASTQ files
fqfiles <- c(none="untreated1_chr4.fq",
             sickle="untreated1_chr4_sickle.fq",
             trimfq="untreated1_chr4_trimfq.fq")

# Load each file in, using qrqc's readSeqFile
# We only need qualities, so we turn off some of
# readSeqFile's other features.
seq_info <- lapply(fqfiles, function(file) {
                   readSeqFile(file, hash=FALSE, kmer=FALSE)
                   })

# Extract the qualities as dataframe, and append
# a column of which trimmer (or none) was used. This
# is used in later plots.
quals <- mapply(function(sfq, name) {
                qs <- getQual(sfq)
                qs$trimmer <- name
                qs
               }, seq_info, names(fqfiles), SIMPLIFY=FALSE)
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# Combine separate dataframes in a list into single dataframe
d <- do.call(rbind, quals)

# Visualize qualities
p1 <- ggplot(d) + geom_line(aes(x=position, y=mean, linetype=trimmer))
p1 <- p1 + ylab("mean quality (sanger)") + theme_bw()
print(p1)

# Use qrqc's qualPlot with list produces panel plots
# Only shows 10% to 90% quantiles and lowess curve
p2 <- qualPlot(seq_info, quartile.color=NULL, mean.color=NULL) + theme_bw()
p2 <- p2 + scale_y_continuous("quality (sanger)")
print(p2)

This script produces two plots: Figures 10-1 and 10-2. We see the effect both trim‐
ming programs have on our data’s quality distributions in Figure 10-2: by trimming
low-quality bases, we narrow the quality ranges in base positions further in the read.
In Figure 10-1, we see this increases mean quality across across the read, but we still
see a decline in base quality over the length of the reads.

Figure 10-1. Mean base quality by position in the read with no trimming, with sickle
and with seqtk trimfq
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Figure 10-2. 10% to 90% quality range for each base position, with lowess curve for
reads with no trimming, with sickle and with seqtk trimfq

In one line, we can trim low-quality bases from the ends of these sequences—running
the trimming commands is not difficult. The more important step is to visualize what
these trimming programs did to our data by comparing the files before and after
trimming. Checking how programs change our data rather than trusting they did the
right thing is an essential part of robust bioinformatics and abides by the Golden Rule
(don’t trust your tools). In this example, checking a small subset of data took fewer
than 20 lines of code (ignoring blank lines and comments that improve readability)
and only a few extra minutes—but it gives us valuable insight in what these programs
do to our data and how they differ. If we like, we could also run both quality trim‐
ming programs with numerous different settings and compare how these affect our
results. Much of careful bioinformatics is this process: run a program, compare out‐
put to original data, run a program, compare output, and so on.

A FASTA/FASTQ Parsing Example: Counting Nucleotides
It’s not too difficult to write your own FASTA/FASTQ parser and it’s a useful educa‐
tional programming exercise. But when it comes to using a parser for processing real
data, it’s best to use a reliable existing library. Remember the quote at the beginning of
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this chapter: great programmers know when to reuse code. There are numerous open
source, freely available, reliable parsers that have already been vetted by the open
source community and tuned to be as fast as possible. We’ll use Heng Li’s readfq
implementation because it parses both FASTA and FASTQ files, it’s simple to use, and
is standalone (meaning it doesn’t require installing any dependencies). Biopython
and BioPerl are two popular libraries with good alternative FASTA/FASTQ parsers.

We’ll use the Python implementation of readfq, readfq.py. You can obtain this Python
file by downloading it from GitHub (there’s also a copy included in this book’s reposi‐
tory). Although we could include readfq.py’s FASTA/FASTQ parsing routine using
from readfq import readfq, for single file scripts it’s simpler to just copy and paste
the routine into your script. In this book, we’ll use from readfq import readfq to
avoid taking up space in examples.

readfq’s readfq() function is simple to use. readfq() takes a file object (e.g., a file‐
name that’s been opened with open('filename.fa') or sys.stdin) and will generate
FASTQ/FASTA entries until it reaches the end of the file or stream. Each FASTQ/
FASTA entry is returned by readfq() as a tuple containing that entry’s description,
sequence, and quality. If readfq is reading a FASTA file, the quality line will be None.
That’s all there is to reading FASTQ/FASTA lines with readfq().

If you dig into readfq()’s code, you’ll notice a yield statement.
This is a hint that readfq() is a generator function. If you’re not
familiar with Python’s generators, you might want to read up on
these at some point (though you don’t need a detailed knowledge of
these to use readfq()). I’ve included some resources in this chap‐
ter’s README file on GitHub.

Let’s write a simple program that counts the number of each IUPAC nucleotide in a
file:

#!/usr/bin/env python
# nuccount.py -- tally nucleotides in a file
import sys
from collections import Counter 
from readfq import readfq

IUPAC_BASES = "ACGTRYSWKMBDHVN-." 

# intialize counter
counts = Counter() 

for name, seq, qual in readfq(sys.stdin): 
    # for each sequence entry, add all its bases to the counter
    counts.update(seq.upper()) 
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# print the results
for base in IUPAC_BASES:
    print base + "\t" + str(counts[base]) 

We use Counter in the collections module to count nucleotides. Counter works
much like a Python dict (technically it’s a subclass of dict), with added features
that make counting items easier.

This global variable defines all IUPAC nucleotides, which we’ll use later to print
bases in a consistent order (because like Python’s dictionaries, Counter objects
don’t maintain order). It’s a good practice to put constant variables like
IUPAC_BASES in uppercase, and at the top of a script so they’re clear to readers.

Create a new Counter object.

This line uses the readfq function in the readfq module to read FASTQ/FASTQ
entries from the file handle argument (in this case, sys.stdin, standard in) into
the name, seq, and qual variables (through a Python feature known as tuple
unpacking).

The Counter.update() method takes any iterable object (in this case the string
of sequence bases), and adds them to the counter. We could have also used a for
loop over each character in seq, incrementing counts with counts[seq.upper()]
+= 1. Note that we convert all characters to uppercase with the upper() method,
so that lowercase soft-masked bases are also counted.

Finally, we iterate over all IUPAC bases and print their counts.

This version takes input through standard in, so after saving this file and adding exe‐
cute permissions with chmod +x nuccount.py, we could run it with:

$ cat contam.fastq | ./nuccount.py
A       103
C       110
G       94
T       109
R       0
Y       0
S       0
W       0
K       0
M       0
B       0
D       0
H       0
V       0
N       0
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-       0
.       0

Note that we don’t necessarily have to make the Python script executable; another
option is to simply launch it with python nuccount.py. Either way leads to the same
result, so this is ultimately a stylistic choice. But if you do want to make it an exe‐
cutable script, remember to do the following:

• Include the shebang line #!/usr/bin/env python
• Make the script executable with chmod +x <scriptname.py>

There are many improvements we could add to this script: add support for per-
sequence base composition statistics, take file arguments rather than input through
standard in, count soft-masked (lowercase) characters, count CpG sites, or warn
when a non-IUPAC nucleotide is found in a file. Counting nucleotides is simple—the
most complex part of the script is readfq(). This is the beauty of reusing code: well-
written functions and libraries prevent us from having to rewrite complex parsers.
Instead, we use software the broader community has collaboratively developed, tes‐
ted, debugged, and made more efficient (see readfq’s GitHub commit history as an
example). Reusing software isn’t cheating—it’s how the experts program.

Indexed FASTA Files
Very often we need efficient random access to subsequences of a FASTA file (given
regions). At first glance, writing a script to do this doesn’t seem difficult. We could,
for example, write a script that iterates through FASTA entries, extracting sequences
that overlaps the range specified. However, this is not an efficient method when
extracting a few random subsequences. To see why, consider accessing the sequence
from position chromosome 8 (123,407,082 to 123,410,742) from the mouse genome.
This approach would needlessly parse and load chromosomes 1 through 7 into mem‐
ory, even though we don’t need to extract subsequences from these chromosomes.
Reading entire chromosomes from disk and copying them into memory can be quite
inefficient—we would have to load all 125 megabytes of chromosome 8 to extract
3.6kb! Extracting numerous random subsequences from a FASTA file can be quite
computationally costly.

A common computational strategy that allows for easy and fast random access is
indexing the file. Indexed files are ubiquitous in bioinformatics; in future chapters,
we’ll index genomes so they can be used as an alignment reference and we’ll index
files containing aligned reads for fast random access. In this section, we’ll look at how
indexed FASTA files allow us to quickly and easily extract subsequences. Usually, we
often index an entire genome but to simplify the examples in the rest of this chapter,
we will work with only chromosome 8 of the mouse genome. Download the
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Mus_musculus.GRCm38.75.dna.chromosome.8.fa.gz file from this chapter’s GitHub
directory and unzip it with gunzip.

Indexing Compressed FASTA Files

Although samtools faidx does work with compressed FASTA
files, it only works with BGZF-compressed files (a more advanced
topic, which we’ll cover in “Fast Access to Indexed Tab-Delimited
Files with BGZF and Tabix” on page 425).

We’ll index this file using Samtools, a popular suite of tools for manipulating the
SAM and BAM alignment formats (which we’ll cover in much detail in Chapter 11).
You can install samtools via a ports or packages manager (e.g., Mac OS X’s Hombrew
or Ubuntu’s apt-get). Much like Git, Samtools uses subcommands to do different
things. First, we need to index our FASTA file using the faidx subcommand:

$ samtools faidx Mus_musculus.GRCm38.75.dna.chromosome.8.fa

This creates an index file named Mus_musculus.GRCm38.75.dna.chromosome.8.fa.fai.
We don’t have to worry about the specifics of this index file when extracting subse‐
quences—samtools faidx takes care of these details. To access the subsequence for a
particular region, we use samtools faidx <in.fa> <region>, where <in.fa> is the
FASTA file (you’ve just indexed) and <region> is in the format chromosome:start-
end. For example:

$ samtools faidx Mus_musculus.GRCm38.75.dna.chromosome.8.fa 8:123407082-123410744
>8:123407082-123410744
GAGAAAAGCTCCCTTCTTCTCCAGAGTCCCGTCTACCCTGGCTTGGCGAGGGAAAGGAAC
CAGACATATATCAGAGGCAAGTAACCAAGAAGTCTGGAGGTGTTGAGTTTAGGCATGTCT
[...]

Be sure to mind differences in chromosome syntax (e.g., UCSC’s chr8 format versus
Ensembl’s 8). If no sequence is returned from samtools faidx, this could be why.

samtools faidx allows for multiple regions at once, so we could do:
$ samtools faidx Mus_musculus.GRCm38.75.dna.chromosome.8.fa \
     8:123407082-123410744 8:123518835-123536649
>8:123407082-123410744
GAGAAAAGCTCCCTTCTTCTCCAGAGTCCCGTCTACCCTGGCTTGGCGAGGGAAAGGAAC
CAGACATATATCAGAGGCAAGTAACCAAGAAGTCTGGAGGTGTTGAGTTTAGGCATGTCT
[...]
>8:123518835-123536649
TCTCGCGAGGATTTGAGAACCAGCACGGGATCTAGTCGGAGTTGCCAGGAGACCGCGCAG
CCTCCTCTGACCAGCGCCCATCCCGGATTAGTGGAAGTGCTGGACTGCTGGCACCATGGT
[...]

Indexed FASTA Files | 353



What Makes Accessing Indexed Files Faster?
In Chapter 3 (see “The Almighty Unix Pipe: Speed and Beauty in One” on page 45),
we discussed how reading from and writing to the disk is exceptionally slow com‐
pared to data kept in memory. We can avoid needlessly reading the entire file off of
the disk by using an index that points to where certain blocks are in the file. In the
case of our FASTA file, the index essentially stores the location of where each
sequence begins in the file (as well as other necessary information).

When we look up a range like chromosome 8 (123,407,082-123,410,744), samtools
faidx uses the information in the index to quickly calculate exactly where in the file
those bases are. Then, using an operation called a file seek, the program jumps to this
exact position (called the offset) in the file and starts reading the sequence. Having
precomputed file offsets combined with the ability to jump to these exact positions is
what makes accessing sections of an indexed file fast.
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CHAPTER 11

Working with Alignment Data

In Chapter 9, we learned about range formats such as BED and GTF, which are often
used to store genomic range data associated with genomic feature annotation data
such as gene models. Other kinds of range-based formats are designed for storing
large amounts of alignment data—for example, the results of aligning millions (or bil‐
lions) of high-throughput sequencing reads to a genome. In this chapter, we’ll look at
the most common high-throughput data alignment format: the Sequence Alignment/
Mapping (SAM) format for mapping data (and its binary analog, BAM). The SAM
and BAM formats are the standard formats for storing sequencing reads mapped to a
reference.

We study SAM and BAM for two reasons. First, a huge part of bioinformatics work is
manipulating alignment files. Nearly every high-throughput sequencing experiment
involves an alignment step that produces alignment data in the SAM/BAM formats.
Because each sequencing read has an alignment entry, alignment data files are mas‐
sive and require space-efficient complex binary file formats. Furthermore, modern
aligners output an incredible amount of useful information about each alignment. It’s
vital to have the skills necessary to extract this information and explore data kept in
these complex formats.

Second, the skills developed through learning to work with SAM/BAM files are
extensible and more widely applicable than to these specific formats. It would be
unwise to bet that these formats won’t change (or even be replaced at some point)—
the field of bioinformatics is notorious for inventing new data formats (the same goes
with computing in general, see xkcd’s “Standards” comic). Some groups are already
switching to storing alignments in CRAM format, a closely related alignment data
format we’ll also discuss. So while learning how to work with specific bioinformatics
formats may seem like a lost cause, skills such as following a format specification,
manipulating binary files, extracting information from bitflags, and working with
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application programming interfaces (APIs) are essential skills when working with any
format.

Getting to Know Alignment Formats: SAM and BAM
Before learning to work with SAM/BAM, we need to understand the structure of
these formats. We’ll do this by using celegans.sam, a small example SAM file included
in this chapter’s directory in the GitHub repository.

The celegans.sam file was created by aligning reads simulated
directly from the C. elegans genome (version WBcel235) using the
wgsim read simulator. These reads differ slightly from the reference
genome through simulated mutations and base errors. Simulating
reads, realigning back to the reference, and calling SNPs is a very
useful exercise in understanding the limitations of aligners and
SNP callers; I encourage you to try this on your own. See the docu‐
mentation in this chapter’s directory on GitHub for more informa‐
tion on how these reads were simulated and why this is a useful
exercise.

We’ll step through the basic ideas of the SAM/BAM format, but note that as with any
well-specified bioinformatics format, the ultimate reference is the original format
specification and documentation, which is available on GitHub. The original SAM
Format paper (Li et al., 2009) is also a good introduction.

The SAM Header
Files in the SAM format consist of a header section and an alignment section.
Because SAM files are plain text (unlike their binary counterpart, BAM), we can take
a peek at a few lines of the header with head:

$ head -n 10 celegans.sam
@SQ SN:I LN:15072434 
@SQ SN:II LN:15279421
@SQ SN:III LN:13783801
@SQ SN:IV LN:17493829
@SQ SN:MtDNA LN:13794
@SQ SN:V LN:20924180
@SQ SN:X LN:17718942
@RG ID:VB00023_L001 SM:celegans-01 
@PG ID:bwa PN:bwa VN:0.7.10-r789 [...] 
I_2011868_2012306_0:0:0_0:0:0_2489  83  I  2012257  40  50M  [...] 

Header lines contain vital metadata about the reference sequences, read and sample
information, and (optionally) processing steps and comments. Each header line
begins with an @, followed by a two-letter code that distinguishes the different type of
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metadata records in the header. Following this two-letter code are tab-delimited key-
value pairs in the format KEY:VALUE (the SAM format specification names these tags
and values). The celegans.sam file contains the most common header records types
you’ll encounter in SAM/BAM files. Let’s step through some of the header compo‐
nents in more detail:

@SQ header entries store information about the reference sequences (e.g., the
chromosomes if you’ve aligned to a reference genome). The required key-values
are SN, which stores the sequence name (e.g., the C. elegans chromosome I), and
LN, which stores the sequence length (e.g., 15,072,434 bases). All separate sequen‐
ces in your reference have a corresponding entry in the header.

@RG header entries contain important read group and sample metadata. The read
group identifier ID is required and must be unique. This ID value contains infor‐
mation about the origin of a set of reads. Some software relies on read groups to
indicate a technical groups of reads, to account for batch effects (undesirable
technical artifacts in data). Consequently, it’s beneficial to create read groups
related to the specific sequencing run (e.g., ID could be related to the name of the
sequencing run and lane).

Although ID is the only required key in @RG headers, in practice your SAM/BAM
files should also keep track of sample information using the SM key. Sample infor‐
mation is the metadata about your experiment’s samples (e.g., individual, treat‐
ment group, replicate, etc.). Finally, it’s worth noting that the SAM format
specification also allows a PL key for indicating sequencing platform such as
ILLUMINA, PACBIO, and so on. (See the specification for a full list of valid values.)
Read group, sample, and platform information should be added to your
SAM/BAM during alignment (and aligners have options for this).

@PG header entries contain metadata about the programs used to create and pro‐
cess a set of SAM/BAM files. Each program must have a unique ID value, and
metadata such as program version number (via the VN key) and the exact com‐
mand line (via the CL key) can be saved in these header entries. Many programs
will add these lines automatically.

This is the first line of the alignment section (because this line does not begin
with @). We’ll cover the alignment section in more detail in the following section.

This is just an introduction to the basics of the SAM format’s header section; see the
SAM format specification for more detail.
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Read Groups

One of the best features of the SAM/BAM format is that it supports
including an extensive amount of metadata about the samples, the
alignment reference, processing steps, etc. to be included within
the file. (Note that in contrast, the FASTQ format doesn’t provide a
standard way to include this metadata; in practice, we use file‐
names to connect metadata kept in a separate spreadsheet or tab-
delimited file.) Many downstream applications make use of the
metadata contained in the SAM header (and many programs
require it). Given that this metadata is important (and often
required), you should add read group and sample metadata when
you align reads to a reference.
Luckily, most aligners allow you to specify this important metadata
through your alignment command. For example, BWA allows
(using made-up files in this example):

$ bwa mem -R'@RG\tID:readgroup_id\tSM:sample_id' ref.fa
  in.fq

Bowtie2 similarly allows read group and sample information to be
set with the --rg-id and --rg options.

Although head works to take a quick peek at the top of a SAM file, keep the following
points in mind:

• head won’t always provide the entire header.
• It won’t work with binary BAM files.

The standard way of interacting with SAM/BAM files is through the SAMtools
command-line program (samtools), which we’ll use extensively throughout the rest
of this chapter. Like Git, samtools has many subcommands. samtools view is the
general tool for viewing and converting SAM/BAM files. A universal way to look at
an entire SAM/BAM header is with samtools view option -H:

$ samtools view -H celegans.sam
@SQ SN:I LN:15072434
@SQ SN:II LN:15279421
@SQ SN:III LN:13783801
[...]

This also works with BAM files, without any need to convert beforehand (samtools
automatically detects whether the file is SAM or BAM):

$ samtools view -H celegans.bam
@SQ SN:I LN:15072434
@SQ SN:II LN:15279421
@SQ SN:III LN:13783801
[...]
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Of course, all our usual Unix tricks can be combined with samtools commands
through piping results to other commands. For example, we could see all read groups
with:

$ samtools view -H celegans.bam | grep "^@RG"
@RG ID:VB00023_L001 SM:celegans-01

samtools view without any arguments returns the entire alignment section without
the header:

$ samtools view celegans.sam | head -n 1
I_2011868_2012306_0:0:0_0:0:0_2489 83 I 2012257 40 50M

The SAM Alignment Section
The alignment section contains read alignments (and usually includes reads that did
not align, but this depends on the aligner and file). Each alignment entry is composed
of 11 required fields (and optional fields after this).

We’ll step through the basic structure of an alignment entry, but it
would be unnecessarily redundant to include all information in the
original SAM format specification in this section. I highly recom‐
mend reading the alignment section of the SAM format specifica‐
tion for more detail.

Let’s step through an alignment entry’s fields. Because these alignment lines are quite
lengthy and would overflow the width of this page, I use tr to convert tabs to new‐
lines for a single alignment entry in celegans.sam:

$ samtools view celegans.sam | tr '\t' '\n' | head -n 11
I_2011868_2012306_0:0:0_0:0:0_2489 
83 
I 
2012257 
40 
50M 
= 
2011868
-439 
CAAAAAATTTTGAAAAAAAAAATTGAATAAAAATTCACGGATTTCTGGCT 
22222222222222222222222222222222222222222222222222 

QNAME, the query name (e.g., a sequence read’s name).

FLAG, the bitwise flag, which contains information about the alignment. Bitwise
flags are discussed in “Bitwise Flags” on page 360 in much more detail.
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RNAME, the reference name (e.g., which sequence the query aligned to, such as a
specific chromosome name like “chr1”). The reference name must be in the
SAM/BAM header as an SQ entry. If the read is unaligned, this entry may be *.

POS, the position on the reference sequence (using 1-based indexing) of the first
mapping base (leftmost) in the query sequence. This may be zero if the read does
not align.

MAPQ is the mapping quality, which is a measure of how likely the read is to
actually originate from the position it maps to. Mapping quality is estimated by
the aligner (and beware that different aligners have different estimation proce‐
dures!). Many tools downstream of aligners filter out reads that map with low
mapping quality (because a low mapping quality score indicates the alignment
program is not confident about the alignment’s position). Mapping qualities are
an incredibly important topic that we’ll discuss in more depth later. Mapping
quality is discussed in more depth in “Mapping Qualities” on page 365.

CIGAR is the CIGAR string, which is a specialized format for describing the align‐
ment (e.g., matching bases, insertions/deletions, clipping, etc.). We discuss
CIGAR strings in much more detail in “CIGAR Strings” on page 363.

RNEXT and PNEXT (on the next line) are the reference name and position (the R
and P in RNEXT and PNEXT) of a paired-end read’s partner. The value * indicates
RNEXT is not available, and = indicates that RNEXT is the same as RNAME. PNEXT will
be 0 when not available.

TLEN is the template length for paired-end reads.

SEQ stores the original read sequence. This sequence will always be in the orienta‐
tion it aligned in (and this may be the reverse complement of the original read
sequence). Thus, if your read aligned to the reverse strand (which is information
kept in the bitwise flag field), this sequence will be the reverse complement.

QUAL stores the original read base quality (in the same format as Sanger FASTQ
files).

Bitwise Flags
Many important pieces of information about an alignment are encoded using bitwise
flags (also known as a bit field). There’s a lot of important information encoded in
SAM/BAM bitwise flags, so it’s essential you understand how these work. Further‐
more, bitwise flags are a very space-efficient and common way to encode attributes,
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so they’re worth understanding because you’re very likely to encounter them in other
formats.

Bitwise flags are much like a series of toggle switches, each of which can be either on
or off. Each switch represents whether a particular attribute of an alignment is true or
false, such as whether a read is unmapped, is paired-end, or whether it aligned in the
reverse orientation. Table 11-1 shows these bitwise flags and the attributes they
encode, but the most up-to-date source will be the SAM format specification or the
samtools flag command:

$ samtools flags

About: Convert between textual and numeric flag representation
Usage: samtools flags INT|STR[,...]

Flags:
 0x1 PAIRED        .. paired-end (or multiple-segment) sequencing
                        technology
 0x2 PROPER_PAIR   .. each segment properly aligned according to
                        the aligner
 0x4 UNMAP         .. segment unmapped
[...]

Under the hood, each of these toggle switches’ values are bits (0 or 1) of a binary
number (the base-2 system of computing that uses 0s and 1s). Each bit in a bitfield
represents a particular attribute about an alignment, with 1 indicating that the
attribute is true and 0 indicating it’s false.

Table 11-1. SAM bitwise flags
Flag (in hexidecimal) Meaning

0x1 Paired-end sequence (or multiple-segment, as in strobe sequencing)

0x2 Aligned in proper pair (according to the aligner)

0x4 Unmapped

0x8 Mate pair unmapped (or next segment, if mulitple-segment)

0x10 Sequence is reverse complemented

0x20 Sequence of mate pair is reversed

0x40 The first read in the pair (or segment, if multiple-segment)

0x80 The second read in the pair (or segment, if multiple-segment)

0x100 Secondary alignment
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Flag (in hexidecimal) Meaning

0x200 QC failure

0x400 PCR or optical duplicate

0x800 Supplementary alignment

As an example, suppose you encounter the bitflag 147 (0x93 in hexidecimal) and you
want to know what this says about this alignment. In binary this number is repre‐
sented as 0x1001 0011 (the space is used to make this more readable). We see that the
first, second, fifth, and eighth bits are 1 (in our switch analogy, these are the switches
that are turned on). These specific bits correspond to the hexidecimal values 0x1, 0x2,
0x10, and 0x80. Looking at Table 11-1, we see these hexidecimal values correspond to
the attributes paired-end, aligned in proper pair, the sequence is reverse complemen‐
ted, and that this is the second read in the pair—which describes how our read
aligned.

Converting between Binary, Hexadecimal, and Decimal

I won’t cover the details of converting between binary, hexadeci‐
mal, and decimal number systems because the command samtools
flags can translate bitflags for us. But if you continue to dig deeper
into computing, it’s a handy and necessary skill. I’ve included some
supplementary resources in the GitHub repository’s README file
for this chapter. Many calculators, such as the OS X calculator in
“programmer” mode will also convert these values for you.

Working through this each time would be quite tedious, so the samtools command
contains the subcommand samtools flags, which can translate decimal and hexi‐
decimal flags:

$ samtools flags 147
0x93 147 PAIRED,PROPER_PAIR,REVERSE,READ2
$ samtools flags 0x93
0x93 147 PAIRED,PROPER_PAIR,REVERSE,READ2

samtools flags can also convert attributes (of the prespecified list given by running
samtools flags without arguments) to hexidecimal and decimal flags:

$ samtools flags paired,read1,qcfail
0x241 577 PAIRED,READ1,QCFAIL

Later on, we’ll see how PySAM simplifies this through an interface where properties
about an alignment are stored as attributes of an AlignedSegment Python object,
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which allows for easier checking of bitflag values with a syntax like
aln.is_proper_pair or aln.is_reverse.

CIGAR Strings
Like bitwise flags, SAM’s CIGAR strings are another specialized way to encode infor‐
mation about an aligned sequence. While bitwise flags store true/false properties
about an alignment, CIGAR strings encode information about which bases of an
alignment are matches/mismatches, insertions, deletions, soft or hard clipped, and so
on. I’ll assume you are familiar with the idea of matches, mismatches, insertions, and
deletions, but it’s worth describing soft and hard clipping (as SAM uses them).

Soft clipping is when only part of the query sequence is aligned to the reference, leav‐
ing some portion of the query sequence unaligned. Soft clipping occurs when an
aligner can partially map a read to a location, but the head or tail of the query
sequence doesn’t match (or the alignment at the end of the sequence is questionable).
Hard clipping is similar, but hard-clipped regions are not present in the sequence
stored in the SAM field SEQ. A basic CIGAR string contains concatenated pairs of
integer lengths and character operations (see Table 11-2 for a table of these opera‐
tions).

Table 11-2. CIGAR operations
Operation Value Description

M 0 Alignment match (note that this could
be a sequence match or mismatch!)

I 1 Insertion (to reference)

D 2 Deletion (from reference)

N 3 Skipped region (from reference)

S 4 Soft-clipped region (soft-clipped
regions are present in sequence in SEQ
field)

H 5 Hard-clipped region (not in sequence in
SEQ field)

P 6 Padding (see section 3.1 of the SAM
format specification for detail)

= 7 Sequence match
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Operation Value Description

X 8 Sequence mismatch

For example, a fully aligned 51 base pair read without insertions or deletions would
have a CIGAR string containing a single length/operation pair: 51M. By the SAM for‐
mat specification, M means there’s an alignment match, not that all bases in the query
and reference sequence are identical (it’s a common mistake to assume this!).

Sequence Matches and Mismatches, and the NM and MD Tags

It’s important to remember that the SAM format specification sim‐
ply lists what’s possible with the format. Along these lines, aligners
choose how to output their results in this format, and there are dif‐
ferences among aligners in how they use the CIGAR string (and
other parts of the SAM format). It’s common for many aligners to
forgo using = and X to indicate sequence matches and mismatches,
and instead just report these as M.
However, this isn’t as bad as it sounds—many aligners have differ‐
ent goals (e.g., general read mapping, splicing-aware aligning,
aligning longer reads to find chromosomal breakpoints). These
tasks don’t require the same level of detail about the alignment, so
in some cases explicitly reporting matches and mismatches with =
and X would lead to needlessly complicated CIGAR strings.
Also, much of the information that = and X convey can be found in
optional SAM tags that many aligners can include in their output. 
The NM tag is an integer that represents the edit distance between
the aligned portion (which excludes clipped regions) and the refer‐
ence. Additionally, the MD tag encodes mismatching positions from
the reference (and the reference’s sequence at mismatching posi‐
tions). See the SAM format specification for more detail. If your
BAM file doesn’t have the NM and MD tags, samtools calmd can add
them for you.

Let’s look at a trickier example: 43S6M1I26M. First, let’s break this down into pairs: 43S,
6M, 1I, and 26M. Using Table 11-2, we see this CIGAR string tells us that the first 43
bases were soft clipped, the next 6 were matches/mismatches, then a 1 base pair inser‐
tion to the reference, and finally, 26 matches. The SAM format specification mandates
that all M, I, S, =, and X operations’ lengths must add to the length of the sequence. We
can validate that’s the case here: 43 + 6 + 1 + 26 = 76, which is the length of the
sequence in this SAM entry.
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Mapping Qualities
Our discussion of the SAM and BAM formats is not complete without mentioning
mapping qualities (Li et al., 2008). Mapping qualities are one of the most important
diagnostics in alignment. All steps downstream of alignment in all bioinformatics
projects (e.g., SNP calling and genotyping, RNA-seq, etc.) critically depend on relia‐
ble mapping. Mapping qualities quantify mapping reliability by estimating how likely
a read is to actually originate from the position the aligner has mapped it to. Similar
to base quality, mapping quality is a log probability given by Q = -10 log10P(incorrect
mapping position). For example, a mapping quality of 20 translates to a 10(20/-10) = 1%
chance the alignment is incorrect.

The idea of mapping quality is also related to the idea of mapping uniqueness. This is
often defined as when a read’s second best hit has more mismatches than its first hit.
However, this concept of uniqueness doesn’t account for the base qualities of mis‐
matches, which carry a lot of information about whether a mismatch is due to a base
calling error or a true variant (Li et al., 2008). Mapping quality estimates do account
for base qualities of mismatches, which makes them a far better metric for measuring
mapping uniqueness (as well as general mapping reliability).

We can use mapping qualities to filter out likely incorrect alignments (which we can
do with samtools view, which we’ll learn about later), find regions where mapping
quality is unusually low among most alignments (perhaps in repetitive or paralogous
regions), or assess genome-wide mapping quality distributions (which could indicate
alignment problems in highly repetitive or polyploid genomes).

Command-Line Tools for Working with Alignments in the
SAM Format
In this section, we’ll learn about the Samtools suite of tools for manipulating and
working with SAM, BAM, and CRAM files. These tools are incredibly powerful, and
becoming skilled in working with these tools will allow you to both quickly move for‐
ward in file-processing tasks and explore the data in alignment files. All commands
are well documented both online (see the Samtools website) and in the programs
themselves (run a program without arguments or use --help for more information).

Using samtools view to Convert between SAM and BAM
Many samtools subcommands such as sort, index, depth, and mpileup all require 
input files (or streams) to be in BAM format for efficiency, so we often need to con‐
vert between plain-text SAM and binary BAM formats. samtools view allows us to
convert SAM to BAM with the -b option:

$ samtools view -b celegans.sam > celegans_copy.bam
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Similarly, we can go from BAM to SAM:
$ samtools view celegans.bam > celegans_copy.sam
$ head -n 3 celegans_copy.sam
I_2011868_2012306_0:0:0_0:0:0_2489    83   I  2012257   40 [...]
I_2011868_2012306_0:0:0_0:0:0_2489    163  I  2011868   60 [...]
I_13330604_13331055_2:0:0_0:0:0_3dd5  83   I  13331006  60 [...]

However, samtools view will not include the SAM header (see “The SAM Header”
on page 356) by default. SAM files without headers cannot be turned back into BAM
files:

$ samtools view -b celegans_copy.sam > celegans_copy.bam
[E::sam_parse1] missing SAM header
[W::sam_read1] parse error at line 1
[main_samview] truncated file.

Converting BAM to SAM loses information when we don’t include the header. We
can include the header with -h:

$ samtools view -h celegans.bam > celegans_copy.sam
$ samtools view -b celegans_copy.sam > celegans_copy.bam #now we can convert back

Usually we only need to convert BAM to SAM when manually inspecting files. In
general, it’s better to store files in BAM format, as it’s more space efficient, compatible
with all samtools subcommands, and faster to process (because tools can directly
read in binary values rather than require parsing SAM strings).

The CRAM Format
Samtools now supports (after version 1) a new, highly compressed file format known
as CRAM (see Fritz et al., 2011). Compressing alignments with CRAM can lead to a
10%–30% filesize reduction compared to BAM (and quite remarkably, with no signif‐
icant increase in compression or decompression time compared to BAM). CRAM is a
reference-based compression scheme, meaning only the aligned sequence that’s differ‐
ent from the reference sequence is recorded. This greatly reduces file size, as many
sequences may align with minimal difference from the reference. As a consequence of
this reference-based approach, it’s imperative that the reference is available and does
not change, as this would lead to a loss of data kept in the CRAM format. Because the
reference is so important, CRAM files contain an MD5 checksum of the reference file
to ensure it has not changed.

CRAM also has support for multiple different lossy compression methods. Lossy com‐
pression entails some information about an alignment and the original read is lost.
For example, it’s possible to bin base quality scores using a lower resolution binning
scheme to reduce the filesize. CRAM has other lossy compression models; see
CRAMTools for more details.
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Overall, working with CRAM files is not much different than working with SAM or
BAM files; CRAM support is integrated into the latest Samtools versions. See the doc‐
umentation for more details on CRAM-based Samtools workflows.

Samtools Sort and Index
In “Indexed FASTA Files” on page 352, we saw how we can index a FASTA file to
allow for faster random access of the sequence at specific regions in a FASTA file.
Similarly, we sort (by alignment position) and index a BAM file to allow for fast ran‐
dom access to reads aligned within a certain region (we’ll see how to extract these
regions in the next section).

We sort alignments by their alignment position with samtools sort:
$ samtools sort celegans_unsorted.bam celegans_sorted

Here, the second argument is the output filename prefix (samtools sort will append
the .bam extension for you).

Sorting a large number of alignments can be very computationally intensive, so sam
tools sort has options that allow you to increase the memory allocation and paral‐
lelize sorting across multiple threads. Very often, large BAM files won’t fit entirely in
memory, so samtools sort will divide the file into chunks, sort each chunk and write
to a temporary file on disk, and then merge the results together; in computer science
lingo, samtools sort uses a merge sort (which was also discussed in “Sorting Plain-
Text Data with Sort” on page 147). Increasing the amount of memory samtools sort
can use decreases the number of chunks samtools sort needs to divide the file into
(because larger chunks can fit in memory), which makes sorting faster. Because
merge sort algorithms sort each chunk independently until the final merge step, this
can be parallelized. We can use the samtools sort option -m to increase the memory,
and -@ to specify how many threads to use. For example:

$ samtools sort -m 4G -@ 2 celegans_unsorted.bam celegans_sorted

samtools sort’s -m option supports the suffixes K (kilobytes), M (megabytes), and G
(gigabytes) to specify the units of memory. Also, note though that in this example, the
toy data file celegans_unsorted.bam is far too small for there to be any benefits in
increasing the memory or parallelization.

Position-sorted BAM files are the starting point for most later processing steps such
as SNP calling and extracting alignments from specific regions. Additionally, sorted
BAM files are much more disk-space efficient than unsorted BAM files (and certainly
more than plain-text SAM files). Most SAM/BAM processing tasks you’ll do in daily
bioinformatics work will be to get you to this point.
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Often, we want to work with alignments within a particular region in the genome.
For example, we may want to extract these reads using samtools view or only call
SNPs within this region using FreeBayes (Garrison et al., 2012) or samtools mpileup.
Iterating through an entire BAM file just to work with a subset of reads at a position
would be inefficient; consequently, BAM files can be indexed like we did in “Indexed
FASTA Files” on page 352 with FASTA files. The BAM file must be sorted first, and
we cannot index SAM files. To index a position-sorted BAM file, we simply use:

$ samtools index celegans_sorted.bam

This creates a file named celegans_sorted.bam.bai, which contains the index for the
celegans_sorted.bam file.

Extracting and Filtering Alignments with samtools view
Earlier, we saw how we can use samtools view to convert between SAM and BAM,
but this is just scratching the surface of samtools view’s usefulness in working with
alignment data. samtools view is a workhorse tool in extracting and filtering align‐
ments in SAM and BAM files, and mastering it will provide you with important skills
needed to explore alignments in these formats.

Extracting alignments from a region with samtools view
With a position-sorted and indexed BAM file, we can extract specific regions of an
alignment with samtools view. To make this example more interesting, let’s use a
subset of the 1000 Genomes Project data (1000 Genomes Project Consortium, 2012)
that’s included in this chapter’s repository on GitHub. First, let’s index it:

$ samtools index NA12891_CEU_sample.bam

Then, let’s take a look at some alignments in the region chromosome 1,
215,906,469-215,906,652:

$ samtools view NA12891_CEU_sample.bam 1:215906469-215906652 | head -n 3
SRR003212.5855757   147  1  215906433  60  33S43M  =  215906402 [...]
SRR003206.18432241  163  1  215906434  60  43M8S   =  215906468 [...]
SRR014595.5642583   16   1  215906435  37  8S43M   *  0 [...]

We could also write these alignments in BAM format to disk with:
$ samtools view -b NA12891_CEU_sample.bam 1:215906469-215906652 >
  USH2A_sample_alns.bam

Lastly, note that if you have many regions stored in the BED format, samtools view
can extract regions from a BED file with the -L option:

$ samtools view -L USH2A_exons.bed NA12891_CEU_sample.bam  | head -n 3
SRR003214.11652876  163  1  215796180  60  76M  =  215796224  92   [...]
SRR010927.6484300   163  1  215796188  60  51M  =  215796213  76   [...]
SRR005667.2049283   163  1  215796190  60  51M  =  215796340  201  [...]
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Filtering alignments with samtools view
samtools view also has options for filtering alignments based on bitwise flags, map‐
ping quality, read group. samtools view’s filtering features are extremely useful; very
often we need to query BAM files for reads that match some criteria such as “all
aligned proper-paired end reads with a mapping quality over 30.” Using samtools
view, we can stream through and filter reads, and either pipe the results directly into
another command or write them to a file.

First, note that samtools view (like other samtools subcommands) provides handy
documentation within the program for all of its filtering options. You can see these
any time by running the command without any arguments (to conserve space, I’ve
included only a subset of the options):

$ samtools view

Usage:   samtools view [options] <in.bam>|<in.sam>|<in.cram> [region ...]

Options: -b       output BAM
         -C       output CRAM (requires -T)
         -1       use fast BAM compression (implies -b)
         -u       uncompressed BAM output (implies -b)
         -h       include header in SAM output
         -H       print SAM header only (no alignments)
         -c       print only the count of matching records
[...]

Let’s first see how we can use samtools view to filter based on bitwise flags. There are
two options related to this: -f, which only outputs reads with the specified flag(s),
and -F, which only outputs reads without the specified flag(s). Let’s work through an
example, using the samtools flags command to assist in figuring out the flags we
need. Suppose you want to output all reads that are unmapped. UNMAP is a flag accord‐
ing to samtools flags:

$ samtools flags unmap
0x4 4 UNMAP

Then, we use samtools view -f 4 to output reads with this flag set:
$ samtools view -f 4 NA12891_CEU_sample.bam | head -n 3
SRR003208.1496374   69   1  215623168  0  35M16S  =  215623168  0  [...]
SRR002141.16953736  181  1  215623191  0  40M11S  =  215623191  0  [...]
SRR002143.2512308   181  1  215623216  0  *       =  215623216  0  [...]

Note that each of these flags (the second column) have the bit corresponding to
unmapped set. We could verify this with samtools flags:

$ samtools flags 69
0x45 69 PAIRED,UNMAP,READ1
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It’s also possible to output reads with multiple bitwise flags set. For example, we could
find the first reads that aligned in a proper pair alignment. First, we use samtools
flags to find out what the decimal representation of these two flags is:

$ samtools flags READ1,PROPER_PAIR
0x42 66 PROPER_PAIR,READ1

Then, use samtools view’s -f option to extract these alignments:
$ samtools view -f 66 NA12891_CEU_sample.bam | head -n 3
SRR005672.8895      99  1  215622850  60  51M  =  215623041  227   [...]
SRR005674.4317449   99  1  215622863  37  51M  =  215622987  175   [...]
SRR010927.10846964  83  1  215622892  60  51M  =  215622860  -83   [...]

We can use the -F option to extract alignments that do not have any of the bits set of
the supplied flag argument. For example, suppose we wanted to extract all aligned
reads. We do this by filtering out all reads with the 0x4 bit (meaning unmapped) set:

$ samtools flags UNMAP
0x4 4 UNMAP
$ samtools view -F 4 NA12891_CEU_sample.bam | head -n 3
SRR005672.8895      99   1  215622850  60  51M     =  215623041  227  [...]
SRR010927.10846964  163  1  215622860  60  35M16S  =  215622892  83   [...]
SRR005674.4317449   99   1  215622863  37  51M     =  215622987  175  [...]

Be aware that you will likely have to carefully combine bits to build queries that
extract the information you want. For example, suppose you wanted to extract all
reads that did not align in a proper pair. You might be tempted to approach this by
filtering out all alignments that have the proper pair bit (0x2) set using:

$ samtools flags PROPER_PAIR
0x2 2 PROPER_PAIR
$ samtools view -F 2 NA12891_CEU_sample.bam | head -n 3
SRR005675.5348609   0  1  215622863  37  51M    [...]
SRR002133.11695147  0  1  215622876  37  48M    [...]
SRR002129.2750778   0  1  215622902  37  35M1S  [...]

But beware—this would be incorrect! Both unmapped reads and unpaired reads will
also be included in this output. Neither unmapped reads, nor unpaired reads will be
in a proper pair and have this bit set.
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SAM Bitwise Flags and SAM Fields

It’s vital to consider how some bitflags may affect other bitflags
(technically speaking, some bitflags are non-orthogonal). Similarly,
if some bitflags are set, certain SAM fields may no longer apply.
For example, 0x4 (unmapped) is the only reliable way to tell if an
alignment is unaligned. In other words, one cannot tell if a read is
aligned by looking at fields such as mapped position (POS and ref‐
erence RNAME); the SAM format specification does not limit these
fields’ values if a read is unaligned. If the 0x4 bit is set (meaning the
read is unmapped), the fields regarding alignment including posi‐
tion, CIGAR string, mapping quality, and reference name are not
relevant and their values cannot be relied upon. Similarly, if the 0x4
bit is set, bits that only apply to mapped reads such as 0x2 (proper
pair), 0x10 (aligned to reverse strand), and others cannot be relied
upon. The primary lesson is you should carefully consider all flags
that may apply when working with SAM entries, and start with
low-level attributes (whether it’s aligned, paired). See the SAM for‐
mat specification for more detail on bitflags.

Instead, we want to make sure the unmapped (0x4) and proper paired bits are unset
(so the read is aligned and paired), and the paired end bit is set (so the read is not in a
proper pair). We do this by combining bits:

$ samtools flags paired
0x1 1 PAIRED
$ samtools flags unmap,proper_pair
0x6 6 PROPER_PAIR,UNMAP
$ samtools view -F 6 -f 1 NA12891_CEU_sample.bam | head -n 3
SRR003208.1496374   137  1  215623168  0  35M16S  =  215623168  [...]
ERR002297.5178166   177  1  215623174  0  36M     =  215582813  [...]
SRR002141.16953736  121  1  215623191  0  7S44M   =  215623191  [...]

One way to verify that these results make sense is to check the counts (note that this
may be very time consuming for large files). In this case, our total number of reads
that are mapped and paired should be equal to the sum of the number of reads that
are mapped, paired, and properly paired, and the number of reads that are mapped,
paired, and not properly paired:

$ samtools view -F 6 NA12891_CEU_sample.bam | wc -l  # total mapped and paired
  233628
$ samtools view -F 7 NA12891_CEU_sample.bam | wc -l  # total mapped, paired,
  201101                                             # proper paired
$ samtools view -F 6 -f 1 NA12891_CEU_sample.bam | wc -l # total mapped, paired,
  32527                                                  # and not proper paired
$ echo "201101 + 32527" | bc
233628
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Summing these numbers with the command-line bench calculator bc validates that
our totals add up. Also, for set operations like this drawing a Venn diagram can help
you reason through what’s going on.

Visualizing Alignments with samtools tview and the
Integrated Genomics Viewer
As we saw in Chapter 8, we can learn a lot about our data through visualization. The
same applies with alignment data: one of the best ways to explore alignment data is
through visualization. The samtools suite includes the useful tview subcommand for
quickly looking at alignments in your terminal. We’ll take a brief look at tview first,
then look at the Broad Institute’s Integrated Genomics Viewer (IGV) application.

samtools tview requires position-sorted and indexed BAM files as input. We already
indexed the position-sorted BAM file NA12891_CEU_sample.bam (in this chapter’s
GitHub directory) in “Extracting alignments from a region with samtools view” on
page 368, so we’re ready to visualize it with samtools tview. samtools tview can
also load the reference genome alongside alignments so the reference sequence can be
used in comparisons. The reference genome file used to align the reads in
NA12891_CEU_sample.bam is human_g1k_v37.fasta, and although it’s too large to
include in this chapter’s GitHub directory, it can be easily downloaded (see the direc‐
tory’s README.md for directions). So to view these alignments with samtools
tview, we use:

$ samtools tview NA12891_CEU_sample.bam human_g1k_v37.fasta

However, this will view the very beginning of a chromosome; because
NA12891_CEU_sample.bam is a subset of reads, let’s go to a specific region with the
option -p:

$ samtools tview -p 1:215906469-215906652 NA12891_CEU_sample.bam \
     human_g1k_v37.fasta

This will open up a terminal-based application. samtools tview has many options to
navigate around, jump to particular regions, and change the output format and colors
of alignments; press ? to see these options (and press again to close the help screen).
Figure 11-1 shows an example of what tview looks like.
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Figure 11-1. A region in samtools tview with the help dialog box open

As a command-line visualization program, samtools tview is great for quickly
inspecting a few alignments. However, if you need to spend more time investigating
alignments, variants, and insertions/deletions in BAM data, the Integrated Genomics
Viewer (IGV) may be more well suited. As an application with a graphical user inter‐
face, IGV is easy to use. IGV also has numerous powerful features we won’t cover in
this brief introduction, so I encourage you to explore IGV’s excellent documentation.

First, we need to install IGV. It’s distributed as a Java application, so you’ll need to
have Java installed on your system. After Java is installed, you can install IGV through
a package manager such as Homebrew on OS X or apt-get. See the README.md file
in this chapter’s GitHub directory for more detail on installing IGV.
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If you’ve installed IGV through Homebrew or apt-get, you can launch the applica‐
tion with:

$ igv

The command igv calls a small shell script wrapper for the Java application and
opens IGV.

Once in IGV, we need load our reference genome before loading our alignments. Ref‐
erence genomes can be loaded from a file by navigating to Genomes → Load Genome
from File, and then choosing your reference genome through the file browser. IGV
also has prepared reference genomes for common species and versions; these can be
accessed through Genomes → Load Genome From Server. Navigate to this menu and
load the “Human (1kg, b37+decoy)” genome. This prepared genome file has some
nice additional features used in display such as gene tracks and chromosome ideo‐
grams.

Once our reference genome is loaded, we can load in the BAM alignments in
NA12891_CEU_sample.bam by navigating to File → Load from File and choosing the
reference genome through the file browser. Note that you will not see any alignments,
as this file contains a subset of alignments in a region IGV’s not currently focused on.

IGV’s graphical user interface provides many methods for navigation, zooming in
and out of a chromosome, and jumping to particular regions. Let’s jump to a region
that our alignments in NA12891_CEU_sample.bam overlap:
1:215,906,528-215,906,567 (there’s a copyable version of this region in this chapter’s
README.md for convenience). Enter this region in the text box at the top of the win‐
dow, and press Enter; this region should look like Figure 11-2.
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Figure 11-2. A region in IGV that shows possible paralogous alignments

As shown in Figure 11-2, IGV shows an ideogram to indicate where on the chromo‐
some the region is and base pair positions in the top pane, coverage and alignment
tracks in the middle pane, and the sequence and gene track information in the bot‐
tom pane. The colored letters in alignments indicate bases mismatched between the
read sequence and the reference. These mismatching bases can be caused either by
sequencing errors, misalignment, errors in library preparation, or an authentic SNP.
In this case, we might make a ballpark guess that the stacked mismatches at positions
215,906,547, 215,906,548 and 215,906,555 are true polymorphisms. However, let’s use
some of IGV’s features to take a closer look, specifically at the variants around
215,906,547–215,906,548.

Let’s start our exploration by hovering over alignments in this region to reveal IGV’s
pop-up window full of that alignment’s information (see Figure 11-3). This allows
you to inspect useful information about each alignment such as the base qualities of
mismatches and the alignment’s mapping quality. For example, hovering over the
alignments in the region from 215,906,547–215,906,548 shows that some aligned
with lower mapping quality.
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Figure 11-3. IGV’s pop-up window of alignment information

We can also learn a lot about our variants by looking at which reads they are carried
on. For the potential variants at 215,906,547 and 215,906,548, mismatches are carried
on three categories of reads that span these positions:
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• Reads with a reference base at 215,906,547 and a reference base at 215,906,548
(e.g., the first alignment from the top)

• Reads with a G and a reference base (e.g., the twelfth alignment from the top)
• Reads with a G and a C (e.g., the sixth alignment from the top)

A single read contains a single continuous stretch of DNA, so the presence of three
different combinations of mismatching bases in these reads indicates three different
haplotypes in this region (ignoring for the moment the possibility that these mis‐
matches might be sequencing errors). Because these sequences come from a single
diploid human individual, this indicates a likely problem—probably due to misalign‐
ment.

The mismatches in this region could be due to misalignment caused by reads from a
different region in the genome aligning to this region due to similar sequence (creat‐
ing that third haplotype). Misalignments of this nature can be caused by common
repeats, paralogous sequences, or similar domains. Misalignments of this type are a
major cause of false positive variant calls, and visual inspection with tools like IGV
can greatly help in recognizing these issues. While somewhat tedious, manual inspec‐
tion of alignment data is especially important for entries at the top of lists of signifi‐
cant variants. However, for this particular region, it’s more likely a different
misalignment mishap is creating these mismatches that look like variants.

Note that IGV also displays the reference sequence track in the bottom pane, which
gives us another clue as to what could be causing these variants. This region is com‐
posed of low-complexity sequences: GGCGGGGGGGCGGGGGGCGGG. Low-complexity
sequences are composed of runs of bases or simple repeats, and are a major cause of
erroneous variant calls (Li, 2014). In this low-complexity region, reads containing the
mismatches G-C might actually contain an upstream G insertion. In low-complexity
regions, an aligner may align a read with a single base mismatch rather than an indel,
creating a false SNP. Indeed, there’s some evidence that this type of misalignment is
occurring here: the only reads that carry the G-C mismatches are those that do not
span the low-complexity region on the left.

Finally, it’s worth noting that in addition to being a low-complexity sequence, the
base composition in this region might be a concern as well. GGC sequences are
known to generate sequence-specific errors in some Illumina data (see Nakamura et
al., 2011). We can inspect the sequencing platform metadata in the BAM header and
indeed see that this data comes from an Illumina sequencer:

$ samtools view -H NA12891_CEU_sample.bam | grep PL | tail -n 1
@RG  ID:SRR035334  PL:ILLUMINA  LB:Solexa-3628  [...]  SM:NA12891  CN:BI
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Pileups with samtools pileup, Variant Calling, and Base Alignment
Quality
In this section, we’ll discuss the pileup format, a plain-text format that summarizes
reads’ bases at each chromosome position by stacking or “piling up” aligned reads.
The per-base summary of the alignment data created in a pileup can then be used to
identify variants (regions different from the reference), and determine sample indi‐
viduals’ genotypes. samtools’s mpileup subcommand creates pileups from BAM files,
and this tool is the first step in samtools-based variant calling pipelines. In this chap‐
ter, we’ll introduce the pileup format and samtools variant calling tools through sim‐
ple examples that explore how the misalignments we saw in the previous section can
lead to erroneous variant calls. We’ll also examine how samtools’s clever Base Align‐
ment Quality algorithm can prevent erroneous variant calls due to misalignment.
Note that this chapter is not meant to teach variant calling, as this subject is complex,
procedures are project- and organism-specific, and methods will rapidly change with
improvements to sequencing technology and advancement in variant calling meth‐
ods.

To begin, let’s look at how a “vanilla” (all extra features turned off) samtools variant
calling pipeline handles this region. We’ll start by creating a pileup to learn more
about this format. To do this, we run samtools mpileup in the same region we
visualized in IGV in “Visualizing Alignments with samtools tview and the Integrated
Genomics Viewer” on page 372 (again using the human_g1k_v37.fasta file):

$ samtools mpileup --no-BAQ --region 1:215906528-215906567 \ 
     --fasta-ref human_g1k_v37.fasta NA12891_CEU_sample.bam
[mpileup] 1 samples in 1 input files
<mpileup> Set max per-file depth to 8000
1  215906528  G  21  ,,,,,,,,.,,,.,,..,.,,       ;=?./:?>>;=7?>>@A?==: 
1  215906529  A  18  ,,,,,,,,.,,,,,..,.          D>AA:@A>9>?;;?>>@=
[...]
1  215906547  C  15  gGg$,GggGG,,....            <;80;><9=86=C>= 
1  215906548  G  19  c$,ccC.,.,,,.,....,^].      ;58610=7=>75=7<463;
[...]
1  215906555  G  16  .$aaaaaA.AAAaAAA^:A         2@>?8?;<:335?:A> 
[...]

First, samtools mpileup requires an input BAM file (in this example, we use
NA12891_CEU_sample.bam). We also supply a reference genome in FASTA for‐
mat through the --fasta-ref or -f options (be sure to use the exact same refer‐
ence used for mapping) so samtools mpileup knows each reference base.
Additionally, we use the --region or -r options to limit our pileup to the same
region we visualized with IGV. Lastly, we disable Base Alignment Quality (BAQ)
with --no-BAQ or -B, an additional feature of samtools mpileup we’ll discuss
later.
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This is is a typical line in the pileup format. The columns are:

• Reference sequence name (e.g., chromosome 1 in this entry).
• Position in reference sequence, 1-indexed (position 215,906,528 in this

entry).
• Reference sequence base at this position (G in this entry).
• Depth of aligned reads at this position (the depth or coverage, 21 in this

entry).
• This column encodes the reference reads bases. Periods (.) indicate a refer‐

ence sequence match on the forward strand, commas (,) indicate a reference
sequence match to the reverse strand, an uppercase base (either A, T, C, G, or
N) indicates a mismatch on the forward strand, and a lowercase base (a, t, c,
g, or n) indicates a mismatch on the reverse strand. The ^ and $ characters
indicate the start and end of reads, respectively. Insertions are denoted with a
plus sign (+), followed by the length of the insertion, followed by the
sequence of the insertion. An insertion on a line indicates it’s between the
current line and the next line. Similarly, deletions are encoded with a minus
sign (-), followed by the length of the deletion and the deleted sequence.
Lastly, the mapping quality of each alignment is specified after the beginning
of the alignment character, ^ as the ASCII character value minus 33.

• Finally, the last column indicates the base qualities (the ASCII value minus
33).

On this line and the next line are the stacked mismatches we saw at positions
215,906,547 and 215,906,548 with IGV in Figure 11-2. These lines show the
stacked mismatches as nucleotides in the fifth column. Note that variants in this
column are both lower- and uppercase, indicating they are supported by both
reads aligning to both the forward and reverse strands.

Finally, note at this position most reads disagree with the reference base. Also,
this line contains the start of a new read (indicated with the ^ mark), with map‐
ping quality 25 (the character : has ASCII code 58, and 58 - 33 = 25; try ord(:)
- 33 in Python).

Altering our mpileup command to output variant calls rather than a pileup is not dif‐
ficult (we’ll see how in a bit). However, while pileups are simply per-position summa‐
ries of the data in aligned reads, variant and genotype calls require making inferences
from noisy alignment data. Most variant calling approaches utilize probabilistic
frameworks to make reliable inferences in spite of low coverage, poor base qualities,
possible misalignments, and other issues. Additionally, methods can increase power
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to detect variants by jointly calling variants on many individuals simultaneously. sam
tools mpileup will jointly call SNPs and genotypes for multiple individuals—each
individual simply needs to be identified through the SM tags in the @RG lines in the
SAM header.

Calling variants with samtools and its companion tool bcftools is a two-step pro‐
cess (excluding the very important steps of validation). In the first step, samtools mpi
leup called with the -v or -g arguments will generate genotype likelihoods for every
site in the genome (or all sites within a region if one is specified). These results will be
returned in either a plain-text tab-delimited Variant Call Format (known more com‐
monly by its abbreviation, VCF) if -v is used, or BCF (the binary analog of VCF) if -g
is used. In the second step, bcftools call will filter these results so only variant sites
remain, and call genotypes for all individuals at these sites. Let’s see how the first step
works by calling samtools mpileup with -v in the region we investigated earlier with
IGV:

$ samtools mpileup -v --no-BAQ --region 1:215906528-215906567 \
     --fasta-ref human_g1k_v37.fasta NA12891_CEU_sample.bam   \
     > NA12891_CEU_sample.vcf.gz
[mpileup] 1 samples in 1 input files
<mpileup> Set max per-file depth to 8000

The VCF Format

VCF is a tab-delimited format that has three parts:

• A metadata header consisting of lines that start with ##
• A header line with the eight mandatory fields and if genotypes

are called, the individuals’ sample names
• The data lines, where each line consists of the information for

a variant at a particular position and all individuals’ genotypes
for this variant

VCF can be a deceivingly complex format that comes in different
versions and flavors (and is very likely to change, and may at some
point be replaced entirely). For these reasons, the specifics of VCF
won’t be covered in depth here, but see the format specification and
the supplementary information in this chapter’s GitHub directory. I
encourage you to become familiar with the VCF format, as it will
aid in understanding these examples.

This produces a gzipped VCF file full of intermediate variant and genotype data for
every site in the region (or if you haven’t specified a region with --region or -r, the
entire genome). Note that you can force samtools mpileup to output uncompressed
results with -u. These intermediate results are then fed into bcftools call, which
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uses the estimated genotype likelihoods and other information to call certain sites as
variant or not, and infer the genotypes of all individuals (in our example, our file only
has one individual, NA12891). The VCF file produced is long and too wide to show
in a book page, so I’ve used zgrep -v to remove the header and awk to select some
columns of interest. Because VCF is a tab-delimited file, we can use all of our Unix
tricks to manipulate and explore it:

$ zgrep "^##" -v NA12891_CEU_sample.vcf.gz | \
  awk 'BEGIN{OFS="\t"} {split($8, a, ";"); print $1,$2,$4,$5,$6,a[1],$9,$10}'
#CHROM  POS        REF  ALT      QUAL  INFO   FORMAT  NA12891
1       215906528  G    <X>      0     DP=21  PL      0,63,236
1       215906529  A    <X>      0     DP=22  PL      0,54,251
[...]
1       215906547  C    G,<X>    0     DP=22  PL      123,0,103,144,127,233
1       215906548  G    C,<X>    0     DP=22  PL      23,0,163,68,175,207
[...]
1       215906555  G    A,<X>    0     DP=19  PL      184,7,0,190,42,204
[...]

First, note that some positions such as 215,906,528 and 215,906,528 only contain the
alternative allele (in the ALT column) <X>. <X> represents the possibility that an alter‐
native allele has not been observed in the data due to under-sampling (e.g., low cover‐
age). Second, note how the sites 215,906,547, 215,906,548, and 215,906,555 all have
an alternative allele other than <X>. These are the same sites we saw earlier in IGV
that had multiple mismatches that looked like variants. The alternative alleles in col‐
umn ALT represent possible variants at these positions samtools mpileup has identi‐
fied. Additional information about these variants is passed in this intermediate VCF
file to bcftools call, which uses this information to make an inference whether
sites are really variant and what each individuals’ genotype is. Let’s run this bcftools
call step, and then do some exploring of where we lose variants and why:

$ bcftools call -v -m NA12891_CEU_sample.vcf.gz > NA12891_CEU_sample_calls.vcf.gz

bcftools call run with -m uses the multiallelic caller (the other option is to use the
original consensus caller with -c). The -v option only outputs variant sites, which is
why our output is much shorter:

$ zgrep "^##" -v NA12891_CEU_sample_calls.vcf.gz | \
  awk 'BEGIN{OFS="\t"} {split($8, a, ";"); print $1,$2,$4,$5,$6,a[1],$9,$10}'
#CHROM  POS        REF  ALT  QUAL  INFO   FORMAT  NA12891
1       215906547  C    G    90    DP=22  GT:PL   0/1:123,0,103
1       215906555  G    A    157   DP=19  GT:PL   1/1:184,7,0

We see that bcftools calls calls only two variant sites in this region, which is fewer
sites than have alternative alleles in the intermediate VCF output from samtools
mpileup. Noticeably, the site 215,906,548 is not called as a variant site after being pro‐
cessed through bcftools call’s multiallelic caller. This is good—looking at the align‐
ments in IGV (“Visualizing Alignments with samtools tview and the Integrated
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Genomics Viewer” on page 372), you can see that there are 4 C alleles and 20 refer‐
ence (G) alleles; hardly convincing evidence that this a true variant. More individuals
with this alternative allele in a joint variant calling context may have tipped the bal‐
ance toward this being called a variant site.

Additionally, bcftools call has estimated a quality score (the QUAL column) for
each alternative allele in ALT. These quality scores are Phred-scaled values that esti‐
mate the probability that the alternative allele is incorrect (see “Base Qualities” on
page 344 for more on Phred-scaled values). Higher QUAL scores indicate the variant
caller is more confident in a call.

If the alternative allele in column ALT is . (representing no variant), this quality score
reflects the probability that the site really does have a variant. We can see how
bcftools call is less certain about the nonvariant call at position 215,906,548 by
looking at the QUAL value for this variant. Omitting the flag -v with bcftools call to
see all sites’ information is shown in Example 11-1:

Example 11-1. bcftools call with all sites

$ bcftools call -m NA12891_CEU_sample.vcf.gz | grep -v "^##" | \
  awk 'BEGIN{OFS="\t"} {split($8, a, ";"); print $1,$2,$4,$5,$6,a[1],$9,$10}'
#CHROM  POS        REF       ALT  QUAL     INFO   FORMAT  NA12891
1       215906528  G         .    999      DP=21  GT      0/0
1       215906529  A         .    999      DP=22  GT      0/0
[...]
1       215906547  C         G    90       DP=22  GT:PL   0/1:123,0,103
1       215906548  G         .    12.1837  DP=22  GT      0/0
[...]
1       215906555  G         A    157      DP=19  GT:PL   1/1:184,7,0
[...]

Compared to other nonvariant sites like 215,906,528 and 215,906,529, and sites with
visible stacked mismatches (like 215,906,547), 215,906,548 has a very low QUAL
reflecting the variant caller’s uncertainty at this site (because there were four mis‐
matches of the same base). Recalculating this Phred-value into a probability using the
formula Q = -10 log10 P(alternative call is incorrect), we see that P(alternative call is
incorrect) = 10(-12.1837/10) ≈ 0.060, or about a 6% chance the call that this site is invari‐
ant is in incorrect—a fairly large chance. Compare that to the quality at 215,906,555
where the P(alternative call is incorrect) ≈ 2 x 10-16.

A lot of information regarding each individual’s genotype call can be crammed into
the VCF format. The VCF format supports variable numbers of information about
genotypes (e.g., genotype call, genotype quality, likelihoods, etc.) by concatenating
many values together into a single column per individual. Values are separated by
colons (:), and the FORMAT column describes the order of each value in the genotype
columns. For example, in Example 11-1, the entry for position 215,906,555 has a FOR
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MAT entry of GT:PL and the entry for individual NA12891 is 1/1:184,7,0. This means
that the key GT has a value 1/1, and the key PL has a value 184,7,0. A really nice fea‐
ture of the VCF format is that all FORMAT keys are described in the header, so we can
use grep to figure out what these keys mean:

$ bcftools call -m NA12891_CEU_sample.vcf.gz > NA12891_CEU_sample_calls.vcf.gz

$ grep "FORMAT=<ID=GT" NA12891_CEU_sample_calls.vcf.gz
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
$ grep "FORMAT=<ID=PL" NA12891_CEU_sample_calls.vcf.gz
##FORMAT=<ID=PL,Number=G,Type=Integer,
    Description="List of Phred-scaled genotype likelihoods">

So we see that these values are the genotypes (key GT) and Phred-scaled genotype
likelihoods (key PL) of each individual. These are always in the order ref/ref, ref/alt,
and alt/alt alleles for biallelic loci (and a similar pattern for multiallelic loci; see the
VCF format specification for an example). All genotype likelihoods (PL) are rescaled
so the most likely genotype is 1 (so it’s Phred-scaled likelihood is 0). Thus, at position
215,906,555 the most likely genotype is alt/alt, the next most likely is ref/alt, and the
least likely is ref/ref. There are additional resources on interpreting VCF genotype
fields in this chapter’s README file.

Lastly, let’s return to the idea that our reads may have misaligned around the low
complexity region near the 215,906,547. Misalignments in low-complexity regions
(usually due to indels being aligned as mismatches) are a major cause of erroneous
SNP calls. To address this, samtools mpileup enables Base Alignment Quality (BAQ),
which uses uses a Hidden Markov Model to adjust base qualities to reflect not only
the probability of an incorrect base call, but also of a particular base being misaligned.
We disabled this algorithm earlier in our simple pipeline, but let’s see how it affects
our calls:

$ samtools mpileup -u -v --region 1:215906528-215906567 \
   --fasta-ref human_g1k_v37.fasta NA12891_CEU_sample.bam > \
   NA12891_CEU_sample_baq.vcf.gz

$ grep -v "^##" NA12891_CEU_sample_baq.vcf.gz | \
  awk 'BEGIN{OFS="\t"} {split($8, a, ";"); print $1,$2,$4,$5,$6,a[1],$9,$10}'
#CHROM  POS        REF  ALT    QUAL  INFO   FORMAT  NA12891
1       215906528  G    <X>    0     DP=21  PL      0,63,236
1       215906529  A    <X>    0     DP=22  PL      0,54,249
[...]
1       215906547  C    <X>    0     DP=22  PL      0,21,141
1       215906548  G    <X>    0     DP=22  PL      0,42,200
[...]
1       215906555  G    A,<X>  0     DP=19  PL      194,36,0,194,36,194
[...]

Note how both sites 215,906,547 and 215,906,548 are now not considered as possible
variant sites—the BAQ algorithm has downweighted the bases around the low com‐
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plexity region we saw in IGC sufficiently enough that samtools mpileup no longer
considers these invariant sites.

Creating Your Own SAM/BAM Processing Tools with Pysam
In this section, we’ll learn about the basics of Pysam, an application programming
interface (more commonly known as an API). As the name suggests, APIs provide a
defined interface to some component (in this case, the data in SAM and BAM files)
through a set of well-defined classes and functions. The Pysam API allows for us to
quickly work with data in SAM and BAM files without having to implement parsers,
write code to read binary BAM files, or parse bitflags. The classes and functions in the
pysam module take care of all these intermediate steps for you, and provide a consis‐
tent interface for you to access the data kept in the lower-level SAM and BAM for‐
mats.

Learning to work with software libraries (which implement APIs) is one of the most
important steps in becoming a skilled programmer. Often, beginning programmers
are eager to implement everything themselves—while this can be a good learning
exercise, for production projects it’s far better to utilize libraries. Not only does using
libraries save a considerable amount of time, libraries are community tested and less
likely to contain bugs that can lead to incorrect results. Fundamentally, libraries allow
you as the programmer to ignore lower-level details and work with higher-level
abstractions.

Let’s start by installing Pysam. While the source is available on GitHub, the easiest
way to install Pysam is through PyPI (the Python Package Index):

$ pip install pysam

Once Pysam is installed, open its documentation. Using APIs efficiently is largely
about learning how to effectively access information about classes and functions as
you need them in the API’s documentation. This is one of the most vital skills to
develop in working with APIs.

Opening BAM Files, Fetching Alignments from a Region, and Iterating
Across Reads
Let’s start by opening our NA12891_CEU_sample.bam file using Pysam. We’ll do this
interactively to introduce useful Python functions that help in exploring APIs:

>>> import pysam
>>> fname = "NA12891_CEU_sample.bam"
>>> bamfile = pysam.AlignmentFile(filename=fname, mode="rb")

>>> type(bamfile)
<type 'pysam.calignmentfile.AlignmentFile'>
>>> dir(bamfile)
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['__class__', '__delattr__', ..., 'close', 'count', 'fetch', 'filename',
'getrname', 'gettid', 'head', 'header', 'lengths', 'mapped', 'mate',
'next', 'nocoordinate', 'nreferences', 'pileup', 'references', 'reset',
'seek', 'tell', 'text', 'unmapped', 'write']

pysam.AlignmentFile opens the specified file and returns an AlignmentFile object.
pysam.AlignmentFile’s default mode is to read plain-text SAM files; because we’re
reading a BAM file here, we specify the mode as "rb", which opens a binary BAM file
(b) for reading (r). We could also open SAM/BAM files for writing, but we won’t
cover that in this quick introduction.

As a well-designed higher-level API, Pysam abstracts away many lower-level technical
details we shouldn’t have to worry about when writing higher-level applications. For
example, we use the exact same pysam.AlignmentFile class and its methods when
working with both SAM and BAM files. Similarly, when you open a BAM file, Pysam
will check to see if the file has a corresponding .bai index and automatically load this.
This allows for quick random access of position-sorted and indexed BAM files, much
like we achieved earlier with samtools view.

We could use the pysam.AlignmentFile.fetch() method to fetch aligned reads from
a particular region of an indexed BAM file:

>>> for read in bamfile.fetch('1', start=215906528, end=215906567):
...   print read.qname, "aligned at position", read.pos
...
SRR005672.5788073 aligned at position 215906479
SRR005666.5830972 aligned at position 215906486
ERR002294.5383813 aligned at position 215906495
[...]

Similarly, we can iterate through all reads in the BAM file (aligned and unaligned)
with the code shown in Example 11-2:

Example 11-2. Iterating through all reads with Pysam

>>> bamfile = pysam.AlignmentFile(filename=fname, mode="rb")
>>> for read in bamfile:
...   status = "unaligned" if read.is_unmapped else "aligned"
...   print read.qname, "is", status
...
SRR005672.8895 is aligned
SRR010927.10846964 is aligned
SRR005674.4317449 is aligned
SRR005675.5348609 is aligned
[...]

Each iteration returns a single AlignedSegment object, which contains all information
kept in a single SAM/BAM entry. These objects contain attributes that store align‐
ment and read information, as well as many useful methods that simplify common
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tasks such as counting how many bases an AlignedSegment object overlaps a supplied
region, or returning the reference positions this aligned read overlaps. We’ll cover
AlignedSegment objects in “Working with AlignedSegment Objects” on page 388.

There’s a very important but subtle behavior to remember: when we iterate through
an AlignmentFile object this way, the current position in the file is remembered. If
you iterate through half a file, break out of the loop, and then begin again, you will
start where you left off, not at the beginning of the file. This should be no surprise if
you’ve used iterators in Python before; state about the current position is also stored
when you iterate through the lines of regular files in Python. But if you’re still rela‐
tively unfamiliar with Python, this is a common gotcha to remember. As a result of
the file position being stored, if you iterate through an entire file, you’ll need to reset
the file position with reset. Let’s demonstrate this gotcha and Alignment
File.reset():

>>> bamfile = pysam.AlignmentFile(filename=fname, mode="rb")
>>> nmapped = 0
>>> for read in bamfile: 
...   nmapped += not read.is_unmapped
...
...
>>> bamfile.next() 
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "calignmentfile.pyx", line 1282, [...]
StopIteration
>>> bamfile.reset() 
0
>>> read = bamfile.next() 
>>> read.qname
'SRR005672.8895'

We iterate through each entry in the bamfile object in this for loop (which in
the body simply counts how many mapped reads there are).

Once the for loop is complete, the bamfile object’s internal state is pointing at
the end of the file (because we looped through everything). If we were to try to
grab another entry in bamfile using the AlignmentFile.next() method, the
Python exception StopIteration is raised signaling that there’s nothing left to
iterate over.

Calling the AlignmentFile.reset() method resets the file position to the head
of the BAM file (below the header).
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After resetting the position, calling the AlignmentFile.next() method returns
the first alignment. Note that the query name, given by the attribute AlignedSeg
ment.qname, is the same as the first alignment in Example 11-2.

Once you’re done working with an open SAM/BAM file, it’s a good idea to close it,
which can be done with:

>>> bamfile.close()

Note, though, that all examples in this section will assume that bamfile is open (so if
you’ve just executed the preceding line, reopen the file).

Extracting SAM/BAM Header Information from an AlignmentFile
Object
AlignmentFile objects also contain all information in the SAM header, which can be
accessed using a variety of the AlignmentFile’s attributes and methods. The entire
header is kept in a Python dictionary, which has the same possible keys as a SAM
header:

>>> bamfile.header.keys()
['SQ', 'RG', 'PG', 'HD']

Each of the values corresponding to these keys contains a list of SAM header records.
For example, the first record in the read group (RG) section and the third record in
the sequence (SQ) section are:

>>> bamfile.header['RG'][0]
{'LB': 'g1k-sc-NA12891-CEU-1', 'CN': 'SC', 'DS': 'SRP000032',
 'SM': 'NA12891', 'PI': '200', 'ID': 'ERR001776', 'PL': 'ILLUMINA'}
>>> bamfile.header['SQ'][0]
{'LN': 249250621, 'M5': '1b22b98cdeb4a9304cb5d48026a85128',
'AS': 'NCBI37', 'SN': '1',
 'UR': 'file:/lustre/scratch102/projects/g1k/ref/main_project/
 human_g1k_v37.fasta'}

While the AlignmentFile.header dictionary contains all information in the header,
there are higher-level and easier ways to access header information. For example, the
reference sequence names and their lengths are stored in two tuples, Alignment
File.references and AlignmentFile.lengths:

>>> bamfile.references
('1', '2', '3', '4', '5', '6', '7', [...])
>>> bamfile.lengths
(249250621, 243199373, 198022430, 191154276,
 180915260, 171115067, 159138663, [...])

When working with Pysam, one of the most common AlignmentFile methods you’ll
use is AlignmentFile.getrname(). Whenever you process an AlignedSegment
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object, the reference is stored as a non-negative integer reference ID (also known as a
target ID or tid in the documentation). The reference ID corresponds to a particular
reference sequence. The AlignmentFile.getrname() method is used to retrieve the
name of the reference corresponding to this this integer reference ID:

>>> # check if aligned (only aligned reads have meaningful reference)
>>> read.is_unmapped
False
>>> read.tid
0
>>> bamfile.getrname(read.reference_id)
'1'

It’s also possible to go the opposite direction, from name to reference ID:
>>> bamfile.gettid('MT')
24

Reference IDs can only be non-negative integers; a value of –1 indicates something is
wrong (and your code should explicitly test for this possibility!). For example, if we
attempted to access a reference named “Mt” by mistake:

>>> bamfile.gettid('Mt')
-1

There are numerous other useful AlignmentFile attributes we don’t have the space to
cover here; see the Pysam documentation for a full list.

Working with AlignedSegment Objects
Most SAM/BAM processing tasks you’ll tackle with Pysam will involve heavy work
with AlignedSegment objects. These objects contain information about individual
alignment records, which is what most SAM/BAM processing is centered around. All
information about an alignment record is stored in this AlignedSegment object’s
attributes. We’ll explore some of these attributes by taking a closer look at one
AlignedSegment object from the NA12891_CEU_sample.bam file in this section. But
note, the best and most up-to-date information will always come from the API docu‐
mentation itself. This section quickly steps through the basics and highlights a few
parts that can be tricky for those just starting out with Pysam.

First, let’s load a sample read from this file:
>>> bamfile = pysam.AlignmentFile(filename=fname, mode="rb")
>>> read = bamfile.next()

Basic information about the read (also known as the query), including its name,
sequence, base qualities, and length are all stored as attributes:

>>> read.query_name 
'SRR005672.8895'
>>> read.reference_start 
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215622849
>>> read.query_sequence 
'GGAATAAATATAGGAAATGTATAATATATAGGAAATATATATATATAGTAA'
>>> read.query_qualities 
array('B', [26, 28, 27, 29, 28, 27, 29, 27, 24, 27, [...]])
>>> read.query_length 
51
>>> read.query_length == len(read.query_sequence)
True

The AlignedSegment.query_name attribute returns the read (query) name.

The AlignedSegment.reference_start attribute returns the alignment position
(the column POS in the SAM/BAM file).

AlignedSegment.query_sequence retrieves the read sequence.

AlignedSegment.query_qualities retrieves the read qualities, as a Python array.
These qualities have already been converted; there’s no need to subtract 33 from
these values.

The length of the query be accessed with AlignedSegment.query_length. This
gives the entire query length, which as you see on the next line will be equal to
the length of the sequence.

Earlier, in “Bitwise Flags” on page 360, we learned how to extract information from
the SAM format’s bitwise flags. Pysam makes this much simpler by providing a series
of clearly named attributes that get at the values of these bitwise flags. The following
are some examples, but see the Pysam documentation for a full list:

>>> read.is_unmapped
False
>>> read.is_paired
True
>>> read.is_proper_pair
True
>>> read.mate_is_unmapped
False
>>> read.is_read1
True
>>> read.is_read2
False
>>> read.is_reverse
False
>>> read.mate_is_reverse
True
>>> read.is_qcfail
False
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There are two attributes to access an alignment’s CIGAR alignment details: Aligned
Segment.cigartuples and AlignedSegment.cigarstring. The former returns a list
of tuples that use integers to encode the CIGAR operation and its length (see the doc‐
umentation for these operation codes). The latter returns the CIGAR alignment as a
string.

One important consideration when working with Pysam’s AlignedSegment objects is
how certain values handle soft-clipped alignments. With soft clipping, it’s possible
that the length of the aligned query sequence is less than the original read sequence.
Because we often want to work with only the aligned portion of query sequences
when processing alignments, AlignedSegment has attributes that take soft clipping
into account—be sure to use the correct attribute for your task! For example, let’s find
a soft-clipped read by iterating over all reads until we find one with “S” in the CIGAR
string, then break out of the loop:

>>> bamfile = pysam.AlignmentFile('NA12891_CEU_sample.bam')
>>> for read in bamfile:
...   if 'S' in read.cigarstring:
...     break
...
>>> read.cigarstring
'35M16S'

AlignedSegment objects have some attributes with “alignment” in the name to
emphasize these exclude soft-clipped bases. For example, note the difference between
AlignedSegment.query_sequence and AlignedSegment.query_align
ment_sequence:

>>> read.query_sequence
'TAGGAAATGTATAATATATAGGAAATATATATATATAGGAAATATATAATA'
>>> read.query_alignment_sequence
'TAGGAAATGTATAATATATAGGAAATATATATATA'
>>> len(read.query_sequence) - len(read.query_alignment_sequence)
16

The difference between these two strings is the soft-clipped bases; AlignedSeg
ment.query_alignment_sequence doesn’t include these soft-clipped bases and is 16
bases shorter. There are similar attributes, including AlignedSegment.query_align
ment_start and AlignedSegment.query_alignment_end (which give the start and
end indices in the aligned portion of the query sequence), AlignedSeg
ment.query_alignment_length (which returns the alignment length), and Aligned
Segment.query_alignment_qualities (which returns the sequence base qualities,
excluding the soft-clipped bases).
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Writing a Program to Record Alignment Statistics
We’re now ready to employ our knowledge of AlignedSegment objects to write a sim‐
ple short program that gathers alignment statistics from a SAM or BAM file. We’ll
then validate this tool by comparing its results to those from samtools flagstat, a
tool that reports statistics about SAM bitwise flags:

import sys
import pysam
from collections import Counter

if len(sys.argv) < 2:
    sys.exit("usage: alnstat.py in.bam")

fname = sys.argv[1]
bamfile = pysam.AlignmentFile(fname) 

stats = Counter() 
for read in bamfile:
    stats['total'] += 1
    stats['qcfail'] += int(read.is_qcfail) 

    # record paired end info
    stats['paired'] += int(read.is_paired) 
    stats['read1'] += int(read.is_read1)
    stats['read2'] += int(read.is_read2)

    if read.is_unmapped: 
        stats['unmapped'] += 1
        continue # other flags don't apply

    # record if mapping quality <= 30 
    stats["mapping quality <= 30"] += int(read.mapping_quality <= 30)

    stats['mapped'] += 1 
    stats['proper pair'] += int(read.is_proper_pair) 

# specify the output order, since dicts don't have order 
output_order = ("total", "mapped", "unmapped", "paired",
                "read1", "read2", "proper pair", "qcfail",
                "mapping quality <= 30")

# format output and print to standard out
for key in output_order:
    format_args = (key, stats[key], 100*stats[key]/float(stats["total"])) 
    sys.stdout.write("%s: %d (%0.2f%%)\n" % format_args) 

This is a quick script, without many bells and whistles. In general, when writing
scripts for simple tasks like this, it’s best to follow the KISS principle. Don’t needlessly
overcomplicate things or add extra features—these can all come in later revisions
after daily use has shown an inadequacy. Let’s step through some key parts:
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After loading the necessary modules and checking there are a sufficient number
of arguments to run the script, we open the SAM or BAM file. Here, we don’t
explicitly specify a mode, because Pysam’s AlignmentFile can infer this (see the
AlignmentFile documentation for more information).

Here, we initiate the Counter object from the collections module (Counter is
an incredibly useful class in bioinformatics scripts!). Counter behaves much like
a Python dictionary, which is how we see it used here.

Here’s an example of incrementing a key in the Counter object depending on
what the value of an AlignedSegment attribute is. The attribute AlignedSeg
ment.is_qcfail returns whether the QC fail bit is set, which is a Boolean value
(True or False). To be explicit, we convert this to an integer, and add this value
(either 1 for True or 0 for False) to the current count kept in the Counter object
stats.

Similar to how we increment the key for QC fail, we increment the counters for
whether a read is paired, is read 1, or is read 2.

Some flags only make sense if a read mapped to the reference. At this point, we
check if the read is unmapped, and increment the unmapped counter if so. Since
the rest of the values we check in the for loop block depend on a read being
aligned, if a read is unmapped we use continue to skip over this code (because
none of these later keys should be incremented if a read is unmapped).

At this point, all alignments are mapped. We increment a counter here recording
whether the read mapped with mapping quality is less than 30 (any threshold can
be used, but this is a common threshold for “low quality” alignments).

 Here we increment the 'mapped' key, since all alignments at this point are map‐
ped. We also increment if the read is in a proper pair (only aligned reads can be a
proper pair).

Counter objects are based on Python’s dictionaries, so keys are not in any partic‐
ular order. Here, we define the order to output keys (and their values) as a tuple.
We’ll see how this is used in the next step.

In this loop, we iterate over each of the keys in the tuple output_order, which
defines the order of output values in the Counter object stats. Each line of out‐
put has three values: the key name, the total counts for that key in the Counter
object stats, and that key’s percentage of the total number of SAM/BAM entries.
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This line creates a tuple of these values, which are used to propagate the string
formatting values in the next line.

This line writes a formatted string (using the tuple format_args created in the
previous line) to standard output.

Let’s run this script on our NA12891_CEU_sample.bam file:
$ python alnstat/alnstat.py NA12891_CEU_sample.bam
total: 636207 (100.00%)
mapped: 630875 (99.16%)
unmapped: 5332 (0.84%)
paired: 435106 (68.39%)
read1: 217619 (34.21%)
read2: 217487 (34.18%)
proper pair: 397247 (62.44%)
qcfail: 0 (0.00%)
mapping quality <= 30: 90982 (14.30%)

Even for simple scripts such as this one, it’s essential to validate the results. For longer
scripts, frequently used programs, or critical parts of a workflow, we might employ
unit testing (because if something’s wrong, everything will be wrong). Unit testing
involves breaking code up into separate functions, and writing code that automati‐
cally tests that each function is working by checking its values (called unit tests). For a
small script like this, this might be overkill. Fortunately, there are two simpler (but
less robust) alternatives:

• Creating a small test dataset where you’ve worked out what the results should be
by hand and can check your program’s results

• Using another program or application to validate the results

We’ll use the latter option, by validating our tool with samtools flagstat (which our
program emulates):

$ samtools flagstat NA12891_CEU_sample.bam
636207 + 0 in total (QC-passed reads + QC-failed reads)
0 + 0 secondary
0 + 0 supplimentary
29826 + 0 duplicates
630875 + 0 mapped (99.16%:nan%)
435106 + 0 paired in sequencing
217619 + 0 read1
217487 + 0 read2
397247 + 0 properly paired (91.30%:nan%)
424442 + 0 with itself and mate mapped
5332 + 0 singletons (1.23%:nan%)
5383 + 0 with mate mapped to a different chr
2190 + 0 with mate mapped to a different chr (mapQ>=5)
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Looking at the raw counts (in the first column, before +) we can see that each our
values check out. samtools flagstat doesn’t return a figure for how many reads
have a mapping quality less than or equal to 30, so we have to validate our value
another way. One way is to use samtools view’s -q option, which returns the number
of alignments with a mapping quality greater than or equal to the supplied value. We
combine this with -c, which returns the count, rather than the alignments them‐
selves:

$ samtools view -c -q 31 NA12891_CEU_sample.bam
539893

Now, to find the number of reads with mapping quality less than or equal to 30, we
need to subtract this value from the total number of mapped reads. We count the
total number of mapped reads with samtools flagstat, filtering out alignments
with the unmapped bit (0x4) set:

samtools view -c -F 4 NA12891_CEU_sample.bam
630875

Note that 630,875 – 539,893 = 90,982, which is exactly what we found with our aln‐
stat.py script—this value checks out, too.

Additional Pysam Features and Other SAM/BAM APIs
In this introduction, we’ve skipped over some additional features of Pysam. For
example, Pysam also includes an interface for creating and working with pileup data,
through the AlignmentFile.pileup() method. In addition, Pysam implements some
common samtools subcommands—for example, sort, view, and calmd are imple‐
mented as pysam.sort, pysam.view, pysam.calmd. Pysam also has a Python interface
to Tabix files through pysam.TabixFile (we cover Tabix files later in “Fast Access to
Indexed Tab-Delimited Files with BGZF and Tabix” on page 425), and FASTQ files
through pysam.FastqFile. These are all well-written and easy-to-use interfaces;
unfortunately, we don’t have the space to cover all of these in this section, so see
Pysam’s excellent documentation for more details.

Finally, Pysam is just one popular SAM/BAM API—there are numerous others avail‐
able in different languages. For example, Samtools has its own C API. If you work in
Java, Picard offers a Java API for working with SAM and BAM files. Finally, Biocon‐
ductor has two excellent packages used for working with SAM and BAM files and
genome alignments: Rsamtools and GenomicAlignment.
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CHAPTER 12

Bioinformatics Shell Scripting, Writing
Pipelines, and Parallelizing Tasks

I’ve waited until the penultimate chapter this book to share a regrettable fact: every‐
day bioinformatics work often involves a great deal of tedious data processing. Bioin‐
formaticians regularly need to run a sequence of commands on not just one file, but
dozens (sometimes even hundreds) of files. Consequently, a large part of bioinfor‐
matics is patching together various processing steps into a pipeline, and then repeat‐
edly applying this pipeline to many files. This isn’t exciting scientific work, but it’s a
necessary hurdle before tackling more exciting analyses.

While writing pipelines is a daily burden of bioinformaticians, it’s essential that pipe‐
lines are written to be robust and reproducible. Pipelines must be robust to problems
that might occur during data processing. When we execute a series of commands on
data directly into the shell, we usually clearly see if something goes awry—output files
are empty when they should contain data or programs exit with an error. However,
when we run data through a processing pipeline, we sacrifice the careful attention we
paid to each step’s output to gain the ability to automate processing of numerous files.
The catch is that not only are errors likely to still occur, they’re more likely to occur
because we’re automating processing over more data files and using more steps. For
these reasons, it’s critical to construct robust pipelines.

Similarly, pipelines also play an important role in reproducibility. A well-crafted pipe‐
line can be a perfect record of exactly how data was processed. In the best cases, an
individual could download your processing scripts and data, and easily replicate your
exact steps. However, it’s unfortunately quite easy to write obfuscated or sloppy pipe‐
lines that hinder reproducibility. We’ll see some principles that can help you avoid
these mistakes, leading to more reproducible projects.
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In this chapter, we’ll learn the essential tools and skills to construct robust and repro‐
ducible pipelines. We’ll see how to write rerunnable Bash shell scripts, automate file-
processing tasks with find and xargs, run pipelines in parallel, and see a simple
makefile. Note that the subset of techniques covered in this chapter do not target a
specific cluster or high-performance computing (HPC) architecture—these are gen‐
eral Unix solutions that work well on any machine. For parallelization techniques
specific to your HPC system, you will need consult its documentation.

Basic Bash Scripting
We’ve found that duct tape is not a perfect solution for anything. But with a little
ingenuity, in a pinch, it’s an adequate solution for just about everything.

— Mythbusters’ Jamie Hyneman
Bash, the shell we’ve used interactively throughout the book, is also a full-fledged
scripting language. Like many other tools presented in this book, the trick to using
Bash scripts effectively in bioinformatics is knowing when to use them and when not
to. Unlike Python, Bash is not a general-purpose language. Bash is explicitly designed
to make running and interfacing command-line programs as simple as possible (a
good characteristic of a shell!). For these reasons, Bash often takes the role as the duct
tape language of bioinformatics (also referred to as a glue language), as it’s used to
tape many commands together into a cohesive workflow.

Before digging into how to create pipelines in Bash, it’s important to note that Python
may be a more suitable language for commonly reused or advanced pipelines. Python
is a more modern, fully featured scripting language than Bash. Compared to Python,
Bash lacks several nice features useful for data-processing scripts: better numeric type
support, useful data structures, better string processing, refined option parsing, avail‐
ability of a large number of libraries, and powerful functions that help with structur‐
ing your programs. However, there’s more overhead when calling command-line
programs from a Python script (known as calling out or shelling out) compared to
Bash. Although Bash lacks some of Python’s features, Bash is often the best and
quickest “duct tape” solution (which we often need in bioinformatics).

Writing and Running Robust Bash Scripts
Most Bash scripts in bioinformatics are simply commands organized into a re-
runnable script with some added bells and whistles to check that files exist and ensur‐
ing any error causes the script to abort. These types of Bash scripts are quite simple to
write: you’ve already learned important shell features like pipes, redirects, and back‐
ground processes that play an important role in Bash scripts. In this section, we’ll
cover the basics of writing and executing Bash scripts, paying particular attention to
how create robust Bash scripts.
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A robust Bash header
By convention, Bash scripts have the extension .sh. You can create them in your
favorite text editor (and decent text editors will have support for Bash script syntax
highlighting). Anytime you write a Bash script, you should use the following Bash
script header, which sets some Bash options that lead to more robust scripts (there’s
also a copy of this header in the template.sh file in this chapter’s directory on GitHub):

#!/bin/bash 
set -e 
set -u 
set -o pipefail 

This is called the shebang, and it indicates the path to the interpreter used to exe‐
cute this script. This is only necessary when running the script as a program
(more on this in a bit). Regardless of how you plan to run your Bash script, it’s
best to include a shebang line.

By default, a shell script containing a command that fails (exits with a nonzero
exit status) will not cause the entire shell script to exit—the shell script will just
continue on to the next line. This is not a desirable behavior; we always want
errors to be loud and noticeable. set -e prevents this, by terminating the script if
any command exited with a nonzero exit status. Note, however, that set -e has
complex rules to accommodate cases when a nonzero exit status indicates “false”
rather than failure. For example, test -d file.txt will return a nonzero exit
status if its argument is not a directory, but in this context this isn’t meant to rep‐
resent an error. set -e ignores nonzero statuses in if conditionals for this rea‐
son (we’ll discuss this later). Also, set -e ignores all exit statuses in Unix pipes
except the last one—this relates to set -o pipefail, which we discuss later.

set -u fixes another unfortunate default behavior of Bash scripts: any command
containing a reference to an unset variable name will still run. As a horrifying
example of what this can lead to, consider: rm -rf $TEMP_DIR/*. If the shell vari‐
able $TEMP_DIR isn’t set, Bash will still substitute its value (which is nothing) in
place of it. The end result is rm -rf /*! You can see this for yourself:

$ echo "rm $NOTSET/blah"
rm /blah

set -u prevents this type of error by aborting the script if a variable’s value is
unset.

As just discussed, set -e will cause a script to abort if a nonzero exit status is
encountered, with some exceptions. One such exception is if a program run in a
Unix pipe exited unsuccessfully; unless this program was the last program in the
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pipe, this would not cause the script to abort even with set -e. Including set -o
pipefail will prevent this undesirable behavior—any program that returns a
nonzero exit status in the pipe will cause the entire pipe to return a nonzero sta‐
tus. With set -e enabled, too, this will lead the script to abort.

The Robust Bash Header in Bash Script Examples in this Chapter

I will omit this header in Bash scripts throughout this chapter for
clarity and to save space, but you should always use it in your own
work.

These three options are the first layer of protection against Bash scripts with silent
errors and unsafe behavior. Unfortunately, Bash is a fragile language, and we need to
mind a few other oddities to use it safely in bioinformatics. We’ll see these as we learn
more about the language.

Running Bash scripts
Running Bash scripts can be done one of two ways: with the bash program directly
(e.g., bash script.sh), or calling your script as a program (./script.sh). For our
purposes, there’s no technical reason to prefer one approach over the other. Practi‐
cally, it’s wise to get in the habit of running scripts you receive with ./script.sh, as
they might use interpreters other than /bin/bash (e.g., zsh, csh, etc.). But while we
can run any script (as long as it has read permissions) with bash script.sh, calling
the script as an executable requires that it have executable permissions. We can set
these using:

$ chmod u+x script.sh

This adds executable permissions (+x) for the user who owns the file (u). Then, the
script can be run with ./script.sh.

Variables and Command Arguments
Bash variables play an extremely important role in robust, reproducible Bash scripts.
Processing pipelines having numerous settings that should be stored in variables (e.g.,
which directories to store results in, parameter values for commands, input files, etc.).
Storing these settings in a variable defined at the top of the file makes adjusting set‐
tings and rerunning your pipelines much easier. Rather than having to change
numerous hardcoded values in your scripts, using variables to store settings means
you only have to change one value—the value you’ve assigned to the variable. Bash
also reads command-line arguments into variables, so you’ll need to be familiar with
accessing variables’ values to work with command-line arguments.
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Unlike other programming languages, Bash’s variables don’t have data types. It’s help‐
ful to think of Bash’s variables as strings (but that may behave differently depending
on context). We can create a variable and assign it a value with (note that spaces mat‐
ter when setting Bash variables—do not use spaces around the equals sign!):

results_dir="results/"

To access a variable’s value, we use a dollar sign in front of the variable’s name (e.g.,
$results_dir). You can experiment with this in a Bash script, or directly on the com‐
mand line:

$ results_dir="results/"
$ echo $results_dir
results/

As mentioned in the previous section, you should always set set -u to force a Bash
script to exit if a variable is not set.

Even though accessing a variable’s value using the dollar sign syntax works, it has one
disadvantage: in some cases it’s not clear where a variable name ends and where an
adjacent string begins. For example, suppose a section of your Bash script created a
directory for a sample’s alignment data, called <sample>_aln/, where <sample> is
replaced by the sample’s name. This would look like:

sample="CNTRL01A"
mkdir $sample_aln/

Although the intention of this code block was to create a directory called
CNTRL01A_aln/, this would actually fail, because Bash will try to retrieve the value of
a variable named $sample_aln. To prevent this, wrap the variable name in braces:

sample="CNTRL01A"
mkdir ${sample}_aln/

Now, a directory named CNTRL01A_aln/ will be created. While this solves our
immediate problem of Bash interpreting sample_aln as the variable name, there’s one
more step we should take to make this more robust: quoting variables. This prevents
commands from interpreting any spaces or other special characters that the variable
may contain. Our final command would look as follows:

sample="CNTRL01A"
mkdir "${sample}_aln/"

Command-line arguments
Let’s now look at how Bash handles command-line arguments (which are assigned to
the value $1, $2, $3, etc.). The variable $0 stores the name of the script. We can see
this ourselves with a simple example script:

#!/bin/bash
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echo "script name: $0"
echo "first arg: $1"
echo "second arg: $2"
echo "third arg: $3"

Running this file prints arguments assigned to $0, $1, $2, and $3:
$ bash args.sh arg1 arg2 arg3
script name: args.sh
first arg: arg1
second arg: arg2
third arg: arg3

Bash assigns the number of command-line arguments to the variable $# (this does not
count the script name, $0, as an argument). This is useful for user-friendly messages
(this uses a Bash if conditional, which we’ll cover in more depth in the next section):

#!/bin/bash

if [ "$#" -lt 3 ] # are there less than 3 arguments?
then
    echo "error: too few arguments, you provided $#, 3 required"
    echo "usage: script.sh arg1 arg2 arg3"
    exit 1
fi

echo "script name: $0"
echo "first arg: $1"
echo "second arg: $2"
echo "third arg: $3"

Running this with too few arguments gives an error (and leads the process to exit
with a nonzero exit status—see “Exit Status: How to Programmatically Tell Whether
Your Command Worked” on page 52 if you’re rusty on what exit statuses mean):

$ ./script.sh some_arg
error: too few arguments, you provided 1, 3 required
usage: script.sh arg1 arg2 arg3

It’s possible to have more complex options and argument parsing with the Unix tool
getopt. This is out of the scope of this book, but the manual entry for getopt is quite
thorough. However, if you find your script requires numerous or complicated
options, it might be easier to use Python instead of Bash. Python’s argparse module
is much easier to use than getopt.
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Reproducibility and Environmental Variables

Some bioinformaticians make use of environmental variables to
store settings using the command export, but in general this
makes scripts less portable and reproducible. Instead, all important
settings should be stored inside the script as variables, rather than
as external environmental variables. This way, the script is self-
contained and reproducible.

Variables created in your Bash script will only be available for the duration of the
Bash process running that script. For example, running a script that creates a variable
with some_var=3 will not create some_var in your current shell, as the script runs in
an entirely separate shell process.

Conditionals in a Bash Script: if Statements
Like other scripting languages, Bash supports the standard if conditional statement. 
What makes Bash a bit unique is that a command’s exit status provides the true and
false (remember: contrary to other languages, 0 represents true/success and anything
else is false/failure). The basic syntax is:

if [commands] 
then
  [if-statements] 
else
  [else-statements] 
fi

[commands] is a placeholder for any command, set of commands, pipeline, or test
condition (which we’ll see later). If the exit status of these commands is 0, execu‐
tion continues to the block after then; otherwise execution continues to the block
after else. The then keyword can be placed on the same line as if, but then a
semicolon is required: if [commands]; then.

[if-statements] is a placeholder for all statements executed if [commands] eval‐
uates to true (0).

[else-statements] is a placeholder for all statements executed if [commands]
evaluates to false (1). The else block is optional.

Bash’s if condition statements may seem a bit odd compared to languages like
Python, but remember: Bash is primarily designed to stitch together other com‐
mands. This is an advantage Bash has over Python when writing pipelines: Bash
allows your scripts to directly work with command-line programs without requiring
any overhead to call programs. Although it can be unpleasant to write complicated
programs in Bash, writing simple programs is exceedingly easy because Unix tools
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and Bash harmonize well. For example, suppose we wanted to run a set of commands
only if a file contains a certain string. Because grep returns 0 only if it matches a pat‐
tern in a file and 1 otherwise, we could use:

#!/bin/bash

if grep "pattern" some_file.txt > /dev/null 
then
  # commands to run if "pattern" is found
  echo "found 'pattern' in 'some_file.txt"
fi

This grep command is our condition statement. The redirection is to tidy the
output of this script such that grep’s output is redirected to /dev/null and not to
the script’s standard out.

The set of commands in an if condition can use all features of Unix we’ve mastered
so far. For example, chaining commands with logical operators like && (logical AND)
and || (logical OR):

#!/bin/bash

if grep "pattern" file_1.txt > /dev/null &&
   grep "pattern" file_2.txt > /dev/null
then
  echo "found 'pattern' in 'file_1.txt' and in 'file_2.txt'"
fi

We can also negate our program’s exit status with !:
#!/bin/bash

if ! grep "pattern" some_file.txt > /dev/null
then
  echo "did not find 'pattern' in 'some_file.txt"
fi

Finally, it’s possible to use pipelines in if condition statements. Note, however, that
the behavior depends on set -o pipefail. If pipefail is set, any nonzero exit status
in a pipe in your condition statement will cause execution to continue on, skipping
the if-statements section (and going on to the else block if it exists). However, if
pipefail is not set, only the exit status of the last command is considered. Rather
than trying to remember all of these rules, just use the robust header provided earlier
—pipefail is a more sensible default.

The final component necessary to understand Bash’s if statements is the test com‐
mand. Like other programs, test exits with either 0 or 1. However test’s exit status
indicates the return value of the test specified through its arguments, rather than exit
success or error. test supports numerous standard comparison operators (whether
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two strings are equal, whether two integers are equal, whether one integer is greater
than or equal to another, etc.). Bash can’t rely on familiar syntax such as > for “greater
than,” as this is used for redirection: instead, test has its own syntax (see Table 12-1
for a full list). You can get a sense of how test works by playing with it directly on the
command line (using ; echo "$?" to print the exit status):

$ test "ATG" = "ATG" ; echo "$?"
0
$ test "ATG" = "atg" ; echo "$?"
1
$ test 3 -lt 1 ; echo "$?"
1
$ test 3 -le 3 ; echo "$?"
0

Table 12-1. String and integer comparison operators
String/integer Description

-z str String str is null (empty)

str1 = str2 Strings str1 and str2 are identical

str1 != str2 Strings str1 and str2 are different

int1 -eq int2 Integers int1 and int2 are equal

int1 -ne int2 Integers int1 and int2 are not equal

int1 -lt int2 Integer int1 is less than int2

int1 -gt int2 Integer int1 is greater than int2

int1 -le int2 Integer int1 is less than or equal to int2

int1 -ge int2 Integer int1 is greater than or equal to int2

In practice, the most common conditions you’ll be checking aren’t whether some
integer is less than another, but rather checking to see if files or directories exist and
whether you can write to them. test supports numerous file- and directory-related
test operations (the few that are most useful in bioinformatics are in Table 12-2). Let’s
look at a few basic command-line examples:

$ test -d some_directory ; echo $? # is this a directory?
0
$ test -f some_file.txt ; echo $? # is this a file?
0
$ test -r some_file.txt ; echo $? $ is this file readable?
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0
$ test -w some_file.txt ; echo $? $ is this file writable?
1

Table 12-2. File and directory test expressions
File/directory expression Description

-d dir dir is a directory

-f file file is a file

-e file file exists

-h link link is a link

-r file file is readable

-w file file is writable

-x file file is executable (or accessible if argument is expression)

Combining test with if statements is simple; test is a command, so we could use:
if test -f some_file.txt
then
  [...]
fi

However, Bash provides a simpler syntactic alternative to test statements: [ -f
some_file.txt ] . Note the spaces around and within the brackets—these are
required. This makes for much simpler if statements involving comparisons:

if [ -f some_file.txt ]
then
  [...]
fi

When using this syntax, we can chain test expressions with -a as logical AND, -o as
logical OR, ! as negation, and parentheses to group statements. Our familiar && and
|| operators won’t work in test, because these are shell operators. As an example,
suppose we want to ensure our script has enough arguments and that the input file is
readable:

#!/bin/bash
set -e
set -u
set -o pipefail

if [ "$#" -ne 1 -o ! -r "$1" ]
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then
    echo "usage: script.sh file_in.txt"
    exit 1
fi

As discussed earlier, we quote variables (especially those from human input); this is a
good practice and prevents issues with special characters.

When chained together with -a or -e, test’s syntax uses short-circuit evaluation. This
means that test will only evaluate as many expressions as needed to determine
whether the entire statement is true or false. In this example, test won’t check if the
file argument $1 is readable if there’s not exactly one argument provided (the first
condition is true). These two expressions are combined with a logical OR, which only
requires one expression to be true for the entire condition to be true.

Processing Files with Bash Using for Loops and Globbing
In bioinformatics, most of our data is split across multiple files (e.g., different treat‐
ments, replicates, genotypes, species, etc.). At the heart of any processing pipeline is
some way to apply the same workflow to each of these files, taking care to keep track
of sample names. Looping over files with Bash’s for loop is the simplest way to
accomplish this. This is such an important part of bioinformatics processing pipelines
that we’ll cover additional useful tools and methods in the next section of this chap‐
ter.

There are three essential parts to creating a pipeline to process a set of files:

• Selecting which files to apply the commands to
• Looping over the data and applying the commands
• Keeping track of the names of any output files created

There are different computational tricks to achieve each of these tasks. Let’s first look
at the simple ways to select which files to apply commands to.

There are two common ways to select which files to apply a bioinformatics workflow
to: approaches that start with a text file containing information about samples (their
sample names, file path, etc.), and approaches that select files in directories using
some criteria. Either approach is fine—it mostly comes down to what’s most efficient
for a given task. We’ll first look at an approach that starts with sample names and
return to how to look for files later. Suppose you have a file called samples.txt that tells
you basic information about your raw data: sample name, read pair, and where the
file is. Here’s an example (which is also in this chapter’s directory on GitHub):

$ cat samples.txt
zmaysA  R1  seq/zmaysA_R1.fastq
zmaysA  R2  seq/zmaysA_R2.fastq
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zmaysB  R1  seq/zmaysB_R1.fastq
zmaysB  R2  seq/zmaysB_R2.fastq
zmaysC  R1  seq/zmaysC_R1.fastq
zmaysC  R2  seq/zmaysC_R2.fastq

The first column gives sample names, the second column contains read pairs, and the
last column contains the path to the FASTQ file for this sample/read pair combina‐
tion. The first two columns are called metadata (data about data), which is vital to
relating sample information to their physical files. Note that the metadata is also in
the filename itself, which is useful because it allows us to extract it from the filename
if we need to.

With this samples.txt file, the first step of creating the pipeline is complete: all infor‐
mation about our files to be processed, including their path, is available. The second
and third steps are to loop over this data, and do so in a way that keeps the samples
straight. How we accomplish this depends on the specific task. If your command
takes a single file and returns a single file, the solution is trivial: files are the unit we
are processing. We simply loop over each file and use a modified version of that file’s
name for the output.

Let’s look at an example: suppose that we want to loop over every file, gather quality
statistics on each and every file (using the imaginary program fastq_stat), and save
this information to an output file. Each output file should have a name based on the
input file, so if a summary file indicates something is wrong we know which file was
affected. There’s a lot of little parts to this, so we’re going to step through how to do
this a piece at a time learning about Bash arrays, basename, and a few other shell
tricks along the way.

First, we load our filenames into a Bash array, which we can then loop over. Bash
arrays can be created manually using:

$ sample_names=(zmaysA zmaysB zmaysC)

And specific elements can be extracted with (note Bash arrays are 0-indexed):
$ echo ${sample_names[0]}
zmaysA
$ echo ${sample_names[2]}
zmaysC

All elements are extracted with the cryptic-looking ${sample_files[@]}:
$ echo ${sample_names[@]}
zmaysA zmaysB zmaysC

You can also access how many elements are in the array (and each element’s index)
with the following:

$ echo ${#sample_names[@]}
3
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$ echo ${!sample_names[@]}
0 1 2

But creating Bash arrays by hand is tedious and error prone, especially because we
already have our filenames in our sample.txt file. The beauty of Bash is that we can
use a command substitution (discussed in “Command Substitution” on page 54) to
construct Bash arrays (though this can be dangerous; see the following warning).
Because we want to loop over each file, we need to extract the third column using cut
-f 3 from samples.txt. Demonstrating this in the shell:

$ sample_files=($(cut -f 3 samples.txt))
$ echo ${sample_files[@]}
seq/zmaysA_R1.fastq seq/zmaysA_R2.fastq seq/zmaysB_R1.fastq
seq/zmaysB_R2.fastq seq/zmaysC_R1.fastq seq/zmaysC_R2.fastq

Again, this only works if you can make strong assumptions about your filenames—
namely that they only contain alphanumeric characters, (_), and (-)! If spaces, tabs,
newlines, or special characters like * end up in filenames, it will break this approach.

The Internal Field Separator, Word Splitting, and Filenames

When creating a Bash array through command substitution with
sample_files=($(cut -f 3 samples.txt)), Bash uses word split‐
ting to split fields into array elements by splitting on the characters
in the Internal Field Separator (IFS). The Internal Field Separator is
stored in the Bash variable IFS, and by default includes spaces,
tabs, and newlines. You can inspect the value of IFS with:

$ printf %q "$IFS"
$' \t\n'

Note that space is included in IFS (the first character). This can
introduce problems when filenames contain spaces, as Bash will
split on space characters breaking the filename into parts. Again,
the best way to avoid issues is to not use spaces, tabs, newlines, or
special characters (e.g., *) in filenames—only use alphanumeric
characters, (-), and (_). The techniques taught in this section
assume files are properly named and are not robust against
improperly named files. If spaces are present in filenames, you can
set the value of IFS to just tabs and newlines; see this chapter’s
README file on GitHub for additional details on this topic.

With our filenames in a Bash array, we’re almost ready to loop over them. The last
component is to strip the path and extension from each filename, leaving us with the
most basic filename we can use to create an output filename. The Unix program base
name strips paths from filenames:

$ basename seqs/zmaysA_R1.fastq
zmaysA_R1.fastq
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basename can also strip a suffix (e.g., extension) provided as the second argument
from a filename (or alternatively using the argument -s):

$ basename seqs/zmaysA_R1.fastq .fastq
zmaysA_R1
$ basename -s .fastq seqs/zmaysA_R1.fastq
zmaysA_R1

We use basename to return the essential part of each filename, which is then used to
create output filenames for fastq_stat’s results.

Now, all the pieces are ready to construct our processing script:
#!/bin/bash

set -e
set -u
set -o pipefail

# specify the input samples file, where the third
# column is the path to each sample FASTQ file
sample_info=samples.txt

# create a Bash array from the third column of $sample_info
sample_files=($(cut -f 3 "$sample_info")) 

for fastq_file in ${sample_files[@]} 
do
    # strip .fastq from each FASTQ file, and add suffix
    # "-stats.txt" to create an output filename for each FASTQ file
    results_file="$(basename $fastq_file .fastq)-stats.txt" 

    # run fastq_stat on a file, writing results to the filename we've
    # above
    fastq_stat $fastq_file > stats/$results_file 
done

This line uses command substitution to create a Bash array containing all FASTQ
files. Note that this uses the filename contained in the variable $sample_info,
which can later be easily be changed if the pipeline is to be run on a different set
of samples.

Next, we loop through each sample filename using a Bash for loop. The expres‐
sion ${sample_files[@]} returns all items in the Bash array.

This important line creates the output filename, using the input file’s filename.
The command substitution $(basename $fastq_file .fastq) takes the current
filename of the iteration, stored in $fastq_file, and strips the .fastq extension
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off. What’s left is the portion of the sample name that identifies the original file,
to which the suffix -stats.txt is added.

Finally, the command fastq_stat is run, using the filename of the current itera‐
tion as input, and writing results to stats/$results_file.

That’s all there is to it. A more refined script might add a few extra features, such as
using an if statement to provide a friendly error if a FASTQ file does not exist or a
call to echo to report which sample is currently being processed.

This script was easy to write because our processing steps took a single file as input,
and created a single file as output. In this case, simply adding a suffix to each filename
was enough to keep our samples straight. However, many bioinformatics pipelines
combine two or more input files into a single output file. Aligning paired-end reads is
a prime example: most aligners take two input FASTQ files and return one output
alignment file. When writing scripts to align paired-end reads, we can’t loop over
each file like we did earlier. Instead, each sample, rather than each file, is the process‐
ing unit. Our alignment step takes both FASTQ files for each sample, and turns this
into a single alignment file for this sample. Consequently, our loop must iterate over
unique sample names, and we use these sample names to re-create the input FASTQ
files used in alignment. This will be clearer in an example; suppose that we use the
aligner BWA and our genome reference is named zmays_AGPv3.20.fa:

#!/bin/bash
set -e
set -u
set -o pipefail

# specify the input samples file, where the third
# column is the path to each sample FASTQ file
sample_info=samples.txt

# our reference
reference=zmays_AGPv3.20.fa

# create a Bash array from the first column, which are
# sample names. Because there are duplicate sample names
# (one for each read pair), we call uniq
sample_names=($(cut -f 1 "$sample_info" | uniq)) 

for sample in ${sample_names[@]}
do
    # create an output file from the sample name
    results_file="${sample}.sam" 
    bwa mem $reference ${sample}_R1.fastq ${sample}_R2.fastq \ 
      > $results_file
done
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This is much like the previous example, except now we use cut to grab the first
column (corresponding to sample names), and (most importantly) pipe these
sample names to uniq so duplicates of the same sample name are removed. This
is necessary because our first column repeats each sample name twice, once for
each paired-end file.

As before, we create an output filename for the current sample being iterated
over. In this case, all that’s needed is the sample name stored in $sample.

Our call to bwa provides the reference, and the two paired-end FASTQ files for
this sample as input. Note how we can re-create the two input FASTQ files for a
given sample name, as the naming of these files across samples is consistent. In
practice, this is possible for a large amount of bioinformatics data, which often
comes from machines that name files consistently. Finally, the output of bwa is
redirected to $results_file. For clarity, I’ve omitted quoting variables in this
command, but you may wish to add this.

Finally, in some cases it might be easier to directly loop over files, rather than work‐
ing a file containing sample information like samples.txt. The easiest (and safest) way
to do this is to use Bash’s wildcards to glob files to loop over (recall we covered glob‐
bing in “Organizing Data to Automate File Processing Tasks” on page 26). The syntax
of this is quite easy:

#!/bin/bash
set -e
set -u
set -o pipefail

for file in *.fastq
do
    echo "$file: " $(bioawk -c fastx 'END {print NR}' $file)
done

This simple script uses bioawk to count how many FASTQ records are in a file, for
each file in the current directory ending in .fastq.

Bash’s loops are a handy way of applying commands to numerous files, but have a few
downsides. First, compared to the Unix tool find (which we see in the next section),
globbing is not a very powerful way to select certain files. Second, Bash’s loop syntax
is lengthy for simple operations, and a bit archaic. Finally, there’s no easy way to par‐
allelize Bash loops in a way that constrains the number of subprocesses used. We’ll see
a powerful file-processing Unix idiom in the next section that works better for some
tasks where Bash scripts may not be optimal.
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Automating File-Processing with find and xargs
In this section, we’ll learn about a more powerful way to specify files matching some
criteria using Unix find. We’ll also see how files printed by find can be passed to
another tool called xargs to create powerful Unix-based processing workflows.

Using find and xargs
First, let’s look at some common shell problems that find and xargs solve. Suppose
you have a program named process_fq that takes multiple filenames through stan‐
dard in to process. If you wanted to run this program on all files with the suffix .fq,
you might run:

$ ls *.fq
treatment-01.fq treatment 02.fq treatment-03.fq
$ ls *.fq | process_fq

Your shell expands this wildcard to all matching files in the current directory, and ls
prints these filenames. Unfortunately, this leads to a common complication that
makes ls and wildcards a fragile solution. Suppose your directory contains a file‐
name called treatment 02.fq. In this case, ls returns treatment 02.fq along with other
files. However, because files are separated by spaces, and this file contains a space,
process_fq will interpret treatment 02.fq as two separate files, named treatment and
02.fq. This problem crops up periodically in different ways, and it’s necessary to be
aware of when writing file-processing pipelines. Note that this does not occur with
file globbing in arguments—if process_fq takes multiple files as arguments, your
shell handles this properly:

$ process_fq *.fq

Here, your shell automatically escapes the space in the filename treatment 02.fq, so
process_fq will correctly receive the arguments treatment-01.fq, treatment
02.fq, treatment-03.fq. So why not use this approach? Alas, there’s a limit to the
number of files that can be specified as arguments. It’s not unlikely to run into this
limit when processing numerous files. As an example, suppose that you have a tmp/
directory with thousands and thousands of temporary files you want to remove
before rerunning a script. You might try rm tmp/*, but you’ll run into a problem:

$ rm tmp/*
/bin/rm: cannot execute [Argument list too long]

New bioinformaticians regularly encounter these two problems (personally, I am
asked how to resolve these issues at least once every other month by various collea‐
gues). The solution to both of these problems is through find and xargs, as we will
see in the following sections.
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Finding Files with find
Unlike ls, find is recursive (it will search for matching files in subdirectories, and
subdirectories of subdirectories, etc.). This makes find useful if your project direc‐
tory is deeply nested and you wish to search the entire project for a file. In fact, run‐
ning find on a directory (without other arguments) can be a quick way to see a
project directory’s structure. Again, using the zmays-snps/ toy directory we created in
“Organizing Data to Automate File Processing Tasks” on page 26:

$ find zmays-snps
zmays-snps
zmays-snps/analysis
zmays-snps/data
zmays-snps/data/seqs
zmays-snps/data/seqs/zmaysA_R1.fastq
zmays-snps/data/seqs/zmaysA_R2.fastq
zmays-snps/data/seqs/zmaysB_R1.fastq
zmays-snps/data/seqs/zmaysB_R2.fastq
zmays-snps/data/seqs/zmaysC_R1.fastq
zmays-snps/data/seqs/zmaysC_R2.fastq
zmays-snps/scripts

find’s recursive searching can be limited to search only a few directories deep with
the argument -maxdepth. For example, to search only within the current directory,
use -maxdepth 1; to search within the current directory and its subdirectories (but
not within those subdirectories), use -maxdepth 2.

The basic syntax for find is find path expression. Here, path specifies which
directory find is to search for files in (if you’re currently in this directory, it’s simply
find .). The expression part of find’s syntax is where find’s real power comes in.
Expressions are how we describe which files we want to find return. Expressions are
built from predicates, which are chained together by logical AND and OR operators.
find only returns files when the expression evaluates to true. Through expressions,
find can match files based on conditions such as creation time or the permissions of
the file, as well as advanced combinations of these conditions, such as “find all files
created after last week that have read-only permissions.”

To get a taste of how simple predicates work, let’s see how to use find to match files
by filename using the -name predicate. Earlier we used unquoted wildcards with ls,
which are expanded by the shell to all matching filenames. With find, we quote pat‐
terns (much like we did with grep) to avoid our shells from interpreting characters
like *. For example, suppose we want to find all files matching the pattern
"zmaysB*fastq" (e.g., FASTQ files from sample “B”, both read pairs) to pass to a
pipeline. We would use the command shown in Example 12-1:
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Example 12-1. Find through filename matching

$ find data/seqs -name "zmaysB*fastq"
data/seqs/zmaysB_R1.fastq
data/seqs/zmaysB_R2.fastq

This gives similar results to ls zmaysB*fastq, as we’d expect. The primary difference
is that find reports results separated by newlines and, by default, find is recursive.

find’s Expressions
find’s expressions allow you to narrow down on specific files using a simple syntax.
In the previous example, the find command (Example 12-1) would return directories
also matching the pattern "zmaysB*fastq". Because we only want to return FASTQ
files (and not directories with that matching name), we might want to limit our
results using the -type option:

$ find data/seqs -name "zmaysB*fastq" -type f
data/seqs/zmaysB_R1.fastq
data/seqs/zmaysB_R2.fastq

There are numerous different types you can search for (e.g., files, directories, named
pipes, links, etc.), but the most commonly used are f for files, d for directories, and l
for links.

By default, find connects different parts of an expression with logical AND. The find
command in this case returns results where the name matches "zmaysB*fastq" and
is a file (type “f ”). find also allows explicitly connecting different parts of an expres‐
sion with different operators. The preceding command is equivalent to:

$ find data/seqs -name "zmaysB*fastq" -and -type f
data/seqs/zmaysB_R1.fastq
data/seqs/zmaysB_R2.fastq

We might also want all FASTQ files from samples A or C. In this case, we’d want to
chain expressions with another operator, -or (see Table 12-3 for a full list):

$ find data/seqs -name "zmaysA*fastq" -or -name "zmaysC*fastq" -type f
data/seqs/zmaysA_R1.fastq
data/seqs/zmaysA_R2.fastq
data/seqs/zmaysC_R1.fastq
data/seqs/zmaysC_R2.fastq

Table 12-3. Common find expressions and operators
Operator/expression Description

-name <pattern> Match a filename to <pattern>, using the same special characters
(*, ?, and [...] as Bash)
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Operator/expression Description

-iname <pat
tern>

Identical to -name, but is case insensitive

-empty Matches empty files or directories

-type <x> Matches types x (f for files, d for directories, l for links)

-size <size> Matches files where the <size> is the file size (shortcuts for kilobytes
(k), megabytes (M), gigabytes (G), and terabytes (T) can be used); sizes
preceded with + (e.g., +50M) match files at least this size; sizes preceded
with - (e.g., -50M) match files at most this size

-regex Match by regular expression (extended regular expressions can be
enabled with -E)

-iregex Identical to -regex, but is case insensitive

-print0 Separate results with null byte, not newline

expr -and expr Logical “and”

expr -or expr Logical “or”

-not / "!"expr Negation

(expr) Group a set of expressions

An identical way to select these files is with negation:
$ find seqs -type f "!" -name "zmaysC*fastq"
seqs/zmaysA_R1.fastq
seqs/zmaysA_R2.fastq
seqs/zmaysB_R1.fastq
seqs/zmaysB_R2.fastq

Let’s see one more advanced example. Suppose that a messy collaborator decided to
create a file named zmaysB_R1-temp.fastq in seqs/. You notice this file because now
your find command is matching it (we are still in the zmays/data directory):

$ touch seqs/zmaysB_R1-temp.fastq
$ find seqs -type f "!" -name "zmaysC*fastq"
seqs/zmaysB_R1-temp.fastq
seqs/zmaysA_R1.fastq
seqs/zmaysA_R2.fastq
seqs/zmaysB_R1.fastq
seqs/zmaysB_R2.fastq
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You don’t want to delete his file or rename it, because your collaborator may need that
file and/or rely on it having that specific name. So, the best way to deal with it seems
to be to change your find command and talk to your collaborator about this mystery
file later. Luckily, find allows this sort of advanced file querying:

$ find seqs -type f "!" -name "zmaysC*fastq" -and "!" -name "*-temp*"
seqs/zmaysA_R1.fastq
seqs/zmaysA_R2.fastq
seqs/zmaysB_R1.fastq
seqs/zmaysB_R2.fastq

Note that find’s operators like !, (, and ) should be quoted so as to avoid your shell
from interpreting these.

find’s -exec: Running Commands on find’s Results
While find is useful for locating a file, its real strength in bioinformatics is as a tool to
programmatically access certain files you want to run a command on. In the previous
section, we saw how find’s expressions allow you to select distinct files that match
certain conditions. In this section, we’ll see how find allows you to run commands
on each of the files find returns, using find’s -exec option.

Let’s look at a simple example to understand how -exec works. Continuing from our
last example, suppose that a messy collaborator created numerous temporary files.
Let’s emulate this (in the zmays-snps/data/seqs directory):

$ touch zmays{A,C}_R{1,2}-temp.fastq
$ ls
zmaysA_R1-temp.fastq zmaysB_R1-temp.fastq zmaysC_R1.fastq
zmaysA_R1.fastq      zmaysB_R1.fastq      zmaysC_R2-temp.fastq
zmaysA_R2-temp.fastq zmaysB_R2.fastq      zmaysC_R2.fastq
zmaysA_R2.fastq      zmaysC_R1-temp.fastq

Suppose your collaborator allows you to delete all of these temporary files. One way
to delete these files is with rm *-temp.fastq. However, rm with a wildcard in a direc‐
tory filled with important data files is too risky. If you’ve accidentally left a space
between * and -temp.fastq, the wildcard * would match all files in the current direc‐
tory and pass them to rm, leading to everything in the directory being accidentally
deleted. Using find’s -exec is a much safer way to delete these files.

find’s -exec works by passing each file that matches find’s expressions to the com‐
mand specified by -exec. With -exec, it’s necessary to use a semicolon at the end of
the command to indicate the end of your command. For example, let’s use find -
exec and rm -i to delete these temporary files. rm’s -i forces rm to be interactive,
prompting you to confirm that you want to delete a file. Our find and remove com‐
mand is:
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$ find . -name "*-temp.fastq" -exec rm -i {} \;
remove ./zmaysA_R1-temp.fastq? y
remove ./zmaysA_R2-temp.fastq? y
remove ./zmaysB_R1-temp.fastq? y
remove ./zmaysC_R1-temp.fastq? y
remove ./zmaysC_R2-temp.fastq? y

In one line, we’re able to pragmatically identify and execute a command on files that
match a certain pattern. Our command was rm but can just as easily be a bioinformat‐
ics program. Using this approach allows you to call a program on any number of files
in a directory. With find and -exec, a daunting task like processing a directory of
100,000 text files with a program is simple.

Deleting Files with find -exec

Deleting files with find -exec is a such a common operation that
find also has a -delete option you can use in place of -exec -rm
{} (but it will not be interactive, unlike rm with -i).

When using -exec, always write your expression first and check that the files
returned are those you want to apply the command to. Then, once your find com‐
mand is returning the proper subset of files, add in your -exec statement. find -
exec is most appropriate for quick, simple tasks (like deleting files, changing
permissions, etc.). For larger tasks, xargs (which we see in the next section) is a better
choice.

xargs: A Unix Powertool
If there were one Unix tool that introduced me to the incredible raw power of Unix, it
is xargs. xargs allows us to take input passed to it from standard in, and use this
input as arguments to another program, which allows us to build commands pro‐
grammatically from values received through standard in (in this way, it’s somewhat
similar to R’s do.call()). Using find with xargs is much like find with -exec, but
with some added advantages that make xargs a better choice for larger bioinformat‐
ics file-processing tasks.

Let’s re-create our messy temporary file directory example again (from the zmays-
snps/data/seqs directory):

$ touch zmays{A,C}_R{1,2}-temp.fastq   # create the test files

xargs works by taking input from standard in and splitting it by spaces, tabs, and
newlines into arguments. Then, these arguments are passed to the command sup‐
plied. For example, to emulate the behavior of find -exec with rm, we use xargs with
rm:

416 | Chapter 12: Bioinformatics Shell Scripting, Writing Pipelines, and Parallelizing Tasks



$ find . -name "*-temp.fastq"
./zmaysA_R1-temp.fastq
./zmaysA_R2-temp.fastq
./zmaysC_R1-temp.fastq
./zmaysC_R2-temp.fastq
$ find . -name "*-temp.fastq" | xargs rm

Playing It Safe with find and xargs

There’s one important gotcha with find and xargs: spaces in file‐
names can break things, because spaces are considered argument
separators by xargs. This would lead to a filename like treatment
02.fq being interpreted as two separate arguments, treatment and
02.fq. The find and xargs developers created a clever solution:
both allow for the option to use the null byte as a separator. Here is
an example of how to run find and xargs using the null byte
delimiter:

$ find . -name "samples [AB].txt" -print0 | xargs -0 rm

In addition to this precaution, it’s also wise to simply not use file‐
names that contain spaces or other strange characters. Simple
alphanumeric names with either dashes or underscores are best. To
simplify examples, I will omit -print0 and -0, but these should
always be used in practice.

Essentially, xargs is splitting the output from find into arguments, and running:
$ rm ./zmaysA_R1-temp.fastq ./zmaysA_R2-temp.fastq \
     ./zmaysC_R1-temp.fastq ./zmaysC_R2-temp.fastq

xargs passes all arguments received through standard in to the supplied program (rm
in this example). This works well for programs like rm, touch, mkdir, and others that
take multiple arguments. However, other programs only take a single argument at a
time. We can set how many arguments are passed to each command call with xargs’s
-n argument. For example, we could call rm four separate times (each on one file)
with:

$ find . -name "*-temp.fastq" | xargs -n 1 rm

One big benefit of xargs is that it separates the process that specifies the files to oper‐
ate on (find) from applying a command to these files (through xargs). If we wanted
to inspect a long list of files find returns before running rm on all files in this list, we
could use:

$ find . -name "*-temp.fastq" > files-to-delete.txt
$ cat files-to-delete.txt
./zmaysA_R1-temp.fastq
./zmaysA_R2-temp.fastq
./zmaysC_R1-temp.fastq
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./zmaysC_R2-temp.fastq
$ cat files-to-delete.txt | xargs rm

Another common trick is to use xargs to build commands that are written to a sim‐
ple Bash script. For example, rather than running rm directly, we could call echo on
rm, and then allow xargs to place arguments after this command (remember, xargs’s
behavior is very simple: it just places arguments after the command you provide). For
example:

$ find . -name "*-temp.fastq" | xargs -n 1 echo "rm -i" > delete-temp.sh
$ cat delete-temp.sh
rm -i ./zmaysA_R1-temp.fastq
rm -i ./zmaysA_R2-temp.fastq
rm -i ./zmaysC_R1-temp.fastq
rm -i ./zmaysC_R2-temp.fastq

Breaking up the task in this way allows us to inspect the commands we’ve built using
xargs (because the command xargs runs is echo, which just prints everything).
Then, we could run this simple script with:

$ bash delete-temp.sh
remove ./zmaysA_R1-temp.fastq? y
remove ./zmaysA_R2-temp.fastq? y
remove ./zmaysC_R1-temp.fastq? y
remove ./zmaysC_R2-temp.fastq? y

Using xargs with Replacement Strings to Apply Commands to Files
So far, xargs builds commands purely by adding arguments to the end of the com‐
mand you’ve supplied. However, some programs take arguments through options,
like program --in file.txt --out-file out.txt; others have many positional
arguments like program arg1 arg2. xargs’s -I option allows more fine-grained
placement of arguments into a command by replacing all instances of a placeholder
string with a single argument. By convention, the placeholder string we use with -I is
{}.

Let’s look at an example. Suppose the imaginary program fastq_stat takes an input
file through the option --in, gathers FASTQ statistics information, and then writes a
summary to the file specified by the --out option. As in our Bash loop example
(“Processing Files with Bash Using for Loops and Globbing” on page 405), we want
our output filenames to be paired with our input filenames and have corresponding
names. We can tackle this with find, xargs, and basename. The first step is to use
find to grab the files you want to process, and then use xargs and basename to
extract the sample name. basename allows us to remove suffixes through the argu‐
ment -s:

$ find . -name "*.fastq" | xargs basename -s ".fastq"
zmaysA_R1
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zmaysA_R2
zmaysB_R1
zmaysB_R2
zmaysC_R1
zmaysC_R2

Then, we want to run the command fastq_stat --in file.fastq --out ../
summaries/file.txt, but with file replaced with the file’s base name. We do this by
piping the sample names we’ve created earlier to another xargs command that runs
fastq_stat:

$ find . -name "*.fastq" | xargs basename -s ".fastq" | \
    xargs -I{} fastq_stat --in {}.fastq --out ../summaries/{}.txt

BSD and GNU xargs

Unfortunately, the behavior of -I differs across BSD xargs (which
is what OS X uses) and GNU xargs. BSD xargs will only replace
up to five instances of the string specified by -I by default, unless
more are set with -R. In general, it’s better to work with GNU
xargs. If you’re on a Mac, you can install GNU Coreutils with
Homebrew. To prevent a clash with your system’s xargs (the BSD
version), Homebrew prefixes its version with g so the GNU version
of xargs would be gxargs.

Combining xargs with basename is a powerful idiom used to apply commands to
many files in a way that keeps track of which output file was created by a particular
input file. While we could accomplish this other ways (e.g., through Bash for loops or
custom Python scripts), xargs allows for very quick and incremental command
building. However, as we’ll see in the next section, xargs has another very large
advantage over for loops: it allows parallelization over a prespecified number of pro‐
cesses. Overall, it may take some practice to get these xargs tricks under your fingers,
but they will serve you well for decades of bioinformatics work.

xargs and Parallelization
An incredibly powerful feature of xargs is that it can launch a limited number of pro‐
cesses in parallel. I emphasize limited number, because this is one of xargs’s strengths
over Bash’s for loops. We could launch numerous multiple background processes
with Bash for loops, which on a system with multiple processors would run in paral‐
lel (depending on other running tasks):

for filename in *.fastq; do
  program "$filename" &
done
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But this launches however many background processes there are files in *.fastq!
This is certainly not good computing etiquette on a shared server, and even if you
were the only user of this server, this might lead to bottlenecks as all processes start
reading from and writing to the disk. Consequently, when running multiple process
in parallel, we want to explicitly limit how many processes run simultaneously. xargs
allows us to do this with the option -P <num> where <num> is the number of processes
to run simultaneously.

Let’s look at a simple example—running our imaginary program fastq_stat in par‐
allel, using at most six processes. We accomplish this by adding -P 6 to our second
xargs call (there’s no point in parallelizing the basename command, as this will be
very fast):

$ find . -name "*.fastq" | xargs basename -s ".fastq" | \
    xargs -P 6 -I{} fastq_stat --in {}.fastq --out ../summaries/{}.txt

Generally, fastq_stat could be any program or even a shell script that performs
many tasks per sample. The key point is that we provide all information the program
or script needs to run through the sample name, which is what replaces the string {}.

xargs, Pipes, and Redirects

One stumbling block beginners frequently encounter is trying to
use pipes and redirects with xargs. This won’t work, as the shell
process that reads your xargs command will interpret pipes and
redirects as what to do with xarg’s output, not as part of the com‐
mand run by xargs. The simplest and cleanest trick to get around
this limitation is to create a small Bash script containing the com‐
mands to process a single sample, and have xargs run this script in
many parallel Bash processes. For example:

#!/bin/bash
set -e
set -u
set -o pipefail

sample_name=$(basename -s ".fastq" "$1")

some_program ${sample_name}.fastq | another_program >
  ${sample_name}-results.txt

Then, run this with:
$ find . -name "*.fastq" | xargs -n 1 -P 4 bash script.sh

Where -n 1 forces xargs to process one input argument at a time.
This could be easily parallelized by specifying how many processes
to run with -P.
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Admittedly, the price of some powerful xargs workflows is complexity. If you find
yourself using xargs mostly to parallelize tasks or you’re writing complicated xargs
commands that use basename, it may be worthwhile to learn GNU Parallel. GNU Par‐
allel extends and enhances xargs’s functionality, and fixes several limitations of
xargs. For example, GNU parallel can handle redirects in commands, and has a
shortcut ({/.}) to extract the base filename without basename. This allows for very
short, powerful commands:

$ find . -name "*.fastq" | parallel --max-procs=6 'program {/.} > {/.}-out.txt'

GNU Parallel has numerous other options and features. If you find yourself using
xargs frequently for complicated workflows, I’d recommend learning more about
GNU Parallel. The GNU Parallel website has numerous examples and a detailed tuto‐
rial. 

Make and Makefiles: Another Option for Pipelines
Although this chapter has predominantly focused on building pipelines from Bash,
and using find and xargs to apply commands to certain files, I can’t neglect to
quickly introduce another very powerful tool used to create bioinformatics pipelines.
This tool is Make, which interprets makefiles (written in their own makefile lan‐
guage). Make was intended to compile software, which is a complex process as each
step that compiles a file needs to ensure every dependency is already compiled or
available. Like SQL (which we cover in Chapter 13), the makefile language is declara‐
tive—unlike Bash scripts, makefiles don’t run from top to bottom. Rather, makefiles
are constructed as a set of rules, where each rule has three parts: the target, the prereq‐
uisites, and the recipe. Each recipe is a set of commands used to build a target, which
is a file. The prerequisites specify which files the recipe needs to build the target file
(the dependencies). The amazing ingenuity of Make is that the program figures out
how to use all rules to build files for you from the prerequisites and targets. Let’s look
at a simple example—we want to write a simple pipeline that downloads a file from
the Internet and creates a summary of it:

FASTA_FILE_LINK=http://bit.ly/egfr_flank 

.PHONY: all clean 

all: egfr_comp.txt 

egfr_flank.fa: 
        curl -L $(FASTA_FILE_LINK) > egfr_flank.fa

egfr_comp.txt: egfr_flank.fa 
        seqtk comp egfr_flank.fa > egfr_comp.txt
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clean: 
        rm -f egfr_comp.txt egfr_flank.fa

We define a variable in a makefile much like we do in a Bash script. We keep this
link to this FASTA file at the top so it is noticeable and can be adjusted easily.

The targets all and clean in this makefile aren’t the names of files, but rather are
just names of targets we can refer to. We indicate these targets aren’t files by spec‐
ifying them as prerequisites in the special target .PHONY.

all is the conventional name of the target used to build all files this makefile is
meant to build. Here, the end goal of this simple example makefile is to down‐
load a FASTA file from the Internet and run seqtk comp on it, returning the
sequence composition of this FASTA file. The final file we’re writing sequence
composition to is egfr_comp.txt, so this is the prerequisite for the all target.

This rule creates the file egfr_flank.fa. There are no prerequisites in this rule
because there are no local files needed for the creation of egfr_flank.fa (as we’re
downloading this file). Our recipe uses curl to download the link stored in the
variable FASTA_FILE_LINK. Since this is a shortened link, we use curl’s -L option
to follow redirects. Finally, note that to reference a variable’s value in a makefile,
we use the syntax $(VARIABLE).

This rule creates the file containing the sequencing composition data,
egfr_comp.txt. Because we need the FASTA file egfr_flank.fa to create this file, we
specify egfr_flank.fa as a prerequisite. The recipe runs seqtk comp on the prereq‐
uisite, and redirects the output to the target file, egfr_comp.txt.

Finally, it’s common to have a target called clean, which contains a recipe for
cleaning up all files this makefile produces. This allows us to run make clean and
return the directory to the state before the makefile was run.

We run makefiles using the command make. For the preceding makefile, we’d run it
using make all, where the all argument specifies that make should start with the all
target. Then, the program make will first search for a file named Makefile in the cur‐
rent directory, load it, and start at the target all. This would look like the following:

$ make all
curl -L http://bit.ly/egfr_flank > egfr_flank.fa
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   190  100   190    0     0    566      0 --:--:-- --:--:-- --:--:--   567
100  1215  100  1215    0     0    529      0  0:00:02  0:00:02 --:--:--   713
seqtk comp egfr_flank.fa > egfr_comp.txt
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An especially powerful feature of make is that it only generates targets when they don’t
exist or when their prerequisites have been modified. This is very powerful: if you
have a long and complex makefile, and you modified one file, make will only rerun the
recipes for the targets that depend on this modified file (assuming you fully specified
dependencies). Note what happens if we run make all again:

$ make all
make: Nothing to be done for `all'.

Because all targets have been created and no input files have been modified, there’s
nothing to do. Now, look what happens if we use touch to change the modification
time of the egfr_flank.fa file:

$ touch egfr_flank.fa
$ make all
seqtk comp egfr_flank.fa > egfr_comp.txt

Because egfr_flank.fa is a prerequisite to create the egfr_comp.txt file, make reruns this
rule to update egfr_comp.txt using the newest version of egfr_flank.txt.

Finally, we can remove all files created with our clean target:
$ make clean
rm -f egfr_comp.txt egfr_flank.fa

We’re just scratching the surface of Make’s capabilities in this example; a full tutorial
of this language is outside the scope of this book. Unfortunately, like Bash, Make’s
syntax can be exceedingly cryptic and complicated for some more advanced tasks.
Additionally, because makefiles are written in a declarative way (and executed in a
nonlinear fashion), debugging makefiles can be exceptionally tricky. Still, Make is a
useful tool that you should be aware of in case you need an option for simple tasks
and workflows. For more information, see the GNU Make documentation. 
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CHAPTER 13

Out-of-Memory Approaches:
Tabix and SQLite

In this chapter, we’ll look at out-of-memory approaches—computational strategies
built around storing and working with data kept out of memory on the disk. Reading
data from a disk is much, much slower than working with data in memory (see “The
Almighty Unix Pipe: Speed and Beauty in One” on page 45), but in many cases this is
the approach we have to take when in-memory (e.g., loading the entire dataset into
R) or streaming approaches (e.g., using Unix pipes, as we did in Chapter 7) aren’t
appropriate. Specifically, we’ll look at two tools to work with data out of memory:
Tabix and SQLite databases.

Fast Access to Indexed Tab-Delimited Files
with BGZF and Tabix
BGZF and Tabix solve a really important problem in genomics: we often need fast
read-only random access to data linked to a genomic location or range. For the scale
of data we encounter in genomics, retrieving this type of data is not trivial for a few
reasons. First, the data may not fit entirely in memory, requiring an approach where
data is kept out of memory (in other words, on a slow disk). Second, even powerful
relational database systems can be sluggish when querying out millions of entries that
overlap a specific region—an incredibly common operation in genomics. The tools
we’ll see in this section are specially designed to get around these limitations, allowing
fast random-access of tab-delimited genome position data.

In chapter on alignment, we saw how sorted and indexed BAM files allow us to
quickly access alignments from within a particular region. The technology that allows
fast random access of alignments within a region is based on an ingenious compres‐
sion format called BGZF (Blocked GNU Zip Format), which uses the GNU Zip
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(gzip) compression format we first saw in “gzip” on page 119. However, while gzip
compresses the entire file, BGZF files are compressed in blocks. These blocks provide
BGZF files with a useful feature that gzip-compressed files don’t have: we can jump
to and decompress a specific block without having to decompress the entire file.
Block compression combined with file indexing is what enables fast random access of
alignments from large BAM files with samtools view. In this section, we’ll utilize
BGZF compression and a command-line tool called Tabix to provide fast random
access to a variety of tab-delimited genomic formats, including GFF, BED, and VCF.

To use Tabix to quickly retrieve rows that overlap a query region, we first must pre‐
pare our file containing the genomic regions. We can prepare a file using the follow‐
ing steps:

1. Sort the file by chromosome and start position, using Unix sort.
2. Use the bgzip command-line tool to compress the file using BGZF.
3. Index the file with tabix, specifying which format the data is in (or by manually

specifying which columns contain the chromosome, start, and end positions).

Before getting started, check that you have the bgzip and tabix programs installed.
These are both included with Samtools, and should already be installed if you’ve
worked through Chapter 11. We’ll use both bgzip and tabix throughout this section.

Compressing Files for Tabix with Bgzip
Let’s use the gzipped Mus_musculus.GRCm38.75.gtf.gz file from this chapter’s direc‐
tory in the GitHub repository in our Tabix examples. First, note that this file is com‐
pressed using gzip, not BGZF. To prepare this file, we first need to unzip it, sort by
chromosome and start position, and then compress it with bgzip. We can transform
this gzipped GTF file into a sorted BGZF-compressed file using a single line built
from piped commands.

Unfortunately, we have to deal with one minor complication before calling sort—this
GTF file has a metadata header at the top of the file:

$ gzcat Mus_musculus.GRCm38.75.gtf.gz | head -n5
#!genome-build GRCm38.p2
#!genome-version GRCm38
#!genome-date 2012-01
#!genome-build-accession NCBI:GCA_000001635.4
#!genebuild-last-updated 2013-09

We’ll get around this using the subshell trick we learned in “Subshells” on page 169,
substituting the gzip step with bgzip:
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$ (zgrep "^#" Mus_musculus.GRCm38.75.gtf.gz; \
   zgrep -v "^#" Mus_musculus.GRCm38.75.gtf.gz | \
   sort -k1,1 -k4,4n) | bgzip > Mus_musculus.GRCm38.75.gtf.bgz

Remember, subshells are interpreted in a separate shell. All standard output produced
from each sequential command is sent to bgzip, in the order it’s produced. In the pre‐
ceding example, this has the effect of outputting the metadata header (lines that start
with #), and then outputting all nonheader lines sorted by the first and fourth col‐
umns to bgzip. The end result is a bzip-compressed, sorted GTF file we can now
index with tabix. Subshells are indeed a bit tricky—if you forget the specifics of how
to use them to bgzip files with headers, the tabix man page (man tabix) has an
example.

Indexing Files with Tabix
Once our tab-delimited data file (with data linked to genomic ranges) is compressed
with BGZF, we can use the tabix command-line tool to index it. Indexing files with
tabix is simple for files in standard bioinformatics formats—tabix has preset
options for GTF/GFF, BED, SAM, VCF, and PSL (a tab-delimited format usually gen‐
erated from BLAT). We can index a file in these formats using the -p argument. So,
we index a GTF file that’s been compressed with bgzip (remember, files must be sor‐
ted and compressed with BGZF!) with:

$ tabix -p gff Mus_musculus.GRCm38.75.gtf.bgz

Note that Tabix created a new index file, ending with the suffix .tbi:
$ ls *tbi
Mus_musculus.GRCm38.75.gtf.bgz.tbi

Tabix will also work with custom tab-delimited formats—we just need to specify the
columns that contain the chromosome, start, and end positions. Run tabix without
any arguments to see its help page for more information (but in general, it’s better to
stick to an existing bioinformatics format whenever you can).

Using Tabix
Once our tab-delimited file is indexed with Tabix, we can make fast random queries
with the same tabix command we used to index the file. For example, to access fea‐
tures in Mus_musculus.GRCm38.75.gtf.bgz on chromosome 16, from 23,146,536 to
23,158,028, we use:

$ tabix Mus_musculus.GRCm38.75.gtf.bgz 16:23146536-23158028 | head -n3
16  protein_coding  UTR          23146536  23146641  [...]
16  protein_coding  exon         23146536  23146641  [...]
16  protein_coding  gene         23146536  23158028  [...]
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From here, we could redirect these results to a file or use them directly in a stream.
For example, we might want to pipe these results to awk and extract rows with the
feature column “exon” in this region:

$ tabix Mus_musculus.GRCm38.75.gtf.bgz 16:23146536-23158028  | \
awk '$3 ~ /exon/ {print}'
16      protein_coding  exon    23146536        23146641 [...]
16      protein_coding  exon    23146646        23146734 [...]
16      protein_coding  exon    23155217        23155447 [...]
16      protein_coding  exon    23155217        23155447 [...]
16      protein_coding  exon    23157074        23157292 [...]
16      protein_coding  exon    23157074        23158028 [...]

A nice feature of Tabix is that it works across an HTTP or FTP server. Once you’ve
sorted, bgzipped, and indexed a file with tabix, you can host the file on a shared
server so others in your group can work with it remotely. Sharing files this way is out‐
side the scope of this book, but it’s worth noting Tabix supports this possibility.

Introducing Relational Databases Through SQLite
Many standard bioinformatics data formats (GTF/GFF, BED, VCF/BCF, SAM/BAM)
we’ve encountered so far store tabular data in single flat file formats. Flat file formats
don’t have any internal hierarchy or structured relationship with other tables. While
we’re able to join tables using Unix tools like join, and R’s match() and merge()
functions, the flat files themselves do not encode any relationships between tables.
Flat file formats are widely used in bioinformatics because they’re simple, flexible, and
portable, but occasionally we do need to store and manipulate data that is best repre‐
sented in many related tables—this is where relational databases are useful.

Unlike flat files, relational databases can contain multiple tables. Relational databases
also support methods that use relationships between tables to join and extract specific
records using specialized queries. The most common language for querying relational
databases is SQL (Structured Query Language), which we’ll use throughout the
remainder of this chapter.

In this section, we’ll learn about a relational database management system (the soft‐
ware that implements a relational database, also known as RDBMS) called SQLite. 
SQLite is an entirely self-contained database system that runs as a single process on
your machine. We’ll use SQLite in this section because it doesn’t require any setup—
you can create a database and start making queries with minimal time spent on con‐
figuring and administrating your database. In contrast, other database systems like
MySQL and PostgreSQL require extensive configuration just to get them up and run‐
ning. While SQLite is not as powerful as these larger database systems, it works sur‐
prisingly well for databases in the gigabytes range. In cases when we do need a
relational database management system in bioinformatics (less often than you’d think,
as we’ll see in the next section), SQLite performs well. I like to describe SQLite as hav‐
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ing the highest ratio of power and usability to setup cost of any relational database
system.

When to Use Relational Databases in Bioinformatics
As it turns out, you’ll need to directly interact with relational databases less often than
you might think, for two reasons. First, many large bioinformatics databases provide
user-friendly application programming interfaces (known more commonly by their
acronym, API) for accessing data. It’s often more convenient to access data through
an API than by interacting with databases directly. This is because APIs allow you to
interact with higher-level applications so you don’t have to worry about the gritty
details of how the database is structured to get information out. For example, both
Ensembl and Entrez Global Query have APIs that simplify accessing data from these
resources.

Second, for many bioinformatics tasks, using a relational database often isn’t the best
solution. Relational databases are designed for storing and managing multiple
records in many tables, where users will often need to add new records, update exist‐
ing records, and extract specific records using queries. To get an idea of when rela‐
tional databases are a suitable choice, let’s compare working with two different types
of data: a curated set of gene models and a set of alignment data from a sequencing
experiment.

Adding and Merging Data
Suppose we need to merge a set of new gene models with an existing database of
gene models. Simply concatenating the new gene models to the database of exist‐
ing gene models isn’t appropriate, as we could end up with duplicate exons, gene
identifiers, gene names, and the like. These duplicate entries would lead to clut‐
tered queries in the future (e.g., fetching all exons from a certain gene would
return duplicate exons). With datasets like these, we need a structured way to
query existing records, and only add gene models that aren’t already in the data‐
set. Relational databases provide data insertion methods that simplify keeping
consistent relationships among data.

In contrast, when we merge two alignment files, we don’t have to maintain any
consistency or structure—each alignment is essentially an observation in an
experiment. To merge two alignment files, we can simply concatenate two align‐
ment files together (though with proper tools like samtools merge and attention
to issues like the RG dictionary in the header). Additionally, we don’t have to pay
attention to details like duplicates during the merge step. Duplicate alignments
created by technical steps like PCR are best removed using specialized programs
designed to remove duplicates. Overall, the nature of alignment data obviates the
need for advanced data merging operations.

Introducing Relational Databases Through SQLite | 429

http://ensembl.org
http://www.ncbi.nlm.nih.gov/gquery/


Updating Data
Suppose now that a collaborator has run a new version of gene finding software.
After some data processing, you produce a list of gene models that differ from
your original gene models. After some careful checking, it’s decided that the new
gene models are superior, and you need to update all original gene models with
the new models’ coordinates. As with merging data, these types of update opera‐
tions are much simpler to do using a relational database system. SQL provides an
expressive syntax for updating existing data. Additionally, relational databases
simplify updating relationships between data. If an updated gene model includes
two new exons, these can be added to a relational database without modifying
additional data. Relational databases also allow for different versions of databases
and tables, which allows you to safely archive past gene models (good for repro‐
ducibility!).

In contrast, consider that any updates we make to alignment data:

• Are never made in place (changing the original dataset)
• Usually affect all alignments, not a specific subset
• Do not require sophisticated queries

As a result, any updates we need to make to alignment data are made with speci‐
alized tools that usually operate on streams of data (which allows them to be
included in processing pipelines). Using tools designed specifically to update cer‐
tain alignment attributes will always be faster than trying to store alignments in a
database and update all entries.

Querying data
Querying information from a set of gene models can become quite involved. For
example, imagine you had to write a script to find the first exon for all transcripts
for all genes in a given set of gene identifiers. This wouldn’t be too difficult, but
writing separate scripts for additional queries would be tedious. If you were
working with a large set of gene models, searching each gene model for a match‐
ing identifier would be unnecessarily slow. Again, relational databases streamline
these types of queries. First, SQL acts as a language you can use to specify any
type of query. Second, unlike Python and R, SQL is a declarative language, mean‐
ing you state what you want, not how to get it (the RDBMS implements this).
This means you don’t have to implement the specific code that retrieves gene
models matching your query. Last, RDBMS allow you to index certain columns,
which can substantially speed up querying data.

On the other hand, the queries made to alignment data are often much simpler.
The most common query is to extract alignments from a specific region, and as
we saw in Chapter 11, this can be easily accomplished with samtools view.
Querying alignments within a region in a position-sorted and indexed BAM file
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is much faster than loading all alignments into a database and extracting align‐
ments with SQL. Additionally, sorted BAM files are much more space efficient
and other than a small index file, there’s no additional overhead in indexing
alignments for fast retrieval. For other types of queries, we can use algorithms
that stream through an entire BAM file.

This comparison illustrates the types of applications where a relational database
would be most suitable. Overall, databases are not appropriate for raw experimental
data, which rarely needs to be merged or modified in a way not possible with a
streaming algorithm. For these activities, specialized bioinformatics formats (such as
SAM/BAM, VCF/VCF) and tools to work with these formats will be more computa‐
tionally efficient. Relational databases are better suited for smaller, refined datasets
where relationships between records are easily represented and can be utilized while
querying out data.

Installing SQLite
Unlike MySQL and PostgreSQL, SQLite doesn’t require separate server and client
programs. You can install on OS X with Homebrew, using brew install sqlite, or
on an Ubuntu machine with apt-get using apt-get install sqlite3. The SQLite
website also has source code you can download, compile, and install yourself (but it’s
preferable to just use your ports/packages manager).

Exploring SQLite Databases with the Command-Line Interface
We’ll learn the basics of SQL through SQLite, focusing on how to build powerful
queries and use joins that take advantage of the relational structure of databases. We’ll
start off with the gwascat.db example database included in this chapter’s directory in
the book’s GitHub repository. This is a SQLite database containing a table of the
National Human Genome Research Institute’s catalog of published Genome-Wide
Association Studies (GWAS) with some modifications (Welter et al., 2014). In later
examples, we’ll use another database using a different relational structure of this data.
The code and documentation on how these databases were created is included in the
same directory in the GitHub repository. The process of structuring, creating, and
managing a database is outside the scope of this chapter, but I encourage you to refer
to Jay A. Kreibich’s book Using SQLite and Anthony Molinaro’s SQL Cookbook.

Each SQLite database is stored in its own file (as explained on the SQLite website).
We can connect to our example database, the gwascat.db file, using SQLite’s
command-line tool sqlite3. This leaves you with an interactive SQLite prompt:

$ sqlite3 gwascat.db
SQLite version 3.7.13 2012-07-17 17:46:21
Enter ".help" for instructions
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Enter SQL statements terminated with a ";"
sqlite>

We can issue commands to the SQLite program (not the databases it contains) using
dot commands, which start with a . (and must not begin with whitespace). For exam‐
ple, to list the tables in our SQLite database, we use .tables (additional dot com‐
mands are listed in Table 13-1):

sqlite> .tables
gwascat

Table 13-1. Useful SQLite3 dot commands
Command Description

.exit, .quit Exit SQLite

.help List all SQLite dot commands

.tables Print a list of all tables

.schema Print the table schema (the SQL statement used to create a table)

.headers <on,off> Turn column headers on, off

.import Import a file into SQLite (see SQLite’s documentation for more information)

.indices Show column indices (see “Indexing” on page 457)

.mode Set output mode (e.g., csv, column, tabs, etc.; see .help for a full list)

.read <filename> Execute SQL from file

From .tables, we know this database contains one table: gwascat. Our next step in
working with this table is understanding its columns and the recommended type
used to store data in that column. In database lingo, we call the structure of a database
and its tables (including their columns, preferred types, and relationships between
tables) the schema. Note that it’s vital to understand a database’s schema before query‐
ing data (and even more so when inserting data). In bioinformatics, we often run into
the situation where we need to interact with a remote public SQL database, often with
very complex schema. Missing important schema details can lead to incorrectly struc‐
tured queries and erroneous results.

In SQLite, the .schema dot command prints the original SQL CREATE statements used
to create the tables:

sqlite> .schema
CREATE TABLE gwascat(
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id integer PRIMARY KEY NOT NULL,
dbdate text,
pubmedid integer,
author text,
date text,
journal text,
link text,
study text,
trait text,
[...]

Don’t worry too much about the specifics of the CREATE statement—we’ll cover this
later. More importantly, .schema provides a list of all columns and their preferred
type. Before going any further, it’s important to note an important feature of SQLite:
columns do not have types, data values have types. This is a bit like a spreadsheet: while
a column of height measurements should all be real-valued numbers (e.g., 63.4, 59.4,
etc.), there’s no strict rule mandating this is the case. In SQLite, data values are one of
five types:

• text
• integer
• real
• NULL, used for missing data, or no value
• BLOB, which stands for binary large object, and stores any type of object as bytes

But again, SQLite’s table columns do not enforce all data must be the same type. This
makes SQLite unlike other database systems such as MySQL and PostgreSQL, which
have strict column types. Instead, each column of a SQLite table has a preferred type
called a type affinity. When data is inserted into a SQLite table, SQLite will try to
coerce this data into the preferred type. Much like R, SQLite follows a set of coercion
rules that don’t lead to a loss of information. We’ll talk more about the different
SQLite type affinities when we discuss creating tables in “Creating tables” on page
455.

Orderly Columns

Despite SQLite’s column type leniency, it’s best to try to keep data
stored in the same column all the same type. Keeping orderly col‐
umns makes downstream processing much easier because you
won’t need to worry about whether the data in a column is all dif‐
ferent types.
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With the skills to list tables with .tables and peek at their schema using .schema,
we’re ready to start interacting with data held in tables using the SQL SELECT com‐
mand.

Querying Out Data: The Almighty SELECT Command
Querying out data using the SQL SELECT command is one of the most important data
skills you can learn. Even if you seldom use relational database systems, the reasoning
behind querying data using SQL is applicable to many other problems. Also, while
we’ll use our example gwascat.db database in these examples, the SELECT syntax is
fairly consistent among other relational database management systems. Conse‐
quently, you’ll be able to apply these same querying techniques when working with
public MySQL biological databases like UCSC’s Genome Browser and Ensembl data‐
bases.

In its most basic form, the SELECT statement simply fetches rows from a table. The
most basic SELECT query grabs all rows from all columns from a table:

sqlite> SELECT * FROM gwascat;
id|dbdate|pubmedid|author|date|journal| [...]
1|08/02/2014|24388013|Ferreira MA|12/30/2013|J Allergy Clin Immunol| [...]
2|08/02/2014|24388013|Ferreira MA|12/30/2013|J Allergy Clin Immunol| [...]
3|08/02/2014|24388013|Ferreira MA|12/30/2013|J Allergy Clin Immunol| [...]
4|08/02/2014|24388013|Ferreira MA|12/30/2013|J Allergy Clin Immunol| [...]
[...]

The syntax of this simple SELECT statement is SELECT <columns> FROM <tablename>.
Here, the asterisk (*) denotes that we want to select all columns in the table specified
by FROM (in this case, gwascat). Note that SQL statements must end with a semicolon.

Working with the SQLite Command-Line Tool

If you make a mistake entering a SQLite command, it can be frus‐
trating to cancel it and start again. With text entered, sqlite3
won’t obey exiting with Control-c;—the sqlite3 command-line
client isn’t user-friendly in this regard. The best way around this is
to use Control-u, which clears all input to the beginning of the line.
If your input has already carried over to the next line, the only sol‐
ution is a hack—you’ll need to close any open quotes, enter a syn‐
tax error so your command won’t run, finish your statement with ;,
and run it so sqlite3 errors out.

The sqlite3 command-line tool can also take queries directly from the command
line (rather than in the interactive SQLite shell). This is especially useful when writing
processing pipelines that need to execute a SQL statement to retrieve data. For exam‐
ple, if we wanted to retrieve all data in the gwascat table:
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$ sqlite3 gwascat.db "SELECT * FROM gwascat" > results.txt
$ head -n 1 results.txt
1|2014-08-02|24388013|Ferreira MA|2013-12-30|J Allergy Clin Immunol| [...]

The sqlite3 program also has options that allow us to change how these results are
returned. The option -separator can be used to specify how columns are separated
(e.g., "," for CSV or "\t" for tab) and -header and -noheader can be used to display
or omit the column headers.

Limiting results with LIMIT
To avoid printing all 17,290 rows of the gwascat table, we can add a LIMIT clause to
this SELECT statement. LIMIT is an optional clause that limits the number of rows that
are fetched. Like the Unix command head, LIMIT can be used to take a peek at a small
subset of the data:

sqlite> SELECT * FROM gwascat LIMIT 2;
id|dbdate|pubmedid|author|date|journal| [...]
1|08/02/2014|24388013|Ferreira MA|12/30/2013|J Allergy Clin Immunol| [...]
2|08/02/2014|24388013|Ferreira MA|12/30/2013|J Allergy Clin Immunol| [...]

Unlike the rows in a file, the order in which rows of a table are stored on disk is not
guaranteed, and could change even if the data stays the same. You could execute the
same SELECT query, but the order of the resulting rows may be entirely different. This
is an important characteristic of relational databases, and it’s important that how you
process the results from a SELECT query doesn’t depend on row ordering. Later on,
we’ll see how to use an ORDER BY clause to order by one or more columns.

Selecting columns with SELECT
There are 36 columns in the gwascat table, far too many to print on a page without
wrapping (which is why I’ve cropped the previous example). Rather than selecting all
columns, we can specify a comma-separated subset we care about:

sqlite> SELECT trait, chrom, position, strongest_risk_snp, pvalue
   ...> FROM gwascat LIMIT 5;
trait|chrom|position|strongest_risk_snp|pvalue
Asthma and hay fever|6|32658824|rs9273373|4.0e-14
Asthma and hay fever|4|38798089|rs4833095|5.0e-12
Asthma and hay fever|5|111131801|rs1438673|3.0e-11
Asthma and hay fever|2|102350089|rs10197862|4.0e-11
Asthma and hay fever|17|39966427|rs7212938|4.0e-10

When we’re selecting only a few columns, SQLite’s default list output mode isn’t very
clear. We can adjust SQLite’s settings so results are a bit clearer:

sqlite> .header on
sqlite> .mode column

Now, displaying the results is a bit easier:
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sqlite> SELECT trait, chrom, position, strongest_risk_snp, pvalue
   ...> FROM gwascat LIMIT 5;
trait                 chrom       position    strongest_risk_snp  pvalue
--------------------  ----------  ----------  ------------------  ----------
Asthma and hay fever  6           32658824    rs9273373           4.0e-14
Asthma and hay fever  4           38798089    rs4833095           5.0e-12
Asthma and hay fever  5           111131801   rs1438673           3.0e-11
Asthma and hay fever  2           102350089   rs10197862          4.0e-11
Asthma and hay fever  17          39966427    rs7212938           4.0e-10

In cases where there are many columns, SQLite’s list mode is usually clearer (you can
turn this back on with .mode list).

Ordering rows with ORDER BY
As mentioned earlier, the rows returned by SELECT are not ordered. Often we want to
get order by a particular column. For example, we could look at columns related to
the study, ordering by author’s last name:

sqlite> SELECT author, trait, journal
   ...> FROM gwascat ORDER BY author LIMIT 5;
author      trait                                            journal
----------  -----------------------------------------------  ------------------
Aberg K     Antipsychotic-induced QTc interval prolongation  Pharmacogenomics J
Aberg K     Antipsychotic-induced QTc interval prolongation  Pharmacogenomics J
Aberg K     Antipsychotic-induced QTc interval prolongation  Pharmacogenomics J
Aberg K     Response to antipsychotic therapy (extrapyramid  Biol Psychiatry
Aberg K     Response to antipsychotic therapy (extrapyramid  Biol Psychiatry

To return results in descending order, add DESC to the ORDER BY clause:
sqlite> SELECT author, trait, journal
   ...> FROM gwascat ORDER BY author DESC LIMIT 5;
author             trait        journal
-----------------  -----------  ----------
van der Zanden LF  Hypospadias  Nat Genet
van der Valk RJ    Fractional   J Allergy
van der Valk RJ    Fractional   J Allergy
van der Valk RJ    Fractional   J Allergy
van der Valk RJ    Fractional   J Allergy

Remember, SQLite’s columns do not have strict types. Using ORDER BY on a column
that contains a mix of data value types will follow the order: NULL values, integer
and real values (sorted numerically), text values, and finally blob values. It’s especially
important to note that NULL values will always be first when sorting by ascending or
descending order. We can see this in action by ordering by ascending p-value:

sqlite> SELECT trait, chrom, position, strongest_risk_snp, pvalue
   ...> FROM gwascat ORDER BY pvalue LIMIT 5;
trait          chrom       position    strongest_risk_snp  pvalue
-------------  ----------  ----------  ------------------  ----------
Brain imaging                          rs10932886
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Brain imaging                          rs429358
Brain imaging                          rs7610017
Brain imaging                          rs6463843
Brain imaging                          rs2075650

In the next section, we’ll see how we can filter out rows with NULL values with WHICH
clauses.

As discussed in Chapter 8, ordering data to look for suspicious outliers is a great way
to look for problems in data. For example, consider what happens when we sort p-
values (which as a probability, must mathematically be between 0 and 1, inclusive) in
descending order:

sqlite> SELECT trait, strongest_risk_snp, pvalue
   ...> FROM gwascat ORDER BY pvalue DESC LIMIT 5;
trait                        strongest_risk_snp  pvalue
---------------------------  ------------------  ----------
Serum protein levels (sST2)  rs206548            90000000.0
Periodontitis (Mean PAL)     rs12050161          4000000.0
Coronary artery disease or   rs964184            2.0e-05
Lipid traits                 rs10158897          9.0e-06
Rheumatoid arthritis         rs8032939           9.0e-06

Yikes! These two erroneous p-values likely occurred as a data entry mistake. It’s very
easy to miss the negative when entering p-values in scientific notation (e.g., 9e-7 ver‐
sus 9e7). Problems like these once again illustrate why it’s essential to not blindly trust
your data.

Filtering which rows with WHERE
Up until now, we’ve been selecting all rows from a database table and adding ORDER
BY and LIMIT clauses to sort and limit the results. But the strength of a relational data‐
base isn’t in selecting all data from a table, it’s in using queries to select out specific
informative subsets of data. We filter out particular rows using WHERE clauses, which
is the heart of making queries with SELECT statements.

Let’s look at a simple example—suppose we wanted to find rows where the strongest
risk SNP is rs429358:

sqlite> SELECT chrom, position, trait, strongest_risk_snp, pvalue
   ...> FROM gwascat WHERE strongest_risk_snp = "rs429358";

chrom   position    trait                           strongest_risk_snp  pvalue
------  ----------  ------------------------------  ------------------  -------
19      44908684    Alzheimer's disease biomarkers  rs429358            5.0e-14
19      44908684    Alzheimer's disease biomarkers  rs429358            1.0e-06
                    Brain imaging                   rs429358
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SQLite uses = or == to compare values. Note that all entries are case sensitive, so if
your values have inconsistent case, you can use the lower() function to convert val‐
ues to lowercase before comparison:

sqlite> SELECT chrom, position, trait, strongest_risk_snp, pvalue
   ...> FROM gwascat WHERE lower(strongest_risk_snp) = "rs429358";
chrom   position    trait                           strongest_risk_snp  pvalue
------  ----------  ------------------------------  ------------------  -------
19      44908684    Alzheimer's disease biomarkers  rs429358            5.0e-14
19      44908684    Alzheimer's disease biomarkers  rs429358            1.0e-06
                    Brain imaging                   rs429358

In our case, this doesn’t lead to a difference because the RS identifiers all have “rs” in
lowercase. It’s best to try to use consistent naming, but if you’re not 100% sure that all
RS identifiers start with a lowercase “rs,” converting everything to the same case is the
robust solution.

The equals operator (=) is just one of many useful SQLite comparison operators; see
Table 13-2 for a table of some common operators.

Table 13-2. Common operators used in WHERE statements
Operator Description

=, == Equals

!=, <> Not equals

IS, IS NOT Identical to = and !=, except that IS and IS NOT can be used to
check for NULL values

<, <= Less than, less than or equal to

>, >= Greater than, greater than or equal to

x IN (a, b, ...) Returns whether x is in the list of items (a, b, ...)

x NOT IN (a, 
b, ...)

Returns whether x is not in the list of items (a, b, ...)

NOT Logical negation

LIKE Pattern matching (use % as a wildcard, e.g. like Bash’s *)

BETWEEN x BETWEEN start AND END is a shortcut for x >= start 
AND x <= end

- Negative
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Operator Description

+ Positive

Additionally, we can build larger expressions by using AND and OR. For example, to
retrieve all rows with p-value less than 10 x 10-15 and on chromosome 22:

sqlite> SELECT chrom, position, trait, strongest_risk_snp, pvalue
   ...> FROM gwascat WHERE chrom = "22" AND pvalue < 10e-15;
chrom       position    trait                 strongest_risk_snp  pvalue
----------  ----------  --------------------  ------------------  ----------
22          39351666    Rheumatoid arthritis  rs909685            1.0e-16
22          21577779    HDL cholesterol       rs181362            4.0e-18
22          39146287    Multiple myeloma      rs877529            8.0e-16
22          37185445    Graves' disease       rs229527            5.0e-20
22          40480230    Breast cancer         rs6001930           9.0e-19
[...]

It’s important to note that using colname = NULL will not work, as NULL is not equal
to anything by definition; IS needs to be used in this case. This is useful when we
combine create SELECT statements that use ORDER BY to order by a column that con‐
tains NULLs (which show up at the top). Compare:

sqlite> SELECT chrom, position, trait, strongest_risk_snp, pvalue
   ...> FROM gwascat ORDER BY pvalue LIMIT 5;
chrom       position    trait          strongest_risk_snp  pvalue
----------  ----------  -------------  ------------------  ----------
                        Brain imaging  rs10932886
                        Brain imaging  rs429358
                        Brain imaging  rs7610017
                        Brain imaging  rs6463843

to using WHERE pvalue IS NOT NULL to eliminate NULL values before ordering:
sqlite> SELECT chrom, position, trait, strongest_risk_snp, pvalue
   ...> FROM gwascat WHERE pvalue IS NOT NULL ORDER BY pvalue LIMIT 5;
chrom       position    trait            strongest_risk_snp  pvalue
----------  ----------  ---------------  ------------------  ----------
16          56959412    HDL cholesterol  rs3764261           0.0
10          122454932   Age-related mac  rs10490924          0.0
1           196710325   Age-related mac  rs10737680          0.0
4           9942428     Urate levels     rs12498742          0.0
6           43957789    Vascular endoth  rs4513773           0.0

OR can be used to select rows that satisfy either condition:
sqlite> SELECT chrom, position, strongest_risk_snp, pvalue FROM gwascat
   ...> WHERE (chrom = "1" OR chrom = "2" OR chrom = "3")
   ...> AND pvalue < 10e-11 ORDER BY pvalue LIMIT 5;
chrom       position    strongest_risk_snp  pvalue
----------  ----------  ------------------  ----------
1           196710325   rs10737680          0.0
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2           233763993   rs6742078           4.94065645
3           165773492   rs1803274           6.0e-262
1           196690107   rs1061170           1.0e-261
2           73591809    rs13391552          5.0e-252

This approach works, but is complex. It’s helpful to group complex statements with
parentheses, both to improve readability and ensure that SQLite is interpreting your
statement correctly.

Rather than listing out all possible values a column can take with OR and =, it’s often
simpler to use IN (or take the complement with NOT IN):

sqlite> SELECT chrom, position, strongest_risk_snp, pvalue FROM gwascat
   ...> WHERE chrom IN ("1", "2", "3") AND pvalue < 10e-11
   ...> ORDER BY pvalue LIMIT 5;
chrom       position    strongest_risk_snp  pvalue
----------  ----------  ------------------  ----------
1           196710325   rs10737680          0.0
2           233763993   rs6742078           4.94065645
3           165773492   rs1803274           6.0e-262
1           196690107   rs1061170           1.0e-261
2           73591809    rs13391552          5.0e-252

Finally, the BETWEEN … AND … operator is useful for retrieving entries between specific
values. x BETWEEN start AND end works like x > = start AND x < = end:

sqlite> SELECT chrom, position, strongest_risk_snp, pvalue
   ...> FROM gwascat WHERE chrom = "22"
   ...> AND position BETWEEN 24000000 AND 25000000
   ...> AND pvalue IS NOT NULL ORDER BY pvalue LIMIT 5;
chrom       position    strongest_risk_snp  pvalue
----------  ----------  ------------------  ----------
22          24603137    rs2073398           1.0e-109
22          24594246    rs4820599           7.0e-53
22          24600663    rs5751902           8.0e-20
22          24594246    rs4820599           4.0e-11
22          24186073    rs8141797           2.0e-09

However, note that this approach is not as efficient as other methods that use special‐
ized data structures to handle ranges, such as Tabix, BedTools, or the interval trees in
GenomicRanges. If you find many of your queries require finding rows that overlap
regions and you’re running into bottlenecks, using one of these tools might be a bet‐
ter choice. Another option is to implement binning scheme, which assigns features to
specific bins. To find features within a particular range, one can precalculate which
bins these features would fall in and include only these bins in the WHERE clause. The
UCSC Genome Browser uses this scheme (originally suggested by Lincoln Stein and
Richard Durbin): see Kent et al., (2002) The Human Genome Browser at UCSC for
more information. We’ll discuss more efficiency tricks later on when we learn about
table indexing.
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SQLite Functions
So far, we’ve just accessed column data exactly as they are in the table using SELECT.
But it’s also possible to use expressions to create new columns from existing columns.
We use SQLite functions and operators to do this, and AS to give each new column a
descriptive name. For example, we could create a region string in the format
“chr4:165773492” for each row and convert all traits to lowercase:

sqlite> SELECT lower(trait) AS trait,
   ...> "chr" || chrom || ":" || position AS region FROM gwascat LIMIT 5;
trait                 region
--------------------  -------------
asthma and hay fever  chr6:32658824
asthma and hay fever  chr4:38798089
asthma and hay fever  chr5:11113180
asthma and hay fever  chr2:10235008
asthma and hay fever  chr17:3996642

Here, || is the concatenation operator, which concatenates two strings. As another
example, we may want to replace all NULL values with “NA” if we needed to write
results to a file that may be fed into R. We can do this using the ifnull() function:

sqlite> SELECT ifnull(chrom, "NA") AS chrom, ifnull(position, "NA") AS position,
   ...> strongest_risk_snp, ifnull(pvalue, "NA") AS pvalue FROM gwascat
   ...> WHERE strongest_risk_snp = "rs429358";
chrom       position    strongest_risk_snp  pvalue
----------  ----------  ------------------  ----------
19          44908684    rs429358            5.0e-14
19          44908684    rs429358            1.0e-06
NA          NA          rs429358            NA

Later, we’ll see a brief example of how we can interact with SQLite databases directly
in R (which automatically converts NULLs to R’s NAs). Still, if you’re interfacing with
a SQLite database at a different stage in your work, ifnull() can be useful.

We’re just scratching the surface of SQLite’s capabilities here; see Table 13-3 for other
useful common functions.

Table 13-3. Common SQLite functions
Function Description

ifnull(x, val) If x is NULL, return with val, otherwise return x; shorthand for
coalesce() with two arguments

min(a, b, c, …) Return minimum in a, b, c, …

max(a, b, c, …) Return maximum in a, b, c, …

abs(x) Absolute value
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Function Description

coalesce(a, b, 
c, ...)

Return first non-NULL value in a, b, c, … or NULL if all values are
NULL

length(x) Returns number of characters in x

lower(x) Return x in lowercase

upper(x) Return x in uppercase

replace(x, str, 
repl)

Return x with all occurrences of str replaced with repl

round(x, digits) Round x to digits (default 0)

trim(x, chars),
ltrim(x, chars),
rtrim(x, chars)

Trim off chars (spaces if chars is not specified) from both sides,
left side, and right side of x, respectively.

substr(x, start, 
length)

Extract a substring from x starting from character start and is
length characters long

SQLite Aggregate Functions
Another type of SQLite function takes a column retrieved from a query as input and
returns a single value. For example, consider counting all values in a column: a
count() function would take all values in the column and return a single value (how
many non-NULL values there are in the column). SQLite’s count() function given
the argument * (and without a filtering WHERE clause) will return how many rows are
in a database:

sqlite> SELECT count(*) FROM gwascat;
count(*)
----------
17290

Using count(*) will always count the rows, regardless of whether there are NULLs.
In contrast, calling count(colname) where colname is a particular column will return
the number of non-NULL values:

sqlite> SELECT count(pvalue) FROM gwascat;
count(pvalue)
-------------
17279
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We can use expressions and AS to print the number of NULL p-values, by subtracting
the total number non-NULL p-values from the total number of rows to return the
number of NULL p-values:

sqlite> SELECT count(*) - count(pvalue) AS number_of_null_pvalues FROM gwascat;
number_of_null_pvalues
----------------------
11

Other aggregate functions can be used to find the average, minimum, maximum, or
sum of a column (see Table 13-4). Note that all of these aggregating functions work
with WHERE clauses, where the aggregate function is only applied to the filtered results.
For example, we could find out how many entries have publication dates in 2007 (i.e.,
after December 31, 2006, but before January 1, 2008):

sqlite> select "2007" AS year, count(*) AS number_entries
   ...> from gwascat WHERE date BETWEEN "2007-01-01" AND "2008-01-01";
year        number_entries
----------  --------------
2007        435

Table 13-4. Common SQLite aggregate functions
Function Description

count(x),
count(*)

Return the number of non-NULL values in column x and the total number of
rows, respectively

avg(x) Return the average of column x

max(x),
min(x)

Return the maximum and minimum values in x, respectively

sum(x),
total(x)

Return the sum of column x; if all values of x are NULL, sum(x) will return
NULL and total(x) will return 0. sum() will return integers if all data are
integers; total() will always return a real value

Note that unlike other relational databases like MySQL and PostgreSQL, SQLite does
not have a dedicated date type. Although the date is text, this works because dates in
this table are stored in ISO 8601 format (introduced briefly in “Command Substitu‐
tion” on page 54), which uses leading zeros and is in the form: YYYY-MM-DD. Because
this format cleverly arranges the date from largest period (year) to smallest (day),
sorting and comparing this date as text is equivalent to comparing the actual dates.
This is the benefit of storing dates in a tidy format (see XKCD’s ISO 8601).

A nice feature of aggregate functions is that they allow prefiltering of duplicated val‐
ues through the DISTINCT keyword. For example, to count the number of unique
non-NULL RS IDs in the strongest_risk_snp column:
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sqlite> SELECT count(DISTINCT strongest_risk_snp) AS unique_rs FROM gwascat;
unique_rs
----------
13619

Grouping rows with GROUP BY
If you’re familiar with R (covered in Chapter 8), you’ve probably noticed that many of
SQLite’s querying capabilities overlap R’s. We extract specific columns from a SQLite
table using SELECT a, b FROM tbl;, which is similar to tbl[, c("a", "b")] to
access columns a and b in an R dataframe. Likewise, SQL’s WHERE clauses filter rows
much like R’s subsetting. Consider the similarities between SELECT a, b FROM tbl
WHERE a < 4 AND b = 1; and tbl[tbl$a < 4 & b == 1, c("a", "b")]. In this
section, we’ll learn about the SQL GROUP BY statement, which is similar to the split-
apply-combine strategy covered in “Working with the Split-Apply-Combine Pattern”
on page 239.

As the name suggests, GROUP BY gathers rows into groups by some column’s value.
Rather importantly, the aggregate functions we saw in the previous section are
applied to each group separately. In this way, GROUP BY is analogous to using R’s
split() function to split a dataframe by a column and using lapply() to apply an
aggregating function to each split list item. Let’s look at an example—we’ll count how
many associations there are in the GWAS catalog per chromosome:

sqlite> SELECT chrom, count(*) FROM gwascat GROUP BY chrom;
chrom       count(*)
----------  ----------
            70
1           1458
10          930
11          988
12          858
13          432
[...]

We can order our GROUP BY results from most hits to least with ORDER BY. To tidy up
our columns, we’ll also use AS to name the count(*) nhits:

sqlite> SELECT chrom, count(*) as nhits FROM gwascat GROUP BY chrom
   ...> ORDER BY nhits DESC;
chrom       nhits
----------  ----------
6           1658
1           1458
2           1432
3           1033
11          988
10          930
[...]
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As a more interesting example, let’s look at the top five most frequent strongest risk
SNPs in the table:

sqlite> select strongest_risk_snp, count(*) AS count
   ...> FROM gwascat GROUP BY strongest_risk_snp
   ...> ORDER BY count DESC LIMIT 5;
strongest_risk_snp  count
------------------  ----------
rs1260326           36
rs4420638           30
rs1800562           28
rs7903146           27
rs964184            25

It’s also possible to group by multiple columns. Suppose, for example, that you
weren’t just interested in the number of associations per strongest risk SNP, but also
the number of associations for each allele in these SNPs. In this case, we want to com‐
pute count(*) grouping by both SNP and allele:

sqlite> select strongest_risk_snp, strongest_risk_allele, count(*) AS count
   ...> FROM gwascat GROUP BY strongest_risk_snp, strongest_risk_allele
   ...> ORDER BY count DESC LIMIT 10;
strongest_risk_snp  strongest_risk_allele  count
------------------  ---------------------  ----------
rs1260326           T                      22
rs2186369           G                      22
rs1800562           A                      20
rs909674            C                      20
rs11710456          G                      19
rs7903146           T                      19
rs4420638           G                      18
rs964184            G                      15
rs11847263          G                      14
rs3184504           T                      12

All other aggregate functions similarly work on grouped data. As an example of how
we can combine aggregate functions with GROUP BY, let’s look at the average log10 p-
value for all association studies grouped by year. The gwascat table doesn’t have a
year column, but we can easily extract year from the date column using the substr()
function. Let’s build up the query incrementally, first ensuring we’re extracting year
correctly:

sqlite> SELECT substr(date, 1, 4) AS year FROM gwascat GROUP BY year;
year
----------
2005
2006
2007
2008
2009
2010
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2011
2012
2013

Now that this is working, let’s add in a call to avg() to find the average -log10 p-
values per year (using round() to simplify the output) and count() to get the number
of cases in each group:

sqlite> SELECT substr(date, 1, 4) AS year,
   ...> round(avg(pvalue_mlog), 4) AS mean_log_pvalue,
   ...> count(pvalue_mlog) AS n
   ...> FROM gwascat GROUP BY year;
year        mean_log_pvalue  n
----------  ---------------  ----------
2005        6.2474           2
2006        7.234            8
2007        11.0973          434
2008        11.5054          971
2009        12.6279          1323
2010        13.0641          2528
2011        13.3437          2349
2012        9.6976           4197
2013        10.3643          5406

The primary trend is an increase in -log10 p-values over time. This is likely caused by
larger study sample sizes; confirming this will take a bit more sleuthing.

It’s important to note that filtering with WHERE applies to rows before grouping. If you
want to filter groups themselves on some condition, you need to use the HAVING
clause. For example, maybe we only want to report per-group averages when we have
more than a certain number of cases (because our -log10 p-value averages may not be
reliable with too few cases). You can do that with:

sqlite> SELECT substr(date, 1, 4) AS year,
   ...> round(avg(pvalue_mlog), 4) AS mean_log_pvalue,
   ...> count(pvalue_mlog) AS n
   ...> FROM gwascat GROUP BY year
   ...> HAVING count(pvalue_mlog) > 10;
year        mean_log_pvalue  n
----------  ---------------  ----------
2007        11.0973          434
2008        11.5054          971
2009        12.6279          1323
2010        13.0641          2528
2011        13.3437          2349
2012        9.6976           4197
2013        10.3643          5406

We’ve filtered here on the total per-group number of cases, but in general HAVING
works with any aggregate functions (e.g., avg(), sum(), max(), etc.).
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Subqueries
As a teaser of the power of SQL queries, let’s look at a more advanced example that
uses aggregation. The structure of the gwascat table is that a single study can have
multiple rows, each row corresponding to a different significant association in the
study. As study sample sizes grow larger (and have increased statistical power), intui‐
tively it would make sense if later publications find more significant trait associations.
Let’s build up a query to summarize the data to look for this pattern. The first step is
to count how many associations each study has. Because the PubMed ID (column
pubmedid) is unique per publication, this is an ideal grouping factor (see
Example 13-1).

Example 13-1. An example subquery

sqlite> SELECT substr(date, 1, 4) AS year, author, pubmedid,
   ...> count(*) AS num_assoc FROM gwascat GROUP BY pubmedid
   ...> LIMIT 5;
year        author      pubmedid    num_assoc
----------  ----------  ----------  ----------
2005        Klein RJ    15761122    1
2005        Maraganore  16252231    1
2006        Arking DE   16648850    1
2006        Fung HC     17052657    3
2006        Dewan A     17053108    1

I’ve included the author and pubmedid columns in output so it’s easier to see what’s
going on here. These results are useful, but what we really want is another level of
aggregation: we want to find the average number of associations across publications,
per year. In SQL lingo, this means we need to take the preceding results, group by
year, and use the aggregating function avg() to calculate the average number of asso‐
ciations per publication, per year. SQLite (and other SQL databases too) have a
method for nesting queries this way called subqueries. We can simply wrap the pre‐
ceding query in parentheses, and treat it like a database we’re specifying with FROM:

sqlite> SELECT year, avg(num_assoc)
   ...> FROM (SELECT substr(date, 1, 4) AS year,
   ...>       author,
   ...>       count(*) AS num_assoc
   ...>       FROM gwascat GROUP BY pubmedid)
   ...> GROUP BY year;
year        avg(num_assoc)
----------  ----------
2005        1.0
2006        1.6
2007        5.87837837
2008        7.64566929
2009        6.90625
2010        9.21660649
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2011        7.49681528
2012        13.4536741
2013        16.6055045

Indeed, it looks like there are more associations being found per study in more recent
studies. While this subquery looks complex, structurally it’s identical to SELECT
year, avg(num_assoc) FROM tbl GROUP BY year; where tbl is replaced by the
SELECT query Example 13-1. While we’re still only scratching the surface of SQL’s
capabilities, subqueries are good illustration of the advanced queries that can be done
entirely within SQL.

Organizing Relational Databases and Joins
The solution to this redundancy is to organize data into multiple tables and use joins
in queries to tie the data back together. If WHERE statements are the heart of making
queries with SELECT statements, joins are the soul.

Organizing relational databases
If you poke around in the gwascat table, you’ll notice there’s a great deal of redun‐
dancy. Each row of the table contains a single trait association from a study. Many
studies included in the table find multiple associations, meaning that there’s a lot of
duplicate information related to the study. Consider a few rows from the study with
PubMed ID “24388013”:

sqlite> SELECT date, pubmedid, author, strongest_risk_snp
   ...> FROM gwascat WHERE pubmedid = "24388013" LIMIT 5;
date        pubmedid    author       strongest_risk_snp
----------  ----------  -----------  ------------------
2013-12-30  24388013    Ferreira MA  rs9273373
2013-12-30  24388013    Ferreira MA  rs4833095
2013-12-30  24388013    Ferreira MA  rs1438673
2013-12-30  24388013    Ferreira MA  rs10197862
2013-12-30  24388013    Ferreira MA  rs7212938

I’ve only selected a few columns to include here, but all rows from this particular
study have duplicated author, date, journal, link, study, initial_samplesize, and
replication_samplesize column values. This redundancy is not surprising given
that this data originates from a spreadsheet, where data is always organized in flat
tables. The database community often refers to unnecessary redundancy in database
tables as spreadsheet syndrome. With large databases, this redundancy can unnecessa‐
rily increase required disk space.

Before learning about the different join operations and how they work, it’s important
to understand the philosophy of organizing data in a relational database so as to avoid
spreadsheet syndrome. This philosophy is database normalization, and it’s an exten‐
sive topic in its own right. Database normalization is a hierarchy of increasingly nor‐
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malized levels called normal forms. Though the technical definitions of the normal
forms are quite complicated, the big picture is most important when starting to orga‐
nize your own relational databases. I’ll step through a few examples that illustrate
how reorganizing data in a table can reduce redundancy and simplify queries. I’ll
mention the normal forms in passing, but I encourage you to further explore data‐
base normalization, especially if you’re creating and working with a complex rela‐
tional database.

First, it’s best to organize data such that every column of a row only contains one data
value. Let’s look at an imaginary table called assocs that breaks this rule:

id  pubmedid  year   journal    trait               strongest_risk_snp
--  --------  ----   -------    -----               ------------------
1   24388013  2013   J Allergy  Asthma, hay fever   rs9273373,rs4833095,rs1438673
2   17554300  2007   Nature     Hypertension        rs2820037
3   17554300  2007   Nature     Crohn's disease     rs6596075

From what we’ve learned so far about SQL queries, you should be able to see why the
organization of this table is going to cause headaches. Suppose a researcher asks you
if rs4833095 is an identifier in the strongest risk SNP column of this table. Using the
SQL querying techniques you learned earlier in this chapter, you might use SELECT *
FROM assoc WHERE strongest_risk_snp = "rs4833095" to find matching records.
However, this would not work, as multiple values are combined in a single column of
the row containing rs4833095!

A better way to organize this data is to create a separate row for each data value. We
can do this by splitting the records with multiple values in a column into multiple
rows (in database jargon, this is putting the table in first normal form):

id  pubmedid  year   journal    trait               strongest_risk_snp
--  --------  ----   -------    -----               ------------------
1   24388013  2013   J Allergy  Asthma, hay fever   rs9273373
2   24388013  2013   J Allergy  Asthma, hay fever   rs4833095
3   24388013  2013   J Allergy  Asthma, hay fever   rs1438673
4   17554300  2007   Nature     Hypertension        rs2820037
5   17554300  2007   Nature     Crohn's disease     rs6596075

You might notice something about this table now though: there’s now duplication in
journal, year, and pubmedid column values. This duplication is avoidable, and arises
because the year and journal columns are directly dependent on the pubmedid col‐
umn (and no other columns).

A better way of organizing this data is to split the table into two tables (one for associ‐
ation results, and one for studies):
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assocs:

id  pubmedid  trait               strongest_risk_snp
--  --------  -----               ------------------
1   24388013  Asthma, hay fever   rs9273373
2   24388013  Asthma, hay fever   rs4833095
3   24388013  Asthma, hay fever   rs1438673
4   17554300  Hypertension        rs2820037
5   17554300  Crohn's disease     rs6596075

studies:

pubmedid  year   journal
--------  ----   -------
24388013  2013   J Allergy
17554300  2007   Nature

Organizing data this way considerably reduces redundancy (in database jargon, this
scheme is related to the second and third normal forms). Now, our link between these
two different tables are the pubmedid identifiers. Because pubmedid is a primary key
that uniquely identifies each study, we can use these keys to reference studies from
the assocs table. The pubmedid of the assocs table is called a foreign key, as it
uniquely identifies a record in a different table, the studies table.

While we used pubmedid as a foreign key in this example, in practice it’s also common
to give records in the studies column an arbitrary primary key (like id in assocs)
and store pubmedid as an additional column. This would look like:

assocs:

id  study_id  trait               strongest_risk_snp
--  --------  -----               ------------------
1   1         Asthma, hay fever   rs9273373
2   1         Asthma, hay fever   rs4833095
3   1         Asthma, hay fever   rs1438673
4   2         Hypertension        rs2820037
5   2         Crohn's disease     rs6596075

studies:

id  pubmedid  year   journal
--  --------  ----   -------
1   24388013  2013   J Allergy
2   17554300  2007   Nature

Now that we’ve organized our data into two tables, we’re ready to use joins to unite
these two tables in queries.
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Inner joins
Once data is neatly organized in different tables linked with foreign keys, we’re ready
to use SQLite queries to join results back together. In these examples, we’ll use the
joins.db database from this chapter’s GitHub directory. This small database contains
the two tables we just organized, assocs and studies, with a few additional rows to
illustrate some intricacies with different types of joins.

Let’s load the joins.db database:
$ sqlite3 joins.db
SQLite version 3.7.13 2012-07-17 17:46:21
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .mode columns
sqlite> .header on

Let’s take a peek at these example data:
sqlite> SELECT * FROM assocs;
id          study_id    trait              strongest_risk_snp
----------  ----------  -----------------  ------------------
1           1           Asthma, hay fever  rs9273373
2           1           Asthma, hay fever  rs4833095
3           1           Asthma, hay fever  rs1438673
4           2           Hypertension       rs2820037
5           2           Crohn's disease    rs6596075
6                       Urate levels       rs12498742

sqlite> SELECT * FROM studies;
id          pubmedid    year        journal
----------  ----------  ----------  ----------
1           24388013    2013        J Allergy
2           17554300    2007        Nature
3           16252231    2005        Am J Hum G

By far, the most frequently used type of join used is an inner join. We would use an
inner join to reunite the association results in the assocs table with the studies in the
studies table. Here’s an example of the inner join notation:

sqlite> SELECT * FROM assocs INNER JOIN studies ON assocs.study_id = studies.id;
id  study_id  trait             strongest_risk_snp id  pubmedid   year  journal
--- --------- ----------------- ------------------ --- ---------  ----- ----------
1   1         Asthma, hay fever rs9273373          1   24388013   2013  J Allergy
2   1         Asthma, hay fever rs4833095          1   24388013   2013  J Allergy
3   1         Asthma, hay fever rs1438673          1   24388013   2013  J Allergy
4   2         Hypertension      rs2820037          2   17554300   2007  Nature
5   2         Crohn's disease   rs6596075          2   17554300   2007  Nature

Notice three important parts of this join syntax:
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• The type of join (INNER JOIN). The table on the left side of the INNER JOIN state‐
ment is known as the left table and the table on the right side is known as the
right table.

• The join predicate, which follows ON (in this case, it’s assocs.study_id = stud
ies.id).

• The new notation table.column we use to specify a column from a specific table.
This is necessary because there may be duplicate column names in either table, so
to select a particular column we need a way to identify which table it’s in.

Inner joins only select records where the join predicate is true. In this case, this is all
rows where the id column in the studies table is equal to the study_id column of
the assocs table. Note that we must use the syntax studies.id to specify the column
id from the table studies. Using id alone will not work, as id is a column in both
assocs and studies. This is also the case if you select a subset of columns where
some names are shared:

sqlite> SELECT studies.id, assocs.id, trait, year FROM assocs
   ...> INNER JOIN studies ON assocs.study_id = studies.id;
id          id          trait              year
----------  ----------  -----------------  ----------
1           1           Asthma, hay fever  2013
1           2           Asthma, hay fever  2013
1           3           Asthma, hay fever  2013
2           4           Hypertension       2007
2           5           Crohn's disease    2007

To make the results table even clearer, use AS to rename columns:
sqlite> SELECT studies.id AS study_id, assocs.id AS assoc_id, trait, year
   ...> FROM assocs INNER JOIN studies ON assocs.study_id = studies.id;
study_id    assoc_id    trait              year
----------  ----------  -----------------  ----------
1           1           Asthma, hay fever  2013
1           2           Asthma, hay fever  2013
1           3           Asthma, hay fever  2013
2           4           Hypertension       2007
2           5           Crohn's disease    2007

In both cases, our join predicate links the studies table’s primary key, id, with the
study_id foreign key in assocs. But note that our inner join only returns five col‐
umns, when there are six records in assocs:

sqlite> SELECT count(*) FROM assocs INNER JOIN studies
...> ON assocs.study_id = studies.id;
count(*)
----------
5
sqlite> SELECT count(*) FROM assocs;
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count(*)
----------
6

What’s going on here? There’s one record in assocs with a study_id not in the
studies.id column (in this case, because it’s NULL). We can find such rows using
subqueries:

sqlite> SELECT * FROM assocs WHERE study_id NOT IN (SELECT id FROM studies);
id          study_id    trait         strongest_risk_snp
----------  ----------  ------------  ------------------
6                       Urate levels  rs12498742

Likewise, there is also a record in the studies table that is not linked to any associa‐
tion results in the assocs table:

sqlite> SELECT * FROM studies WHERE id NOT IN (SELECT study_id FROM assocs);
id          pubmedid    year        journal
----------  ----------  ----------  --------------
3           16252231    2005        Am J Hum Genet

When using inner joins, it’s crucial to remember that such cases will be ignored! All
records where the join predicate assocs.study_id = studies.id is not true are
excluded from the results of an inner join. In this example, some records from both
the left table (assocs) and right table (studies) are excluded.

Left outer joins
In some circumstances, we want to join in such a way that includes all records from
one table, even if the join predicate is false. These types of joins will leave some col‐
umn values NULL (because there’s no corresponding row in the other table) but pair
up corresponding records where appropriate. These types of joins are known as outer
joins. SQLite only supports a type of outer join known as a left outer join, which we’ll
see in this section.
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Other Types of Outer Joins

In addition to the left outer joins we’ll discuss in this section, there
are two other types of outer joins: right outer joins and full outer
joins. Right outer joins are like left outer joins that include all rows
from the right table. Right outer joins aren’t supported in SQLite,
but we can easily emulate their behavior using left outer joins by
swapping the left and right tables (we’ll see this in this section).
Full outer joins return all rows from both the left and right table,
uniting records from both tables where the join predicate is true.
SQLite doesn’t support full outer joins, but it’s possible to emulate
full outer joins in SQLite (though this is outside of the scope of this
book). In cases where I’ve needed to make use of extensive outer
joins, I’ve found it easiest to switch to PostgreSQL, which supports
a variety of different joins.

Left outer joins include all records from the left table (remember, this is the table on
the left of the JOIN keyword). Cases where the join predicate are true are still linked
in the results. For example, if we wanted to print all association records in the assocs
table (regardless of whether they come from a study in the studies table), we would
use:

sqlite> SELECT * FROM assocs LEFT OUTER JOIN studies
...> ON assocs.study_id = studies.id;
id  study_id  trait             [...]risk_snp   id   pubmedid    year   journal
--- --------- ----------------- -------------- ---  ----------  -----  ----------
1   1         Asthma, hay fever rs9273373        1    24388013   2013   J Allergy
2   1         Asthma, hay fever rs4833095        1    24388013   2013   J Allergy
3   1         Asthma, hay fever rs1438673        1    24388013   2013   J Allergy
4   2         Hypertension      rs2820037        2    17554300   2007   Nature
5   2         Crohn's disease   rs6596075        2    17554300   2007   Nature
6             Urate levels      rs12498742

As this example shows (note the last record), SQLite left outer joins cover a very
important use case: we need all records from the left table, but want to join on data
from the right table whenever it’s possible to do so. In contrast, remember that an inner
join will only return records in which the join predicate is true.

While SQLite doesn’t support right outer joins, we can emulate their behavior by
swapping the left and right columns. For example, suppose rather than fetching all
association results and joining on a study where a corresponding study exists, we
wanted to fetch all studies, and join on an association where one exists. This can
easily be done by making studies the left table, and assocs the right table in a left
outer join:
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sqlite> SELECT * FROM studies LEFT OUTER JOIN assocs
...> ON assocs.study_id = studies.id;
id pubmedid  year   journal     id  study_id   trait             [...]_risk_snp
-- --------  -----  ----------  --  ---------  -----------------  --------------
1  24388013  2013   J Allergy   3   1          Asthma, hay fever  rs1438673
1  24388013  2013   J Allergy   2   1          Asthma, hay fever  rs4833095
1  24388013  2013   J Allergy   1   1          Asthma, hay fever  rs9273373
2  17554300  2007   Nature      5   2          Crohn's disease    rs6596075
2  17554300  2007   Nature      4   2          Hypertension       rs2820037
3  16252231  2005   Am J Hum G

Again, note that the assocs’s columns id, study_id, trait, and strongest_risk_snp
have some values that are NULL, for the single record (with PubMed ID 16252231)
without any corresponding association results in assocs.

Finally, while our example joins all use join predicates that are simply connecting
assocs’s study_id foreign key with studies’s primary key, it’s important to recognize
that join predicates can be quite advanced if necessary. It’s easy to build more com‐
plex join predicates that join on multiple columns using AND and ON to link state‐
ments.

Writing to Databases
Most bioinformatics databases are primarily read-only: we read data more often than
we add new data or modify existing data. This is because data we load into a database
is usually generated by a pipeline (e.g., gene annotation software) that takes input
data and creates results we load in bulk to a database. Consequently, bioinformati‐
cians need to be primarily familiar with bulk loading data into a database rather than
making incremental updates and modifications. In this section, we’ll learn the basic
SQL syntax to create tables and insert records into tables. Then in the next section,
we’ll see how to load data into SQLite using Python’s sqlite3 module.

Because we mainly load data in bulk into bioinformatics databases once, we won’t
cover tools common SQL modification and deletion operations like DROP, DELETE,
UPDATE, and ALTER used to delete and modify tables and rows.

Creating tables
The SQL syntax to create a table is very simple. Using the .schema dot command, let’s
look at the statement that was used to create the table study in gwascat2table.db (exe‐
cute this after connecting to the gwascat2table.db database with sqlite3 gwas‐
cat2table.db):

sqlite> .schema study
CREATE TABLE study(
  id integer primary key,
  dbdate text,
  pubmedid integer,
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  author text,
  date text,
  journal text,
  link text,
  study text,
  trait text,
  initial_samplesize text,
  replication_samplesize text
);

This shows the basic syntax of the CREATE TABLE command. The basic format is:
CREATE TABLE tablename(
  id integer primary key,
  column1 column1_type,
  column2 column2_type,
  ...
);

Each column can have one of the basic SQLite data types (text, integer, numeric, real,
or blob) or none (for no type affinity). In the preceding example (and all table defini‐
tions used throughout this chapter), you’ll notice that the first column always has the 
definition id integer primary key. Primary keys are unique integers that are used
to identify a record in a table. In general, every table you create should have primary
key column, so you can unambiguously and exactly refer to any particular record. The
guaranteed uniqueness means that no two rows can have the same primary key—
you’ll get an error from SQLite if you try to insert a row with a duplicate primary key.
Primary keys are one type of table constraint; others like UNIQUE, NOT NULL, CHECK and
FOREIGN KEY are also useful in some situations but are outside of the scope of this
chapter. If you’re creating multiple tables to build a complex relational database, I’d
recommend getting the basic idea in this section, and then consulting a book dedica‐
ted to SQL. Thoughtfulness and planning definitely pay off when it comes to organiz‐
ing a database.

Let’s create a toy SQLite database, and create a new table we’ll use in a later example:
$ sqlite3 practice.db

sqlite> CREATE TABLE variants(
   ...>   id integer primary key,
   ...>   chrom text,
   ...>   start integer,
   ...>   end integer,
   ...>   strand text,
   ...>   name text);

Then, using the dot command .tables shows this table now exists (and you can
check its schema with .schema variants if you like):

sqlite> .tables
variants
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Inserting records into tables
Like creating new tables, inserting records into tables is simple. The basic syntax is:

INSERT INTO tablename(column1, column2)
VALUES (value1, value2);

It’s also possible to omit the column names (column1, column2), but I wouldn’t rec‐
ommend this—specifying the column names is more explicit and improves readabil‐
ity.

In the previous section, we learned how all tables should absolutely have a primary
key. Primary keys aren’t something we need to create manually ourselves—we can
insert the value NULL and SQLite will automatically increment the last primary key (as
long as it’s an integer primary key) and use that for the row we’re inserting. With this
in mind, let’s insert a record into the variants table we created in the previous sec‐
tion:

sqlite> INSERT INTO variants(id, chrom, start, end, strand, name)
   ...> VALUES(NULL, "16", 48224287, 48224287, "+", "rs17822931");

Then, let’s select all columns and rows from this table (which comprises only the
record we just created) to ensure this worked as we expect:

sqlite> SELECT * FROM variants;
id          chrom       start       end         strand      name
----------  ----------  ----------  ----------  ----------  ----------
1           16          48224287    48224287    +           rs17822931

Indexing
While querying records in our example databases takes less than a second, complex
queries (especially those involving joins) on large databases can be quite slow. Under
the hood, SQLite needs to search every record to see if it matches the query. For large
queries, these full table scans are time consuming, as potentially gigabytes of data
need to be read from your disk. Fortunately, there’s a computational trick SQLite can
use: it can index a column of a table.

A database index works much like the index in a book. Database indexes contain an
sorted listing of all entries found in a particular row, alongside which row these
entries can be found. Because the indexed column’s entries are sorted, it’s much faster
to search for particular entries (compare searching for a word in an entire book, ver‐
sus looking it up in an alphabetized index). Then, once the entry is found in the data‐
base index, it’s easy to find matching records in the table (similar to turning directly
to a page where a word occurs in a book index). Indexes do come at a cost: just as
book indexes add additional pages to a text, table indexes take up additional disk
space. Indexes for very large tables can be quite large (something to be aware of when
indexing bioinformatics data).
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Creating an index for a particular table’s column is quite simple. Here, we create an
index on the strongest_risk_snp column of the table assocs in the gwascat2table.db
database:

sqlite> CREATE INDEX snp_idx ON assocs(strongest_risk_snp);

We can use the SQLite dot command .indices to look at all table indexes:
sqlite> .indices
snp_idx

This index will automatically be updated as new records are added to the table.
Behind the scenes, SQLite will utilize this indexed column to more efficiently query
records. The databases used in this chapter’s examples are quite small, and queries on
indexed tables are unlikely to be noticeably faster.

Note that SQLite automatically indexes the primary key for each table—you won’t
have to index this yourself. In addition, SQLite will not index foreign keys for you,
and you should generally index foreign keys to improve the performance joins. For
example, we would index the foreign key column study_id in assocs with:

sqlite> CREATE INDEX study_id_idx ON assocs(study_id);
sqlite> .indices
snp_idx
study_id_idx

If, for some reason, you need to delete an index, you can use DROP INDEX:
sqlite> DROP INDEX snp_idx;
sqlite> .indices
study_id_idx

Dropping Tables and Deleting Databases
Occasionally, you’ll create a table incorrectly and need to delete it. We can delete a
table old_table using:

sqlite> DROP TABLE old_table;

It’s also possible to modify existing tables with ALTER TABLE, but this is outside of the
scope of this chapter.

Unlike SQLite and PostgreSQL, which support multiple databases, each database in
SQLite is a single file. The best way to delete a database is just to delete the entire
SQLite database file.
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Interacting with SQLite from Python
The SQLite command-line tool sqlite3 we’ve used in examples so far is just one way
to interact with SQLite databases. The sqlite3 tool is primarily useful for extracting
data from SQLite databases from a script, or quick exploration and interaction with a
SQLite database. For more involved tasks such as loading numerous records into a
database or executing complex queries as part of data analysis, it’s often preferable to
interact with a SQLite database through an API. APIs allow you to interact with a
database through an interface in your language of choice (as long as there’s an API for
that language). In this section, we’ll take a quick look at Python’s excellent API.

Connecting to SQLite databases and creating tables from Python
Python’s standard library includes the module sqlite3 for working with SQLite data‐
bases. As with all of Python’s standard library modules, the documentation is thor‐
ough and clear, and should be your primary reference (using an API is largely about
mastering its documentation!).

Let’s take a quick look at the basics of using this Python module. Because Python is
well suited to processing data in chunks, it’s a good language to reach for when bulk-
loading data into a SQLite database. In contrast, while it’s certainly possible to use R
to bulk-load into a SQLite database, it’s a bit trickier if the data is too large to load
into the database all at once. The following script is a simple example of how we initi‐
alize a connection to a SQLite database and execute a SQL statement to create a sim‐
ple table:

import sqlite3

# the filename of this SQLite database
db_filename = "variants.db"

# initialize database connection
conn = sqlite3.connect(db_filename) 

c = conn.cursor() 

table_def = """\ 
CREATE TABLE variants(
  id integer primary key,
  chrom test,
  start integer,
  end integer,
  strand text,
  rsid text);
"""

c.execute(table_def) 
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conn.commit() 
conn.close() 

First, we use the connect() function to establish a connection with the database
(provided by the file in db_filename; in this case, we’re using variants.db). con
nect() returns an object with class Connection, which here we assign to conn.
Connection objects have numerous methods for interacting with a database con‐
nection (the exhaustive list is presented in the Python documentation).

When interacting with a SQLite database through Python’s API, we use a Cursor
object. Cursors allow us to retrieve results from queries we’ve made. In this
script, we’re just executing a single SQL statement to create a table (and thus
there are no results to fetch), but we’ll see more on how cursors are used later on.

This block of text is the SQL statement to create a table. For readability, I’ve for‐
matted it across multiple lines.

To execute SQL statements, we use the execute() method of the Cursor object c.
In cases where there are results returned from the database after executing a SQL
statement (as with a SELECT statement that has matching records), we’ll use this
cursor object to retrieve them—(we’ll see an example of this later).

We need to commit our statement, using the Connection.commit() method.
This writes the changes to the SQL database.

Finally, we close our connection to the database using Connection.close().

We’ll save this script to create_table.py. Before proceeding, let’s check that this
worked. First, we run this script:

$ python create_table.py

This creates the variants.db SQLite database in the current directory. Let’s check that
this has the correct schema:

$ sqlite3 variants.db
SQLite version 3.7.13 2012-07-17 17:46:21
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .tables
variants
sqlite> .schema variants
CREATE TABLE variants(
  id integer primary key,
  chrom test,
  start integer,
  end integer,
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  strand text,
  rsid text);

Loading data into a table from Python
Next, we need to write code to load some data into the variants table. Included in
this chapter’s directory in the GitHub repository is a tab-delimited example data file,
variants.txt:

$ cat variants.txt
chr10   114808901       114808902       +       rs12255372
chr9    22125502        22125503        +       rs1333049
chr3    46414946        46414978        +       rs333
chr2    136608645       136608646       -       rs4988235

There are a couple important considerations when bulk-loading data into a SQLite
table. First, it’s important to make sure data loaded into the database is clean, has the
correct data type, and missing values are converted to NULL (which are represented
in Python by None). Note that while SQLite is very permissive with data types, it’s
usually best to try to stick with one type per column—as mentioned earlier, this
makes downstream work that utilizes data from a table much simpler.

Let’s now write a quick script to load data from the file variants.txt into our newly
created table. Normally, you might fold this code into the same script that created the
tables, but to prevent redundancy and simplify discussion, I’ll keep them separate. A
simple script that reads a tab-delimited file, coerces each column’s data to the appro‐
priate type, and inserts these into the variants table would look as follows:

import sys
import sqlite3
from collections import OrderedDict

# the filename of this SQLite database
db_filename = "variants.db"

# initialize database connection
conn = sqlite3.connect(db_filename)
c = conn.cursor()

## Load Data
# columns (other than id, which is automatically incremented
tbl_cols = OrderedDict([("chrom", str), ("start", int), 
                        ("end", int), ("strand", str),
                        ("rsid", str)])

with open(sys.argv[1]) as input_file:
    for line in input_file:
        # split a tab-delimited line
        values = line.strip().split("\t")

        # pair each value with its column name
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        cols_values = zip(tbl_cols.keys(), values) 

        # use the column name to lookup an appropriate function to coerce each
        # value to the appropriate type
        coerced_values = [tbl_cols[col](value) for col, value in cols_values] 

        # create an empty list of placeholders
        placeholders = ["?"] * len(tbl_cols) 

        # create the query by joining column names and placeholders quotation
        # marks into comma-separated strings
        colnames = ", ".join(tbl_cols.keys())
        placeholders = ", ".join(placeholders)
        query = "INSERT INTO variants(%s) VALUES (%s);"%(colnames, placeholders)

        # execute query
        c.execute(query, coerced_values) 

conn.commit() # commit these inserts
conn.close()

First, we use an OrderedDict from the collections module to store each col‐
umn in the table (and our variants.txt file) with its appropriate type. Functions
str() and int() coerce their input to strings and integers, respectively. We use
these functions to coerce data from the input data into its appropriate table type.
Additionally, if the data cannot be coerced to the appropriate type, these func‐
tions will raise a loud error and stop the program.

Using the zip() function, we take a list of column names and a list of values
from a single line of the tab-delimited input file, and combine them into a list of
tuples. Pairing this data allows for easier processing in the next step.

Here, we use a Python list comprehension to extract the appropriate coercion
function from tbl_cols for each column. We then call this function on the
value: this is what tbl_cols[col](value) does. While storing functions in lists,
dictionaries, or OrderedDicts may seem foreign at first, this strategy can drasti‐
cally simplify code. The end result of this list comprehension is a list of values
(still in the order as they appear in the input data), coerced to the appropriate
type. To reduce the complexity of this example, I’ve not handled missing values
(because our test data does not contain them). See the code-examples/
README.md file in this chapter’s GitHub repository for more information on
this.

While we could directly insert our values into a SQL query statement, this is a
bad practice and should be avoided. At the very least, inserting values directly
into a SQL query statement string can lead to a host of problems with quotations
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in the data being interpreted as valid SQL quotations. The solution is to use
parameter substitution, or parameterization. Python’s sqlite3 module supports
two methods to parameterize a SQL statement. In this case, we replace the values
in an INSERT statement with ?, and then pass our values directly as a list to the
Cursor.execute() method. Note too that we ignore the primary key column id,
as SQLite will automatically increment this for us.

Finally, we use the Cursor.execute() method to execute our SQL INSERT state‐
ment.

Let’s run this script, and verify our data was loaded:
$ python load_variants.py variants.txt

Then, in SQLite:

sqlite> .header on
sqlite> .mode column
sqlite> select * from variants;
id          chrom       start       end         strand      rsid
----------  ----------  ----------  ----------  ----------  ----------
1           chr10       114808901   114808902   +           rs12255372
2           chr9        22125502    22125503    +           rs1333049
3           chr3        46414946    46414978    +           rs333
4           chr2        136608645   136608646   -           rs4988235

In this example, we’ve manually parsed and loaded multiple lines of a tab-delimited
file into a table using Cursor.execute() and Connection.commit(). However, note
that we’re only committing all of these INSERT statements at the end of the for loop.
While this wouldn’t be a problem with small datasets that fit entirely in memory, for
larger datasets (that may not fit entirely in memory) we need to pay attention to these
technical details.

One solution is to commit after each INSERT statement, which we could do explicitly
by pushing conn.commit() inside the loop. sqlite3 also supports autocommit mode
(which can be enabled in sqlite.connect()), which automatically commits SQL
statements. Unfortunately, using either conn.commit() or autocommit mode leads to
each record being committed one at a time, which can be inefficient. To get around
this limitation, Python’s sqlite3 Cursor objects have an executemany() method that
can take any Python sequence or iterator of values to fill placeholders in a query. Cur
sor.executemany() is the preferable way to bulk-load large quantities of data into a
SQLite database. Loading data with this approach is a bit more advanced (because it
relies on using generator functions), but I’ve included an example script in this chap‐
ter’s directory in the GitHub repository. Note that it’s also possible to interface
Python’s csv module’s reader objects with executemany().
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R’s RSQLite Package
Like Python, R has a library to interface with SQLite databases: RSQLite. Like
sqlite3, RSQLite is very easy to use. The primary difference is that RSQLite connects
well with R’s dataframes. As a simple demonstration of the interface, let’s connect with
the variants.db database and execute a query:

> library(RSQLite)
> sqlite <- dbDriver("SQLite")
> variants_db <- dbConnect(sqlite, "variants.db")

> dbListTables(variants_db)
[1] "variants"
> dbListFields(variants_db, "variants")
[1] "id"     "chrom"  "start"  "end"    "strand" "rsid"

> d <- dbGetQuery(variants_db, "SELECT * FROM variants;")
> head(d)
  id chrom     start       end strand       rsid
1  1 chr10 114808901 114808902      + rs12255372
2  2  chr9  22125502  22125503      +  rs1333049
3  3  chr3  46414946  46414978      +      rs333
4  4  chr2 136608645 136608646      -  rs4988235
> class(d)
[1] "data.frame"

dbSendQuery() grabs all results from a SQL statement at once—much like using
fetchall() in sqlite3. RSQLite also has methods that support incrementally access‐
ing records resulting from a SQL statement, through dbSendQuery() and fetch().
Overall, the RSQLite’s functions are similar to those in Python’s sqlite3; for further
information, consult the manual.

Finally, let’s look at how to work with Python’s Cursor objects to retrieve data. We’ll
step through this interactively in the Python shell. First, let’s connect to the database
and initialize a Cursor:

>>> import sqlite3
>>> conn = sqlite3.connect("variants.db")
>>> c = conn.cursor()

Next, let’s use Cursor.execute() to execute a SQL statement:
>>> statement = """\
... SELECT chrom, start, end FROM variants WHERE rsid IN ('rs12255372', 'rs333')
... """

>>> c.execute(statement)
<sqlite3.Cursor object at 0x10e249f80>
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Finally, we can fetch data from this query using the Cursor.fetchone(),
Cursor.fetchmany() (which takes an integer argument of how many records to
fetch), and Cursor.fetchall() methods. The benefit of the Cursor object is that it
keeps track of which row’s you’ve fetched and which rows you haven’t, so you won’t
accidentally double process a row. Let’s look at Cursor.fetchone():

>>> c.fetchone()
(u'chr10', 114808901, 114808902)
>>> c.fetchone()
(u'chr3', 46414946, 46414978)
>>> c.fetchone() # nothing left
>>>

Dumping Databases
Finally, let’s talk about database dumps. A database dump is all SQL commands neces‐
sary to entirely reproduce a database. Database dumps are useful to back up and
duplicate databases. Dumps can also be useful in sharing databases, though in SQLite
it’s easier to simply share the database file (but this isn’t possible with other database
engines like MySQL and PostgreSQL). SQLite makes it very easy to dump a database.
We can use the sqlite3 command-line tool:

$ sqlite3 variants.db ".dump"
PRAGMA foreign_keys=OFF;
BEGIN TRANSACTION;
CREATE TABLE variants(
  id integer primary key,
  chrom test,
  start integer,
  end integer,
  strand text,
  rsid text);
INSERT INTO "variants" VALUES(1,'chr10',114808901,114808902,'+','rs12255372');
INSERT INTO "variants" VALUES(2,'chr9',22125502,22125503,'+','rs1333049');
INSERT INTO "variants" VALUES(3,'chr3',46414946,46414978,'+','rs333');
INSERT INTO "variants" VALUES(4,'chr2',136608645,136608646,'-','rs4988235');
COMMIT;

The .dump dot command also takes an optional table name argument, if you wish to
dump a single table and not the entire database. We can use database dumps to create
databases:

$ sqlite3 variants.db ".dump" > dump.sql
$ sqlite3 variants-duplicate.db < dump.sql

This series of commands dumps all tables in the variants.db database to a SQL file
dump.sql. Then, this SQL file is loaded into a new empty database variants-
duplicate.db, creating all tables and inserting all data in the original variants.db data‐
base.
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CHAPTER 14

Conclusion

When I set out to write Bioinformatics Data Skills, I initially struggled with how I
could present intermediate-level bioinformatics in book format in a way that wouldn’t
quickly become obsolete in the fast-moving field of bioinformatics. Even in the time
it has taken to complete my book, new shiny algorithms, statistical methods, and bio‐
informatics software have been released and adopted by the bioinformatics commu‐
nity. It’s possible (perhaps even likely) that new sequencing technology will again
revolutionize biology and bioinformaticians will need to adapt their approaches and
tools. How can a print book be a valuable learning asset in this changing environ‐
ment?

I found the solution to this problem by looking at the tools I use most in my everyday
bioinformatics work: Unix, Python, and R. Unix dates back to the early 1970s, mak‐
ing it over 40 years old. The initial release of Python was in 1991 and R was born
soon after in 1993, making both of these languages over 20 years old. These tools
have all stood the test of time and are the foundation of modern data processing and
statistical computing. Bioinformatics and Unix have a nearly inseparable history—the
necessary first step of learning bioinformatics skills is to learn Unix. While genomics
is rapidly evolving, bioinformaticians continue to reach for same standard tools to
tackle new problems and analyze new datasets. Furthermore, Unix, Python, and R are
all extensible tools. Nearly every new bioinformatics program is designed to be used
on the Unix command line. Working with the newest bioinformatics and statistical
methods often boils down to just downloading and installing to new Python and R
packages. All other tools in this book—(from GenomicRanges, to sqlite3, to sam
tools) are designed to work with our Unix, Python, and R data toolkits. Further‐
more, these tools work together, allowing us to mix and combine them to leverage
each of their comparative advantages in our daily work—creating a foundational bio‐
informatics computing environment. While we can’t be certain what future sequenc‐
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ing technology will allow us to do, we can be confident that Unix, Python, and R will
continue to be the foundation of modern bioinformatics.

However, powerful tools alone don’t create a proficient bioinformatician. Using pow‐
erful tools to adeptly solve real problems requires an advanced set of skills. With bio‐
informatics, this set of skills is only fully developed after years of working with real
data. Bioinformatics Data Skills focuses on a robust and reproducible approach
because this is the best context in which to develop your bioinformatics skills. Dis‐
trust of one’s tools and data and awareness of the numerous pitfalls that can occur
during analysis is one of the most important skills to develop. However, you’ll only
fully develop these skills when you’ve encountered and been surprised by serious
issues in your own research.

Where to Go From Here?
Bioinformatics Data Skills was designed for readers familiar with scripting and a bit of
Unix, but less so with how to apply these skills to everyday bioinformatics problems.
Throughout the book, we’ve seen many other tools and learned important skills to
solve nearly any problem in bioinformatics (alongside running tools like aligners,
assemblers, etc.). Where do you go from here?

First, I’d recommend you learn more statistics and probability. It’s impossible to
emphasize this point too much. After learning the skills in this book and honing
them on real-world data, the next step to becoming a masterful bioinformatician is
learning statistics and probability. The practical skills are primarily computational; to
turn a glut of genomics data into meaningful biological knowledge depends critically
on your ability to use statistics. Similarly, understanding probability theory and hav‐
ing the skills to apply it to biological problems grants you with an entirely new way to
approach problems. Even applying simple probabilistic approaches in your own work
can free you from unpleasant heuristic methods and often work much, much better.
Furthermore, many new innovative bioinformatics methods are built on probabilistic
models—being familiar with the underlying probabilistic mechanics is crucial to
understanding why these methods work and under which conditions they might not.

Second, I would recommend learning some basic topics in computer science—espe‐
cially algorithms and data structures. We continuously need to process large amounts
of data in bioinformatics, and it’s far too easy to take an approach that’s needlessly
computationally inefficient. All too often researchers reach for more computational
power to parallelize code that could easily run on their desktop machines if it were
written more efficiently. Fortunately, it only takes some basic understanding of algo‐
rithms and data structures to design efficient software and scripts. I’d also recom‐
mend learning about specialized bioinformatics algorithms used in aligners and
assemblers; having an in-depth knowledge of these algorithms can help you under‐
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stand the limitation of bioinformatics software and choose the right tool (and develop
your own if you like!).

For more direction into these topics, see this chapter’s README file on GitHub. I’ve
included my favorite books on these subjects there—and will continue to add others
as I discover them. Finally, the last piece of advice I can give you in your path toward
becoming a skilled bioinformatician is to use the source. In other words, read code,
and read lots of code—(especially from programmers who are more skilled than
you). Developing programming skills is 90% about experience—writing, debugging,
and wrestling with code for years and years. But reading and learning from others’
code is like a secret shortcut in this process. While it can be daunting at first to stare
at hundreds of thousands of lines of someone else’s complex code, you simultaneously
strengthen your ability to quickly understand code while learning the tricks a pro‐
grammer more clever than you uses. Over time, the exercise of reading others’ code
will reward you with better programming skills.
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Glossary

alignment
(1) The process of ordering a sequence
such as DNA, protein, or RNA to another
sequence that can be used to infer evolu‐
tionary relationships (e.g., homology) or
sequence origin (e.g., a sequencing read
aligned to a particular region of a chro‐
mosome). (2) A single aligned pair of
sequences.

allele
An alternative form of a gene at a particu‐
lar locus. For example, SNP rs17822931
has two possible alleles (C and T) that
determine earwax type. Individuals that
have a C allele (e.g., their genotype is
either CC or CT) have wet earwax, while
individuals with two T alleles (e.g., their
genotype is TT) have dry earwax.

AND
AND is a logical operator commonly used
in programming languages. x AND y has
the value true if and only if x and y are
both true. In Python, the logical AND
operator is and; in R, it is either && (for
AND on an entire vector) or & (for
element-wise AND).

anonymous function
A temporary function (used only once)
without a name. Anonymous functions
are commonly used in R sapply() or
lapply() statements. Python also sup‐

ports anonymous functions through its
lambda expressions (e.g., lambda x: 2*x).

application programming interface (API)
An API or application programming
interface is a defined interface to some
software component, such as a database or
file format (e.g., SAM/BAM files). APIs
are often modules or libraries that you can
load in and utilize in your software
projects, allowing you to use a pre-
existing set of routines that work with
low-level details rather than writing your
own.

ASCII (pronounced ask-ee)
A character encoding format that encodes
for 128 different characters. The acronym
stands for American Standard Code for
Information Interchange. ASCII charac‐
ters take up 7 bits and are usually stored
in a single byte in memory (one byte is 8
bits). In addition to the common letters
and punctuation characters used in
English, the ASCII scheme also supports
33 nonprinting characters. See man ascii
for reference.

bacterial artificial chromosomes (BACs)
A type of DNA construct used to clone
DNA (up to 350,000 base pairs).

base calling
The process of inferring a nucleotide base
from its raw signal (e.g., light intensity
data) from a sequencer.
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batch effects
Undesirable technical effects that can con‐
found a sequencing experiment. For
example, if two different sequencing libra‐
ries are prepared using different reagents,
observed expression differences between
the two libraries could be due to batch
effects (and is completely confounded by
the reagent used). See Leek et al. (2010)
for a good review on batch effects.

Binary Call Format (BCF)
The binary version of Variant Call Format
(VCF); see Variant Call Format for more
information.

BEDTools
A software suite of command-line tools
for manipulating genomic range data in
the BED, GFF, VCF, and BAM formats.

Blocked GNU Zip Format (BGZF)
A variant of GNU zip (or gzip) compres‐
sion that compresses a file in blocks rather
than in its entirety. Block compression is
often used with tools like Tabix that can
seek to a specific block and uncompress it,
rather than requiring the entire file be
uncompressed. This allows for fast ran‐
dom access of large compressed files.

binary
(1) The base-2 numeric system that
underlies computing, where values take
only 0 (true) or 1 (false). (2) A file is said
to be in binary if it’s not human-readable
plain text.

BioMart
A software project that develops tools and
databases to organize diverse types of bio‐
logical data, and simplifies querying infor‐
mation out of these databases. Large
genomic databases like Ensembl use Bio‐
Mart tools for data querying and retrieval.

bit
Short for binary digit, a bit is the smallest
value represented on computer hardware;
a 0 or 1 value.

bit field or bitwise flag
A technique used to store multiple true/
false values using bits. Bit fields or bitwise
flags are used in SAM and BAM files to
store information about alignments such
as “is paired” or “is unmapped.”

binary large object (BLOB)
A data type used in database systems for
storing binary data.

brace expansion
A type of shell expansion in Unix that
expands out comma-separated values in
braces to all combinations. For example,
in the shell {dog,cat,rat}-food expands
to dog-food cat-food rat-food. Unlike
wildcard expansion, there’s no guarantee
that expanded results have corresponding
files.

branch
In Git, a branch is a path of development
in a Git repository; alternative paths can
be created by creating new branches. By
default, Git commits are made to the mas‐
ter branch. Alternative branches are often
used to separate new features or bug fixes
from the main working version of your
code on the master branch.

breakpoint
A point in code where execution is tem‐
porarily paused so the developer can
debug code at that point. A breakpoint
can be inserted in R code by calling the
function browser() and in Python code
using pdb.set_trace() (after importing
the Python Debugger with import pdb).

byte
A common unit in computing equal to
eight bits.

call
A function evaluated with supplied argu‐
ments. For example, in Python sum is a
function we can call on a list like sum([1,
2, 3, 4]) to sum the list values.

batch effects
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call stack
A data structure used in programming
languages to store data used in open func‐
tion calls. The call stack can be inspected
when debugging code in Python using
where in the Python debugger and in R
using the traceback() function.

calling out or shelling out
Executing another program from the
Unix shell from within a programming
language. For example, in R: system
(echo "this is a shellout"). Python’s
subprocess module is used for calling
processes from Python.

capturing groups
A grouped regular expression used to cap‐
ture matching text. For example, captur‐
ing groups could be used to capture the
chromosome name in a string like
chr3:831991,832018 with a regular
expression like (.*):. For instance, with
Python: re.match(r'(.*):',
"chr3:831991,832018").groups() (after
the re module has been imported with
import re).

character class
A regular expression component that
matches any single character specified 
between square brackets—for example,
[ATCG] would match any single A, T, C, or
G.

checksums
A special summary of digital data used to
ensure data integrity and warns against
data corruption. Checksums (such as SHA
and MD5) are small summaries of data
that change when the data changes even
the slightest amount.

CIGAR
A format used to store alignment details
in SAM/BAM and other bioinformatics
formats. Short for the “Compact Idiosyn‐
cratic Gapped Alignment Report.”

coercion
In the context of programming languages,
coercion is the process of changing one
data type to another. For example,
numeric data like “54.21” can be stored in
a string, and needs to be coerced to a
floating-point data type before being
manipulated numerically. In R, this would
be accomplished with
as.numeric("54.21"), and in Python
with float("54.21").

command substitution
A technique used to create anonymous
named pipes.

commit
In Git, a commit is a snapshot of your
project’s current state.

constructor
A function used to create and initialize
(also known as instantiate) a new object.

contig
Short for contiguous sequence of DNA;
often used to describe an assembled DNA
sequence (often which isn’t a full chromo‐
some). Consecutive contigs can be scaffol‐
ded together into a longer sequence,
which can contain gaps of unknown
sequence and length.

coordinate system
How coordinates are represented in data. 
For example, some genomic range coordi‐
nate systems give the first base in a
sequence the position 0 while others give
it the position 1. Knowing which coordi‐
nate system is used is necessary to prevent
errors; see Chapter 9 for details.

corner case
Roughly, an unusual case that occurs
when data or parameters take extreme or
unexpected values. Usually, a corner case
refers to cases where a program may func‐
tion improperly, unexpectedly, or return
incorrect results. Also sometimes referred
to as an edge case (which is technically
different, but very similar).

corner case
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Coverage
Short for depth of coverage; in bioinfor‐
matics, this refers to the average depth of
sequencing reads across a genome. For
example, “10x coverage” means on aver‐
age, each base pair of a sequence is cov‐
ered by 10 reads.

CRAM
A compressed format for storing align‐
ments similar to BAM, which compresses
data by only storing differences from the
alignment reference (which must be
stored too to uncompress files).

CRAN or Comprehensive R Archive Network
A collection of R packages for a variety of
statistical and data analysis methods.
Packages on CRAN can be installed with
install.packages().

data integrity
Data integrity is the state of data being
free from corruption.

database dumps
An export of the table schemas and data
in a database used to back up or duplicate
a database and its tables. Database dumps
contain the necessary SQL commands to
entirely re-create the database and propa‐
gate it with its contents.

declarative language
A programming language paradigm
where the user writes code that specifies
the result user wants, but not how to per‐
form the computation to arrive at that
result. For example, SQL is a declarative
language because the relational database
management system translates a query
describing to the necessary computational
steps to produce that result.

dependencies
Dependencies are required data, code, or
other external information required by a
program to function properly. For exam‐
ple, software may have other software
programs it requires to run—these are
called dependencies.

diff
(1) A Unix tool (diff) for calculating the
difference between files. (2) A file pro‐
duced by diff or other programs (e.g.,
git diff) that represents the difference
between two file versions. Diff files are
also sometimes called patches, as they con‐
tain the necessary information to turn the
original file into the modified file (in
other words, to “patch” the other file).

Exploratory Data Analaysis or EDA
A statistical technique pioneered by John
Tukey that relies on learning about data
not through explicit statistical modeling,
but rather exploring the data using sum‐
mary statistics and especially visualiza‐
tion.

environmental variables
In the Unix shell, environmental variables
are global variables shared between all
shells and applications. These can contain
configurations like your terminal pager
($PAGER) or your terminal prompt ($PS1).
Contrast to local variables, which are only
available to the current shell.

exit status
An integer value returned by a Unix pro‐
gram to indicate whether the program
completed successfully or with an error.
Exit statuses with the value zero indicate
success, while any other value indicates an
error.

foreign key
A key used in one database table that
uniquely refers to the entries of another
table.

fork, forking
In GitHub lingo, forking refers to cloning
a GitHub user’s repository to your own
GitHub account. This allows you to
develop your own version of the reposi‐
tory, and then submit pull requests to
share your changes with the original
project.

Coverage
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FTP
An acronym for File Transfer Protocol, a
protocol used to transfer files over the
Internet by connecting an FTP client to an
FTP server.

GC content
The percentage of guanine and cytosine
(nitrogenous) bases in a DNA sequence.

genomic range
A region on a genomic sequence, speci‐
fied by chromosome or sequence name,
start position, end position, and strand.

Git
A distributed version control system.

globbing
A type of Unix shell expansion that
expands a pattern containing the Unix
wildcard character * to all existing and
matching files.

greedy
In regular expressions, a greedy pattern is
one that matches as many characters as
possible. For example, the regular expres‐
sion (.*): applied to string “1:2:3” would
not match just “1”, but “1:2” because it is
greedy.

hangup
A Unix signal (SIGHUP) that indicates a
terminal has been closed. Hangups cause
most applications to exit, which can be a
problem for long-running bioinformatics
applications. A terminal multiplexer like
tmux or the command-line tool nohup are
used to prevent hangups from terminating
programs (see Chapter 4).

hard masked
A hard masked sequence contains certain
bases (e.g., low-complexity repeat sequen‐
ces) that are masked out using Ns. In con‐
trast, soft masked sequences are masked
using lowercase bases (e.g., a, t, c, and g).

HEAD
In Git, HEAD is a pointer to the current
branch’s latest commit.

HTTP
An acronym for Hypertext Transfer Proto‐
col; HTTP is the protocol used to transfer
web content across the World Wide Web.

hunks
Sections of a diff file that represent dis‐
crete blocks of changes.

indexed, indexing
A computational technique used to speed
up lookup operations, often used to
decrease the time needed for access to
various random (e.g., nonsequential)
parts of a file. Indexing is used by many
bioinformatics tools such as aligners,
Samtools, and Tabix.

inner join
The most commonly used database join
used to join two tables on one or more
keys. The result of an inner join only con‐
tains rows with matching non-null keys in
both tables; contrast with left outer join
and right outer join.

interval tree
A data structure used to store range data
in a way that optimizes finding overlap‐
ping ranges. Interval trees are used in
some genomic range libraries like Biocon‐
ductor’s GenomicRanges and the
command-line BEDTools Suite.

IUPAC or International Union of Pure and Applied
Chemistry

An organization known for standardizing
symbols and names in chemistry; known
in bioinformatics for the IUPAC nucleo‐
tide base codes.

key
In sorting, a sort key is the field or column
used to sort data on. In databases, a key is
a unique identifier for each entry in a
table.

LaTeX
A document markup language and type‐
setting system often used for technical sci‐
entific and mathematical documents.

LaTeX
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leading zeros
A number with leading zeros is printed
with the same number of digits—for
example, 00002412 and 00000337. Encod‐
ing identifiers with leading zeros is a use‐
ful trick, as these identifiers automatically
sort lexicographically.

left outer join
A type of database join in which all rows
of the left table are included, but only
matching rows of the right table are kept.
Note that the left and right tables are the
tables left and right of the SQL join state‐
ment, (e.g., with x LEFT OUTER JOIN y, x
is the left table and y is the right table). A
right outer join is the same as a left outer
join with right and left tables switched.

literate programming
A style of programming pioneered by
Donald Knuth that intermixes natural lan‐
guage with code. Code in the literate pro‐
gram can be separated out and executed.

local variables
See environmental variables.

locus, loci (plural)
The position of a gene.

lossless compression
A data compression scheme where no
information is lost in the compression
process.

lossy compression
A data compression scheme where data is
intentionally lost in the compression
scheme to save space.

master branch
See branch.

mapping quality
A measure of how likely a read is to
actually originate from the position it
maps to.

Markdown
A lightweight document markup language
that extends plain-text formats. Mark‐

down documents can be rendered in
HTML and many other languages.

metadata
Data or information about other data or a
dataset. For example, a reference genome’s
version, creation data, etc. are all metadata
about the reference genome.

named pipes
A type of Unix pipe that’s represented as a
special type of file on the filesystem. Data
can be written to and read from a named
pipe as if it were a regular file, but does
not write to the disk, instead connecting
the reading and writing processes with a
stream.

NOT
A logical operator for negation; returns
the logical opposite of the value it’s called
on. For example, NOT true evaluates to
false and NOT false evaluates to true.

offset offset
Both FASTQ and file offset (in context of
seek).

OR
A logical operator where x OR y is true if
either x or y are true, but false if neither x
nor y are true.

overplotting
Overplotting occurs when a plot contains
a large amount of close data points that
crowd the visualization and make under‐
standing and extracting information from
the graphic difficult.

pager, terminal pager
(1) A command-line tool used to view and
scroll through a text file or text stream of
data that’s too large to display in a single
terminal screen (e.g., the Unix tools less
and more). (2) The terminal pager config‐
ured with the environmental variable
$PAGER.

patch file
See diff.

leading zeros
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plain text
A text format that does not contain special
formatting or file encoding and is human
readable.

POSIX Extended Regular Expressions or POSIX ERE
A variety of regular expression used by
Unix programs that have support for
additional features; contrast to POSIX
Basic Regular Expressions. These extended
feature regular expressions can often be
enabled in Unix programs.

POSIX Basic Regular Expressions or POSIX BRE
See POSIX Extended Regular Expressions.

primary keys
A unique key used in a database table to
identify a particular entry.

public key or private key
In SSH, an SSH public key is a key that’s
shared across systems to grant login
access to the user with the associated pri‐
vate key. Public keys are shareable, but
private keys must be protected by the user
(see Chapter 2).

relational databases
A type of database used to store relation‐
ships among data contained across differ‐
ent tables.

relational database management system
The software system that implements the
tools to work with a relational database.

repository
In Git, a repository is a directory contain‐
ing code or other files that are being man‐
aged by Git.

right outer join
See left outer join.

R markdown
A variant of the markdown format that
interweaves R code with markdown text.
The R packages rmarkdown and knitr can
be used to render R markdown files.

robust
In software, robust means protected
against common data problems and soft‐
ware bugs; the opposite of fragile soft‐
ware, which may break silently and
unexpectedly when it encounters certain
data or parameters.

S3 object orientation
R’s default object-orientation system; con‐
trast to S4 object orientation, which is used
by Bioconductor and some other R pack‐
ages.

Sanger sequencing
A method of DNA sequencing commonly
used before the advent high-throughput
next-generation DNA sequencing meth‐
ods. Usually Sanger sequencing can ach‐
ieve read lengths of 700–1000bp.

schema
The organizational specification of a data‐
base, which describes how tables are
structured, what columns they contain,
and these columns’ data types, etc.

serialization
In programming, serialization is the pro‐
cess of storing an object on disk so that it
can be loaded in later.

shebang
The character combination #! used to
indicate which program the shell should
run a script with. Shebangs should occur
on the first line of a script. For example,
#!/usr/bin/env python is a commonly
used Python shebang.

soft masked
See hard masked.

sorting keys
See key.

sorting stability
A characteristic of some sorting algo‐
rithms where tied entries are sorted such
that their original ordering is maintained.

sorting stability

Glossary | 477



spreadsheet syndrome
A habit of spreadsheets users to utilize as
few tables as possible, which can lead to
unnecessary data redundancy and ineffi‐
cient querying. In contrast, normalized
databases split data into tables, which
reduces redundancy.

SQL or Server Query Language
A declarative query language used to
interact with a relational database man‐
agement system.

SSH or Secure Shell
A protocol used to securely connect to a
machine over a network connection and
initiate an encrypted shell session through
which one can work with the remote
machine.

standard error
In Unix, the standard error stream is used
to relay error or other informational mes‐
sages to the user.

standard input
In Unix, the standard input (also known
as standard in) stream is used to stream
data into a program, often from a file or
another program’s standard output (as
with a Unix pipe).

standard output
In Unix, the standard output (also known
as standard out) stream is a standard Unix
stream used to output program results
(and sometimes messages). Standard out‐
put can be redirected to a file through the
Unix redirect operators > or >>.

unit testing
A method to test software where individ‐
ual functions, methods, or subroutines are
tested as separate units. Unit testing helps
protect against bugs and software regres‐
sion, which is when a newly introduced
bug breaks previously functional code.

Variant Call Format or VCF
A plain-text tab-delimited format used to
store variant positions and other variant
information, and the genotypes of indi‐
viduals.

version control system or VCS
A system for recording changes to files
(usually software code) during their
development over time. For example, Git
is a version control system.

spreadsheet syndrome
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Index

Symbols
" " (quotation marks, double), enclosing grep

patterns, 141
# (hash mark), denoting comments, 135

in datasets, 195
matching using grep, 137

$ (dollar sign)
in Bash variable names, 399
operator in R, 200

& (ampersand) for background processes, 50
& (logical and) operator in R, 202
&& (and) operator, 52
' ' (quotation marks, single), enclosing grep pat‐

terns, 144
- (dash) argument, 45
. (dot) commands in SQLite, 432

.indices, 458
0-based coordinate systems, 266
1-based coordinate systems, 266

IRanges and GenomicRanges packages, 271
: (colon) operator, negative indexes and, 186
; (semicolon), sequential command execution,

53
< (redirection) operator, 45
<- (assignment) operator in R, 182, 230
= (assignment) operator in R, 182
> (redirection) operator, 42

2> operator, 44
>> (redirection) operator, 42, 44
? (question mark)

?? function in R, 181
help function in R, 181
shell variable, 52

@ (at sign) in FASTQ format, 342

[] (bracket) operator in R, 201
accessing list elements, 229, 230
extracting all columns by omitting column

argument, 205
setting drop argument to FALSE, 202
[[]] (double bracket), accessing an element

within a list, 229, 230
\\ (double backslash) in R regular expressions,

249, 257
|| (or) operator, 52
~ (tilde), specifying model formula in R, 227
ʌ (caret)

in regular expressions, 47
representing parent commit, 101

A
absolute paths, 23, 255
actions (awk), 158
ad hoc bioinformatics formats, pitfalls with, 339
aes() function

including in call to ggplot(), 209
setting alpha outside of, 211

aesthetic mappings (in ggplot2), 208
in call to ggplot(), 209
mapping columns to more than one aes‐

thetic, 213
aesthetics (in ggplot2), 209
aggregate functions (SQLite), 442

common aggregate functions, 443
grouping rows with GROUP BY, 444

aggregate() function (in R), 242
algorithms and data structures, 468
alias program, 55
aligned sequencing reads
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strand and, 268
AlignedSegment object, 385

working with, 388
alignment, 471
alignment data, 355-394

command-line tools for working with files
in SAM format, 365-372

creating SAM/BAM processing tools with
Pysam, 384-394

pileups, variant calling, and Base Alignment
Quality, 378-384

SAM and BAM formats, 355
getting to know, 356-365

visualizing alignments with samtools tview
and Integrated Genomics Viewer,
372-377

alignment entries in SAM files, 359
AlignmentFile object, 385, 386

extracting SAM/BAM header information
from, 387

alleles, 471
alpha (transparency level), 211
ALTER TABLE statement, 458
ambiguous nucleotide codes, 343
ambiguous strand *, 319
analysis of variance (ANOVA), 175
analysis/ directory, 22
and operator (&&), 52
annotate (bedtools), 336
annotation data

working with, using GenomicFeatures and
rtracklayer, 308-314
creating TranscriptDb objects, 312
installing transcript annotation package

for mouse, Mus musculus, 309
rtracklayer package, 313-314

anonymous functions, 234
APIs (application programming interfaces), 384

other SAM/BAM APIs, 394
provided by bioinformatics databases, 429

apropos() function (R), 181
arguments, 179, 181

for functions in R, 234
arithmetic operators

in awk, 159
using on IRanges objects, 275
vectorization in R, 183

arrange() function (dplyr), 245
arrays

Bash, 406
in R, 238

as() function, 320
ASCII, 145, 471

base qualities, 344
assert functions, 12
assertions, explicitly stating and testing

assumptions about data, 12
assignment

in R, 182
vector names in R, 192

associative arrays, 161
attributes, 249
authentication

HTTP or FTP, with wget, 110
with Git remotes, 87
with SSH keys, 59

automating tasks, 12
awk, 136, 157-163, 163

(see also bioawk program)
associative arrays, 161
cleaning up gene names matched by grep,

145
converting between BED and GTF files, 161
functions, built-in, 162
implementations, 157
pattern-action pairs, 158
performance, grep versus, 140
processing of records, 157
setting field, output field, and record sepa‐

rators, 161
tabular plain-text data processing with, 136

axis labels (ggplot2), 209

B
background processes, 50
bacterial artificial chromosomes (BACs), 471
Baggerly, Keith, 7
BAM alignment format, 353, 355

(see also SAM/BAM files)
converting between SAM and BAM with

samtools view, 365
BAM files

BEDTools support for, 331
indexing, 368
using samtools view, 358

bar plots, 216-218
Base Alignment Quality algorithm (samtools),

378, 383
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disabling, 378
base calling, 133, 365, 471
base graphics (R), 207
basename program, 407

using with xargs to apply commands to files,
419

basename() function (R), 259
bases

base qualities, 344-346
different quality schemes, 345

inspecting and trimming low-quality bases
(example), 346-349

Bash shell, 40, 396-410
automating file processing with find and

xargs, 411-421
find's exec, 415
find's expressions, 413
finding files with find, 412
using find and xargs, 411
using xargs to apply commands to files,

418
xargs and parallelization, 419
xargs, Unix powertool, 416

conditionals in a script, if statements,
401-405

processing files using for loops and glob‐
bing, 405-410

Python versus, 396
variables and command arguments, 398-401

command-line arguments, 399
writing and running robust scripts, 396

robust Bash header, 397
running Bash scripts, 398

bc (bench calculator), 372
BCF (Binary Call Format), 380, 472

(see also Variant Call Format)
bcftools, 380

bcftools call, 381-383
BED files, 129

converting between BED and GTF files with
awk, 161

downloading for use with BEDTools, 329
extracting regions with samtools view, 368
inspecting beginning and end, 130
inspecting with wc, 134
of dbSNP (build 137) variants, 325
random pseudogenes written to, exporting

with rtracklayer, 314
working with, using bioawk, 163

BEDTools, 329-337, 472
computing coverage with genomecov, 335
computing overlaps with intersect, 330-333
getfasta subcommand, 334
other subcommands and pybedtools, 336
slop and flank, 333
subcommands, 329

BEGIN and END patterns (awk), 160
bench calculator (bc), 372
bg (background) command, 51
BGZF compression, 425
BGZF-compressed files, 353
bgzip, compressing files for Tabix, 426
bias-variance trade-off, 218
Binary Call Format (BCF), 380, 472

(see also Variant Call Format)
binary numbers, 361
binning data, 215-218

in WHERE clauses, 440
bioawk program, 146, 163-165

counting FASTA/FASTQ entries, 343
creating test data, 333
options for working with tab-delimited files,

164
processing FASTA/FASTQ files, 164
working with a BED file, 163

BiocInstaller package, 270
biocLite() function, 270
Bioconductor packages

for data, 309
for working with promoter sequences,

extracting motifs, and creating sequence
logo plots, 319

for working with SAM/BAM files and align‐
ments, 394

installing and working with, 269
IRanges and GenomicRanges, 269
qrqc, 346

Bioconductor project, 178
biocUpdatePackages() function, 270
biocValid() function, 270
bioinformatics

challenges for reproducible and robust
research, 5

growth of biological data, 1
learning data skills for, 4
rapid develoment of tools, 3
reasons for using Unix as computing envi‐

ronment, 37
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bioinformatics data (see data)
bioinformatics projects, 21-35

Markdown for project notebooks, 31
formatting basics, 31-35
rendering Markdown to HTML with

Pandoc, 35
necessity of using Git, 68-69
organizing data to automate file processing,

26
project directories and directory structures,

21
project documentation, 24
using directories to divide a project into

subprojects, 26
BioMart, 145, 472

creating TranscriptDb object for annotation
data, 312

BioPerl library, 350
Biopython library, 350
Biostrings (BSgenome) packages, 316
BioStrings package, 269
Bitbucket, 86
bitwise flags (SAM/BAM), 359, 360

SAM bitwise flags and SAM fields, 371
using samtools view to filter on, 369

Blocked GNU Zip Format (see BGZF compres‐
sion)

Boolean algebra, 188
Bourne-again shell (see Bash shell)
brace expansion, 27, 472

versus wildcard matching, 29
branches (Git), 72, 472

working with, 102-108
branches and remotes, 106
creating branches with git branch, 103
how branches help in bioinformatics

work, 102
merging branches with git merge, 105
using git checkout, 103
using git log, 105

break statement (R), 253
breakpoints, 236, 472
browser() function (R), 236
BSD utils, 142

Awk, 157
grep, 147
sed, 165
sort, 150
xargs, 419

BSgenome packages, 269, 316
BSgenome.Mmusculus.UCSC.mm10 package,

316
chromosome names, 317

C
C API (SAMtools), 394
c() function (R), 183, 185
C. elegans reference genome, simulated read of,

356
call stack, 236, 473
capturing groups (in regular expressions), 250,

473
capturing in regular expressions, 166
carriage return and linefeed (\r\n), 129
cat command, 42, 172

zcat (or gzcat) for compressed files, 120
cbind() function (R), 240
CDS, 308

(see also coding sequences)
cdsByOverlaps() function, 312
character classes (in reguar expressions), 168,

473
character encodings, 145

ASCII, 344
character ranges, 29
character vectors (R), 189, 191

coercion into factors, 200
creating a factor from, 191
strings as, 248

checksums, 114, 473
comparing for downloaded file, 121
SHA and MD5, 115

chr() function (Python), 344
chromosome names, 264

in Mus_musculus.GRCm38.75_chr1.gtf.gz,
317

chsh command, 40
CIGAR format, 473
CIGAR strings, 360, 363
class() function (R), 219
classes

for storing sequence data, Biostrings pack‐
ages, 316

in R, 192, 272
setting colClasses, 195

Cleveland, William S., 215
cloning repositories, 71
closed intervals, 267
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closest (bedtools), 337
code

releasing for reproducibility, 16
testing, 13
using as documentation, 17
using existing libraries when possible, 14
writing for humans, 11

coding sequences (CDS), 308
as argument in GenomicFeatures functions,

311
retrieving with GenomicFeatures, 311

coercion, 473
type coercion in R, 190

col.names() function (R), 199
colClasses (R), 195
collaborators, adding to GitHub repository, 87
columns

dataframes in R, 199
selecting with dplyr select(), 244
subsetting, 205

finding number in a file, using awk, 136
formatting tabular data with column com‐

mand, 139
selecting in SQLite with SELECT, 435
sorting with sort, 148
working with column data using cut, 138

combining data (split-apply-combine pattern),
240

comma-separated vaules files (see CSV files)
command substitution, 54

using to construct Bash arrays, 407
command-line arguments (Bash), 399
commandArgs() function (R), 256
commands

limits on number of arguments, 28
spaces separating arguments in Unix, 23

comments
commenting code, 11
header block in GTF file, 135
in FASTA files, 341
in FASTQ files, 342
removing a comment header block, 136

commits, 70
comparing with git diff, 100
pulling from a remote repository with git

pull, 89
pushing and pulling, 90
pushing to a remote repository with git

push, 88

seeing commit history with git log, 79
taking a snapshot of your project with git

commit, 76
verifying that two repositories have same

commits using git log, 89
comparison operators

in awk, 159
in R, 188

chaining in dataframe queries, 204
using to build logical vectors, 187

string and integer comparison operators in
Bash, 402

complex vectors (R), 190
Comprehensive R Archive Network (CRAN),

177
Bioconductor package system versus, 269

compression
BGZF, 425
compressing and working with, 118
compressing and working with compressed

data
working with gzipped files, 120

CRAM format, 366
working with gzipped compressed files, 196
writing dataframe to gzipped file, 260

concatenation
cat command, 42
compressed files, 120
string concatenation in awk, 158

conditioning, 215
conservation tracks, 292
constraints, 456
contigs, 48, 121, 263, 473
control flow statements in R, 253
Control-C, killing a process, 51
Control-z, suspending a process, 51
Coombes, Kevin, 7
coordinate systems, 263, 473

0-based and 1-based, 266
1-based, IRanges and GenomicRanges

packages, 271
in common bioinformatics formats, 267
remapping for changes in genome versions,

266
coplots, 215
count() function (SQLite), 442
countOverlaps() function, 289, 327
countQueryHits() function, 288
countSubjectHits() function, 288
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coverage, 292, 474
calculating for GRanges objects, 327
computing with bedtools genomecov, 335
defining ranges corresponding to high-

coverage peaks, 296
coverage() function, 294, 307
cp (copy) command, 114
CRAM files, 366, 474
CRAN (Comprehensive R Archive Network),

177
Bioconductor package system versus, 269

CREATE INDEX statement, 458
CREATE statement, 432
CREATE TABLE statement, 455
CrossMap tool, 266
csh (C shell), 40
CSV (comma-separated values) files, 129

Dataset_S1.txt, 195
reading with read.csv() function in R, 196

curl program, 112
cut program

cleaning up gene names matched by grep,
145

working with column data, 138
cut() function (R), 215-218

D
data, 109-122

challenges in genomics datasets, 109
compressing and working with

gzip and bzip2, 119
gzipped files, 120

compressing and working with compressed
data, 118

differences between data, examining, 116
downloading reproducibly, case study,

120-122
formatting for computer readability, 11
in project directory, documenting origin of,

24
integrity of, 114

checking with SHA and MD5 check‐
sums, 115

letting data prove it's high quality, 15
releasing for reproducibility, 16
retrieving bioinformatics data, 110

downloading data with curl, 112
downloading data with wget, 110
using rsync and secure copy (SCP), 113

treating as read-only, 14
data skills

learning to learn bioinformatics, 4
recommendations for further learning, 468

data types
Bash variables and, 399
columns of heterogeneous types of vectors

in dataframes, 199
difference between object type and class in

R, 192
getting type of any object in R, 191
homogenous data type and type coercion in

R vectors, 190
in SQLite, 433, 456
lists in R, 228
vectors in R, 228

data.frame() function (R), 200
database connections, using dplyr functions

with, 247
database dumps, 465
databases

deleting in SQLite, 458
version information, documenting, 25

dataframes (R)
DataFrame object, 303
exploring and transforming, 199-203
exporting to plain-text files, 260
subsetting, 203-207
working with, ggplot2, 208
writing to a gzipped file, 260

Dataset_S1.txt, 194
date command, 54
dates, SQLite versus other relational databases,

443
dbsnp137 object, 325
debugging R code, 236-237
decimal numbers, 362
declarative languages, 430, 474
degenerate (or ambiguous) nucleotide codes,

343
densities, plotting, 212, 213
dependencies (in programs), 474
dependencies (project), storing in Git reposi‐

tory, 83
depth of coverage (see coverage)
/dev/null, 44
difference (set operation), 280

difference between ranges representing a
chromosome, 321
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getting between transcripts range and exons'
ranges, 322

differences in a file
viewing with git diff, 77
viewing with Unix diff, 116
zdiff for compressed files, 120

dim() function (R), 199
directories

bioinformatic project, 21
using to divide a project into subprojets, 26

discretization (see binning data)
distance() function, 291
distanceToNearest() function, 291
DISTINCT keyword, 443
distributed version control system (Git), 84
divergence, 194
do.call() function (R), 241, 258
document converter (Pandoc), 35
documentation

BEDTools, 332
Bioconductor packages, 270
bioinformatics project, 24
documenting everything for reproducibility,

16
downloaded data from Ensembl, 122
Git as essential part of, 69
in R, 180
SAM format specification, 356
using code as, 17

DOS-style line separator (\r\n), 129
dot commands in SQLite, 432
double vectors, 189
downstream flanking (ranges), 277
dplyr package, 243-248

adding new columns to dataframe with
mutate() function, 245

basic functions for manipulating data‐
frames, 243

chaining operations, 246
filter() function, 244
grouping and summarizing data, 246

additional operations chained to, 247
covenience functions for summaries, 247

select() function, 244
sorting columns using arrange() function,

245
tbl_df class wrapping dataframes, 243
using pipes, 246

DROP INDEX statement, 458

DROP TABLE statement, 458
Duke Saga, 7

E
echo command, 171

creating test data for bedtools slop, 333
using in command substitution, 54
using to check ? shell variable, 52

EDA (see exploratory data analysis)
elementLengths() function, 307
encodings, file, 145
END pattern (awk), 160
end position, 264

(see also start and end position)
end position (ranges)

extending, 273
Ensembl, 121, 309

no inconsistent naming issues with, 251
Ensembl/NCBI chromosome name style, 318
environment variables, 401, 474
environments (R), 182
errors

bug-prone nature of scientific coding, 13
exit status and, 52
in bioinformatics research findings, 6
silent errors in scientific computing, 8

example() function (R), 181
exit status, 52, 474

checking for rsync, 114
commands in Bash, 401
negating for Bash scripts, 402
test command in Bash, 402

exons
retrieving with GenomicFeatures, 311
set difference between transcripts range and

exons' ranges, 322
exonsBy() function, 322
exonsByOverlaps() function, 312
experimental design, 10
exploratory data analysis (EDA), 175, 474
exporting data from R, 260
expressions, evaluation in R, 178

F
facets (ggplot2), 224
facet_grid() function, 226
facet_wrap() function, 225
factor() function (R), 191
factors (R), 191

Index | 489



and loading data into R, 197
as integer vectors, 192
coercion of column of strings into factor,

200
columns in a dataset, 219
levels, 192

FASTA/FASTQ files
FASTA format, 339

downside of, 340
FASTQ format, 341

displaying and inspecting a file with less,
132

inspecting and trimming low-quality
bases, 347

pitfalls of, 342
quality schemes, 345

indexed FASTA files, 352
ins and outs of counting entries, 342
nucleotide (and protein) sequences in, 339
parsing example, counting nucleotides, 349
processing with bioawk, 164
using bedtools getfasta with FASTA file, 334

FastQC program, 346
fg (foreground) command, 50
fields, 128

counting in awk, 136
in awk, 157
setting variables for fields in bioawk, 163

file descriptors, 44
file formats

BEDTools for, 329
bioinformatics, using bioawk with, 163
CSV (comma-separated values), 129
importing and exporting range data with

rtracklayer, 313
SAM and BAM for alignment data, 355
space-delimited, 129
tabular plain-text data, 128

file program, 146
files and directories

differences in files, viewing with git diff, 77
finding file size with ls -l command, 135
finding files with find, 412
ignoring files in Git, 81
naming, 23
naming scheme, consistent, aiding file pro‐

cessing, 28
organizing data to automate processing

tasks, 26

paths, 23
processing files in Bash using for loops and

globbing, 405-410
redirecting standard out to file, 41
test expressions in Bash, 403

filter() function (dplyr), 244
find program

exec option, 415
expressions, 413
finding files with, 412
playing safe with, 417
using, 411
using with xargs, 416

findOverlaps() function, 282, 307
select parameter, 285
type argument, 284
using with GRanges objects, 325
using with IntervalTree objects, 287

FLAG (bitwise flag), 359, 360
flank (bedtools), 333
flank() function, 277, 307, 315
flanking ranges, 277, 315

extracting with bedtools flank, 333
ranges flanked by 7 elements, upstream and

downstream, 277
flat file formats, 428
follow() function, 290
for loops (Bash), 408

xargs versus, 419
for loops (R), 232, 253
foreign key, 450, 474
fork, or forking, 474
forking repositories, 97

pull requests, 97
fread() function (R), 196
FTP, 475

downloading files via, with curl, 112
downloading files via, with wget, 110

full outer joins, 454
function calls (R), 242
functions (R), 179

applying to data, 231
list apply functions, sapply() and map‐

ply(), 237
other apply functions for other data

structures, 238
using lapply(), 231-234, 239

documentation, 180
mathematical, 179
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object class and, 192
polymorphism, 193
writing, 234-236

defining functions, 234
scoping, 235

functions (SQLite), 441
aggregate functions, 442

G
GAM (generalized additive models), 214
gaps between ranges, 279
gaps() function, 279, 319
garbage in, garbage out, 9
Gawk (GNU awk), 157
GC content, 194, 263, 475
GENCODE website, 315
Gene Feature Format (GFF) files, 313

(see also GTF files)
Gene Transfer Format files (see GTF files)
generalized attitive models (GAM), 214
generator functions, 350
generic functions (R), 193
generic ranges

basic range operations on, 275
storing with IRanges, 270

genes() function, 310
genome browsers

rtracklayer interfacing with, 314
UCSC Genome Browser, 110, 251

Genome Reference Consortium (GRC), 121
genome version, ranges linked to, 265
Genome-Wide Association Studies (GWAS),

431
genomecov (bedtools), 335
genomes

BSgenome packages, 316
reference genome versions, 265

genomic intervals (see genomic ranges; range
data)

genomic ranges, 265-269, 475
coordinate systems, 266
gaps, 319
range types of common bioinformatics for‐

mats, 267
ranges on an imaginary stretch of chromo‐

some (example), 265
reference genome versions, 265
storing with GenomicRanges, 299
strands and, 268

GenomicAlignments package, 325
GenomicFeatures package, 269, 308-313

creating TranscriptDb object for annotation
data, 312

finding overlaps, methods for, 311
TranscriptDb object, creating and working

with, 308
TranscrriptDb object, creating and working

with, 311
GenomicRanges package, 221, 264, 269

calculating coverage for GRanges objects,
327

finding and working with overlapping
ranges, 324-327

getting intergenic and intronic regions, 319
reference manual and vignettes, 270
retrieving promoter regions with flank()

and promoters(), 314
retrieving promoter sequence, 315
storing genomic ranges, 299

geometric objects (geoms) in ggplot2, 209
geom_density() function, 212
geom_point() function, 208
geom_smooth() function, 225

specifying smoothing method, 214
getOption() function (R), 180
getwd() function (R), 194
GFF files, 313

(see also GTF files)
ggplot() function, 208
ggplot2, 207-215

axis labels, plot titles, and scales, 209
bar plots, 216-218
default behaviors, 211
documentation and additional resources,

207
downloading and installing, 177
facets, using, 224-228
grammar of graphics, 208
smoothing, 213-215
themes, 210

Git, 67-108
BedTools, comparing to, 329
collaborating with, using remotes, git push,

and git pull, 83
authenticating with Git remotes, 87
connecting with git remote, 87
creating a shared central repository, 86
merge conflicts, 92-97
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more GitHub workflows, forking and
pull requests, 97

practicing pushing and pulling, 90
pulling commits from remote repository

with git pull, 89
pushing commits to remote repository

with git push, 88
creating repositories with git init and git

clone, 70
further education in, 108
installing, 70
moving and removing files with git mv and

git rm, 80
necessity of, in bioinformatics projects, 68

keeping snapshots of the project, 68
keepng software available and organized,

69
tracking important changes to code, 69

seeing commit history with git log, 79
staging files using git add and git status, 73
taking a snapshot of your project with git

commit, 76
telling Git what to ignore with .gitignore

file, 81
telling Git who you are, 70
tracking files using git status and git add, 72
undoing a stage using git reset, 83
viewing file differences with git diff, 77
working with branches, 102-108

branches and remotes, 106
creating branches with git branch, 103
merging branches with git merge, 105
using git checkout, 103

working with past commits, 97
getting files with git checkout, 97
more git diff, comparing commits and

files, 100
storing changes with git stash, 99
undoing and editing commits with git

commit --amend, 102
git fetch command, 107
GitHub

creating a shared central repository with, 86
Dataset_S1.txt, 194

global environment (R), 182
global option (R), 180
globbing, 28, 410, 475
glue language, Bash as, 396
GNU Awk (Gawk), 157

GNU coreutils, 142
sed, 165
sort, 150
xargs, 419

GNU Parallel, 421
Golden Rule of Bioinformatics, 9

stopping execution or issuing warnings
when running code, 252

GRanges object, 299
accessing all IRanges with ranges(), 301
accessors for start and end positions and

width, 301
calculating coverage for, 327
containing data returned by GenomicFea‐

tures, 311
findOverlaps() method, 325
gaps() function, 319
representing introns of transcripts, 321
seqnames() and strand() methods, 301
using set operations on, 320
using split() to create GRangesList, 306

GRangesList object, 303
accessing elements with [] and [[]] opera‐

tors, 304
applying split-apply-combine pattern to,

307
created by split(), 322
creating by using split() on GRanges, 306
grouping exons and traanscripts by tran‐

script, 323
methods applied to, working at grouped-

data level, 308
graphics systems in R, 207
GRC (Genome Reference Consortium), 121
greedy matching (in regular expressions), 168
grep, 140-145

--color=auto option, 141
-o option, extracting only matching part of

a line, 144
basic usage, pattern and file to search for it,

141
context for matches, 143
counting FASTA/FASTQ entries, 342
counting matching lines for a pattern, 144
finding non-ASCII characters in a file, 147
gene names matched, cleaning up, 145
in Bash if statement, 402
matching lines in a comment header pat‐

tern, 137
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output of, inserting into another command,
54

piping standard out to head, 131
regular expressions support

POSIX BREs, 143
POSIX EREs, 143

searching for whitespace in a file, 136
speed of, versus sed, awk, and custom

Python script, 140
unintentional matching caused by partial

matching (-v option), 142
using with pipes, 47
using with sort | uniq, 153
zgrep for compressed files, 120

grep() function (R), 248
GROUP BY statement, 444
grouping in regular expressions, 166
GTF files, 129, 138

converting between BED and GTF files with
awk, 161

creating TranscriptDb object for annotation
data, 313

importing and exporting range data with
rtracklayer, 313

inspecting using grep output pipelined to
head, 131

inspecting with head, 135
inspecting with wc, 135
random pseudogenes written to, exporting

from rtracklayer, 313
guanine-cytosine content (see GC content)
gunzip, 119
gzfile() function (R), 260
gzip, 118

working with gzipped compressed files, 120

H
half-closed, half-open intervals, 266
hangup signals, 51, 61
hard clipping, 363
hard masked, 343
HEAD (in Git), 83
head program, 129

finding number of columns in a file, 136
inspecting a GTF file, 135
looking at data from a Unix pipeline, 131

head() function (R), 199, 221
help() function (R), 180
help.search() function (R), 181

hexadecimal numbers, 362
hexdump program, 146
Hidden Markov Model, 383
Hits object, 284, 326

extracting information from overlapping
ranges, 287

overlapping ranges created from, using
ranges(), 288

returned by distanceToNearest(), 292
Homebrew, using to install Git, 70
hostname command, 58
HTML, 31, 255

conversion to PDF, 35
rendering Markdown to, using Pandoc, 35

HTTP, 475
downloading files via, with curl, 112
downloading files via, with wget, 110

I
identifiers in FASTA descriptions, 340
if statements (Bash), 401-405
if statements (R), 253
ifelse() function (R), 254
ignoring files (.gitignore), 81
IGV (see Integrated Genomics Viewer)
Illumina

GGC sequences generating errors, 377
quality scheme (base qualities), 345
TruSeq kit, 133

implicit assumptions, 12
import() function (rtracklayer), 313
in operator (R), 219
inconsistent naming in bioinformatics, 251
index (Git), 83
indexed (or indexing), 475
indexing

0-based in Python, 266
1-based in R, 267
BAM files, 368
databases, 457
dataframes in R, 201
FASTA files, 352
faster access to indexed files, 354
lists in R, 229
using Tabix, 427
vectors in R, 184

excluding elements from lists with nega‐
tive indexes, 186

index rule, 187
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out-of-range indexing, 186
using indexes to reorder elements, 186
vectorized indexes, 185
with logical vectors, 187

.indices command (SQLite), 458
-Inf and +Inf values (R), 190
infinite values in R, 190
"Influence of Recombination on Human

Genetic Diversity, The", 193
inner joins, 223, 451, 475
INSERT statement, 457
inspecting and manipulating text data
install.packages() function (R), 177, 207
integer vectors (R), 189
IntegerList object, 305
integers

comparison operators in Bash, 402
creating integer sequences in R, 183

Integrated Genomics Viewer (IGV), 372,
373-377

intergenic regions, 319
Internal Field Separator (IFS), 407
International Union of Pure and Applied

Chemistry (IUPAC), nucleotide codes, 343
intersect (bedtools), computing overlaps,

330-333
intersection, 280
interval trees, 286, 475
IntervalTree object, 287
introns

created manually and by function, compar‐
ing, 324

creating Granges objects representing, 321
getting using range set operations, 322

intronsByTranscripts() function, 321
IP addresses, using with SSH, 58
IRanges object, 271

basic range operations on, 275
arithmetic operations, 275
flanking ranges, 277
gaps(), 279
reduce(), 278
restricting ranges within a bound, 276
set operations, 280

before and after extending end position, 274
gaps, 319
getting start, end, and width positions, 273
subsetting, 274
using Rle object with, 295

IRanges package, 269
finding nearest ranges and calculating dis‐

tance, 290
finding overlapping ranges, 281

IntervalTree object, 287
using qry and sbj with findOverlaps(),

283
GenomicRanges and, 299
storing generic ranges with, 270

IRanges() constructor, 272
is.finite() and is.infinite() functions (R), 190
is.list() function (R), 230
ISO 8601 format, 443
IUPAC nucleotide codes, 343

J
jaccard (bedtools), 337
Java

FastQC program, 346
Integrated Genome Viewer (IGV), 373
Picard API, 394

jobs program, 50
join predicate, 452
join program, 155

-a option, 156
example, joining data files by a common

column, 155
joins, 448

combining datasets in R, 219
inner join, 223, 451
left outer join, 223, 453
performed in R with merge(), 224

K
Kdiff (merge tool), 97
kill command, 52
killing processes, 51
knitr package, 255
Knuth, Donald, 125
ksh (Korn shell), 40

L
Lab Information Management System (LIMS),

downloading data from, 110
lapply() function (R), 231-234

applying per-file summary function to data,
259

parallelizing, 233
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using in split-apply-combine pattern, 239
using with GRangesList, 307

lattice package (R), 207
layers, adding to plot with ggplot2, 209
leading zeros, using in filenames, 30
left outer joins, 223, 453
length() function (R), 183

GRanges object, 302
less program, 79, 131

commonly used commands, 132
debugging pipelines, 133
piping zgrep output to, 170
searching text and highlighting matches,

133
zless for compressed files, 120

levels (factors in R), 192
levels() function (R), 192, 219
lexical scoping, 235
Li, Heng, 163, 350
library() function (R), 181, 207
LiftOver tool, 266
LIMIT clause, 435
LIMS (Lab Information Management System),

downloading information from, 110
line separators, 129
list() function (R), 229
list.files() function (R), 257
lists

GRangesList object, 303
in R, 228-234

accessing elements, 229
creating or changing elements, 230
examining with str() function, 229
list apply functions, sapply() and map‐

ply(), 237
vectors versus, 228
writing and applying functions to lists

with lapply(), 231-234
literate programming, 126
load() function (R), 260
loading and combining multiple files in R,

workflows for, 257-260
Logic of Scientific Discovery, The, 6
logical operators

chaining commands in Bash, 402
in awk, 159
in R, 188

logical vectors (R), 187, 189
using to subset dataframes, 204

long format (tabular data), 198
lossy compression, 366
low-complexity sequences, 377
ls -l command, 43, 135
ls() function (R), 182

M
magrittr package, pipes, 246
make tool and makefiles, 421-423
Map() function (R), 259
mapped reads, 371
mapping qualities, 360, 365
mapply() function (R), 238, 259
MAPQ (mapping quality), 360
Markdown

formtting basics, 31-35
rendering to HTML, using Pandoc, 35
Rmarkdown package, 255
using for project notebooks, 31

master branch (Git), 72, 88
match() function (R), 220

matching GRangesList objects, 322
matching vectors in R, 219

match() function, 223
mathematical functions (R), 179

vectorization, 184
matrices (R), 238

coercing Hits objects into, 288
McIlroy, Malcolm Douglas (Doug), 125

on Unix pipelines, 127
mclapply() function (R), 233
mcols() function, 303
MD tag (SAM/BAM), 364
MD5 checksums, 115

md5sum (or md5) program, 116
mean() function (R)

applying using lapply(), 239
calling from lapply(), 233
writing version with na.rm=TRUE, 234

Meld (merge tool), 97
merge (bedtools), 337
merge conflicts (in Git), 85, 92-97

in branch merges, 106
merge sort, 151
merging data in R, 220

considering structure of datasets, 221
creating example datasets, 221
merge() function, 224
using paste() function, 222
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validating, 223
validating keys' overlap, 222

message() function (R), 252
messages (git commit), 76
metadata

accessing for GRanges object, 303
attached to GRanges objects, 300
documenting for project data, 24
importance in reproducibility, 7
in SAM/BAM files, 358

modularity (Unix), 38
more program, 79, 132
mouse (see Mus musculus)
moving files with git mv, 80
mpileup (samtools), 378
multicov (bedtools), 337
multiinter (bedtools), 337
Mus musculus (mouse)

BSgenome.Mmusculus.UCSC.mm10 pack‐
age, 316

genome version mm10 files, use with BED‐
Tools, 329

Mus_musculus.GRCm38.75.dna.chromo‐
some.8.fa.gz file, 352

Mus_musculus.GRCm38.75.dna_rm.tople‐
vel_chr1.fa file, 334

Mus_musculus.GRCm38.75_chr1.gtf.gz file,
313, 333

TxDb.Mmusculus.UCSC.mm10.ensGene
package, 309

mutate() function (dplyr), 245

N
\n (newline) character, 129
NA value (R), 190, 223
named pipes, 171
names() function (R), 185, 192

GRanges object, 302
using with lists, 231

naming scheme
FASTA descriptions and identifiers, 341
FASTQ descriptions, 342
no chromosome naming scheme, 317
transcript annotation packages, 309

NaN (not a number) values in R, 190
National Human Genome Research Institute,

431
NCBI Genome Remapping Service, 266
nchar() function (R), 248

ncol() function (R), 199
nearest ranges, family of functions to find, 291
nearest() function, 290
negative and positive infinite values in R, 190
negative indexes, 186
next statement (R), 253
NM and MD tags (SAM/BAM), 364
nohup command, 61
non-greedy matching (in regular expressions),

168
NR variable (awk), 160
nrow() function (R), 199
nucleotide codes, 343
nucleotide diversity, 194, 203
nucleotide sequences, 263
nucleotides, counting, FASTA/FASTQ parsing

example, 349-352
NULL value in R, 190

assigning to list elements, 230
numeric ranges, 29
numeric vectors (R), 189, 191

O
object-oriented systems (R), 193
objects

dcoumentation for R objects, 181
discerning difference between object type

and class in R, 192
list elements in R, 228
saving and loading in R, 260

Open Bioinformatics Foundation (OBF),
FASTQ quality schemes, 345

operators
common find expressions and operators,

413
commonly used in WHERE statements, 438

options() function (R), 180
options(error=NULL) setting (R), 237
options(error=recover) setting (R), 237
or operator (||), 52
ord() function (Python), 344
ORDER BY clause, 436, 444
order() function (R), 186
organism() function, 316
origin (Git remotes), 88
out-of-memory approaches, 425-465

relational databases and SQLite, 428-465
dropping tables and deleting databases,

458
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dumping databases, 465
exploring SQLite databases with the CLI,

431-434
installing SQLite, 431
interacting with SQLite from Python,

459
organizing relational databases and

joins, 448-455
querying out data with SELECT,

434-440
SQLite aggregate functions, 442
SQLite functions, 441
subqueries, 447
when to use relational databases in bio‐

informatics, 429
writing to databases, 455-458

Tabix and BGZF, fast access to indexed tab-
delimited files, 425-428
compressing files for Tabix with bgzip,

426
indexing files with Tabix, 427
using Tabix, 427

outer joins, 453
overlaps

computing with bedtools intersect, 330-333
finding and working with overlapping

ranges, 324-327
finding overlapping ranges, 281

overlaps used to quantify something, 286
GenomicFeatures methods for finding, 311
operation functions, GRangesList and, 307

overplotting
alleviating with smoothing, 213
alleviating with transparency, 211

oversmoothing, 218

P
pagers, 79, 131
pairwise processing, transcript and its exons,

323
pairwise set operations on ranges, 281
Pandoc, 35
panes (Tmux windows), 64
paradox of scientific coding, 13
parallelization

BEDTools operations, 330
parallelizing lapply() function in R, 233
xargs and, 419

parent directories, 23

parsers
FASTA/FASTQ, 349
writing, 252

pasillaBamSubset package, 347
passwords, authentication without, using SSH

keys, 60
paste() function (R), 222, 252
patch files, 118
patch program, 118
paths, stripping from filenames with basename,

407
pattern-action pairs (awk), 158
patterns

finding and replacing in sed, 166
in awk, 158
searching for, in R character vectors, 248

PDF files, 35, 255
Perl Compatible Regular Expressions (PCRE),

248
PHRED quality scores, 345
PID (process ID), 50
pileup format, 378-379

Pysam pileups, 394
piped versus sequential commands, 169
pipeline approach (Unix)

debugging pipelines with less, 133
historical example of use, 125
when and how to use, 127

pipelines, 395
using in Bash if condition statements, 402
using make and makefiles, 421-423

pipes, 38, 45-50
combining with redirection, 48

using tee program, 49
creating a simple program, using grep and

pipes, 47
importance to bioinformatics, 173
magrittr package, use by dplyr, 246
named, 171
piping results of samtools commands to

other programs, 359
xargs and, 420

plain-text files
decoding, 145
soring plain-text data with sort, 147

Platypus, creating TranscriptDb object for, 313
plot titles (ggplot2), 209
PNEXT, 360
polymorphic functions, 193
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Popper, Karl, 6
population genetics statistics, 194
POS (position), 360
POSIX Basic Regular Expressions (BREs)

support by grep, 143
support by sed, 166

POSIX Extended Regular Expressions (EREs)
support by grep, 143
support by sed, 166
use by grep() function in R, 248

precede() function, 290
primary keys, 450, 456, 457
print() function (R), 179
private key (SSH), 60
process ID (PID), 50
process substitution, 172
processes, 50-53

managing from Unix shell
background processes, 50
exit status, 52
killing processes, 51

project directory, 22
promoters

retrieving promoter regions with Genomi‐
cRanges, 314

retrieving promoter sequence with Genomi‐
cRanges, 315

retrieving with GenomicFeatures, 311
using bedtools flank to extract promoter

regions for genes, 333
promoters() function, 315
provider() package, 316
providerVersion() function, 316
psetdiff() function, 323
pseudodevice, redirecting unwanted output to,

44
public key (SSH), 59
pull requests (GitHub), 97
Pysam API, creating SAM/BAM processing

tools, 384-394
additional Pysam features, 394
extracting SAM/BAM header information

from AlignmentFile, 387
opening BAM files, fetching alignments

from a region, and iterating across reads,
384

working with AlignedSegment objects, 388
writing a program to record alignment sta‐

tistics, 391-394

Python, 127, 467
0-based indexing of strings and lists, 266
awk versus, 162
Bash versus, for writing pipelines, 396
converting between character and ASCII,

344
gzip module, 118
interacting with SQLite from, 459

connecting to SQLite and creating tables,
459

loading data into a table, 461
performance of a custom script versus grep,

140
pybedtools, 337
readfq implementation, 350
string processing functions, R language ver‐

sus, 248
tuple unpacking, 351
unit testing code, 13

Q
QNAME (query name), 359
qrqc package, 346

exploring base qualities before and after
trimming, 347

QTL (qualitative trait loci) studies, 312
QUAL (base quality), 360
query ranges (qry), 283

and select parameter of findOverlaps(), 285
mapping between sbj ranges and, represent‐

ing overlap, 283
using countOverlaps() and subsetByOver‐

laps() with, 289
working with many, and counting overlaps,

286
queryHits() function, 284
quotation marks in R, 181

R
R language, 127, 175-261, 467

1-based indexing for vectors and strings,
267

basics, 178
calculations, 178
calling functions, 179
getting help, 180
variables and assignment, 182
vectors, vectorization, and indexing,

183-193
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binning data with cut() and bar plots with
ggplot2, 215-218

bioinformatics packages from Bioconduc‐
tor, 269

Comprehensive R Archive Network
(CRAN), 177

debugging code, 236-237
developing workflows with R scripts,

253-261
control flow, if, for, and while, 253
exporting data, 260
loading and combining multiple files,

257
working with R scripts, 254

exploring and transforming dataframes,
199-203

exploring data by subsetting dataframes,
203-207

exploring data visually with ggplot2
scatterplots and densities, 207-213
smoothing, 213-215

exploring dataframes with dplyr, 243-248
futher directions and resources, 261
getting started with R and RStudio, 176
installing R, 178
lists

list apply functions, sapply() and map‐
ply(), 237

loading data into R, 194-198
getting data into shape, 198
inspecting file at command line before

loading, 195
large genomics data, 195
working directory, 194

merging and combining data, 219-224
more data structures, lists, 228-234
packages for data, 309
RSQLite package, 464
split-apply-combine pattern in data analysis,

239-243
stopifnot function, 12
visualizing grouped data with ggplot2 facets,

224-228
working with data, 193
working with ranges, 289
working with strings, 248-253
writing functions, 234-236

range data, 263-337

basic range operations on IRanges object,
275

calculating coverage for GRanges objects,
327

finding and working with overlapping
ranges, 324-327

finding nearest ranges and calculating dis‐
tance, 290

finding overlapping ranges, 281
intricacies of overlap operations, 286

genomic ranges and coordinate systems,
264-269

getting intergenic and intronic regions, 319
installing and working with Bioconductor

packages, 269
ranges, 263, 264
run-length encoding and views, 292-299

creating ranges from run-length enco‐
ded sequences, 296

ranges and their coverage, 294
views, 297

storing generic ranges with IRanges, 270
storing genomic ranges with Genomi‐

cRanges, 299
grouping data with GRangesList, 303

working with annotation data, using
GenomicFeatures and rtracklayer, 308

working with on command line, using BED‐
Tools, 329-337
computing overlaps with intersect,

330-333
genomecov, 335
other subcommands and pybedtools,

336
slop and flank, 333

range width, 267
accessing for GRanges object, 301
getting for IRanges object, 273

ranges() function
using with GRanges, 301
using with Hits object, 288

ranges, handling in Unix shell, 29
raw vectors (R), 190
rbind() function (R), 240, 258
read groups (SAM/BAM files), 358
read.csv() function (R), 200

coercion of column of strings into factor,
197

commonly used arguments, 196
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loading large data files more quickly, 195
returning results as data.frame, 200

read.delim() function (R), 260
coercion of column of strings into factor,

197
commonly used arguments, 196
loading large data files more quickly, 195
returning results as data.frame, 200

read.table() function (R), 196
readfq parser, 350
README files, 16

project documentation in, 25
recombination, 194
records, 128

NR variable in awk, 160
processing with awk, 157

recursive downloading (wget), 111
redirection, 38

combining with pipes, 48
using tee program, 49

redirecting standard error, 43
redirecting standard out to file, 41
using standard input redirection, 45
xargs, pipes, and redirects, 420

reduce() function, 278, 321
calling on GRangesList, 307
extracting and collapsing overlapping exons

with, 325
ranges collapsed into non-overlapping

ranges with, 278
reference genomes, 265
reference-based compression scheme, 366
regexpr() function (R), 248, 249
regular expressions

capturing groups, 250
capturing text between delimiters in sed,

168
in R, 248

help on, 249
list.files() function, 257
use by sub() function, 251

POSIX Basic Regular Expressions (BREs),
support by grep, 143

POSIX Extended Regular Expressions
(ERE), support by grep, 143

support in sed, 166
with grep, 47

relational database management system
(RDBMS), 428, 477

relational databases, 428, 477
organizing, 448
when to use in bioinformatics, 429

relative paths, 23, 255
remote branches (Git), 106
remote machines, working with, 57-65

connecting via SSH, 57
maintaining long-running jobs with nohup

and tmux, 61-65
quick authentication with SSH keys, 59

remote repositories (Git), 84
removing files with git rm, 80
RepeatMasker, 343
repositories (Git), 70, 82

creating with git clone, 71
creating with git init, 70

reproducible research
adopting reproducible practices, 9
case study, Duke Saga, 7
definition in bioinformatics, 6
downloading files reproducibly, case study,

120-122
environment variables and, 401
new challenges for, 5
recommendations for, 16-17

documenting everything, 16
making figures and statistics result from

scripts, 17
releasing your code and data, 16
using code as documentation, 17

Unix one-liners and pipelines, document‐
ing, 128

using knitr and Rmarkdown packages, 254
versions of R and R packages, 256

reshape2 package (R), 198
restrict() function, 276
return value, 179, 180

for functions in R, 234
reverse complement, 268
right outer joins, 224, 454

emulating in SQLite, 454
Rle object, 293

subsetting, using IRanges object, 295
Rle() function, 293
RleList object, 305
Rmarkdown package, 255
RNA-seq quantification tools, 325
RNA-seq studies, 263, 282

overlaps and, 286, 324
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RNAME (reference name), 360
RNEXT and PNEXT, 360
rngs_cov object, 296
robust, 477
robust research, 8

adopting robust practices, 9
challenges for, 8
checking how programs change our data,

349
consistent file naming in, 30
Golden Rule of Bioinformatics, 9
recommendations for, 10-16

developing frequently used scripts into
tools, 15

experimental design, 10
letting data prove it's high quality, 15
letting the computer do the work, 12
making assertions and being loud, 12
testing code, 13
treating data as read-only, 14
using existing libraries when possible, 14
writing code for humans, data for com‐

puters, 11
using Unix data tools, 137

round() function (R), 180
row.names() function (R), 199, 200
rows

dataframes in R, 199
selecting specific rows with deply func‐

tion filter(), 244
subsetting, 206

filtering in SQLite with SELECT WHERE,
437

grouping in SQLite with GROUP BY, 444
ordering in SQLite with ORDER BY, 436

RSQLite package, 196, 464
RStudio, 176

(see also R language)
installing, 178
sending a whole function definition at once,

235
rsync program, 113
rtracklayer package, 269, 308, 313-314

export methods for range data saved to
common formats, 313

import() function, 313
run-length encoding, 293

calculating coverage reads, 328
coverage() function and, 294

operations supported by Rle objects, 293
runLengths() function, 294
runs, 293
runValues() function, 294
\r\n (carriage return and linefeed), 129

S
S3 object-oriented system (R), 193
SAM alignment format, 353, 355

specification, 356
SAM/BAM files, 355-365

bitwise flags, 360
CIGAR strings, 363
command-line tools for working with align‐

ments in SAM, 365
creating processing tools with Pysam,

384-394
mapping qualities, 365
SAM alignment section, 359
SAM header, 356
sequence matches and mismatches and NM

and MD tags, 364
sample() function (R), 187, 328
SAMtools, 358, 365

extracting and filtering alignments with
samtools view, 368-372

pileups with samtools pileup, variant calling,
and Base Alignment Quality, 378-384

samtools calmd, 364
samtools faidx, 353
samtools flag, 361
samtools flagstat, 393
samtools mpileup, 368, 378
samtools tview, 372
samtools view, 358
sort and index, 367
subcommands implemented by Pysam, 394
support for CRAM file format, 366
using samtools view to convert between

SAM and BAM, 365
Sanger quality scheme, 345
Sanger sequencing, 477
sapply() function (R), 237, 240

using with GRangesList, 307
save() function (R), 260
save.image() function (R), 261
savehistory command (R), 177
savehistory() function (R), 261
scale, x and y axes in ggplot2, 209
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facet_wrap() and facet_grid() functions, 227
scatterplot of nucleotide diversity, creating with

ggplot2, 208-212
schema, 432, 477
scientific coding, paradox of, 13
scoping, 235
SCP (secure copy), 112
scp (secure copy) command, 114
scripts

frequently used, developing into tools, 15
making figures and statistics the results of,

17
making Python scripts executable, 352
working with R scripts, 254

executing scripts from command line,
256

executing scripts with source(), 255
retrieving command-line argumens

passed to scripts, 256
search() function (R), 182
secure shell (see SSH)
sed, 165-169

cleaning up gene names matched by grep,
145

editing chroms.txt file (example), 165
GNU versus BSD sed, 165
performance, grep versus, 140
piping subshell command output to, 170
substitutions, using pattern matching and

regular expressions, 166
using regular expressions to capture text

between delimiters, 168
SELECT statement, 434

filtering rows with WHERE clause, 437
limiting results with LIMIT, 435
ordering rows with ORDER BY, 436
selecting columns, 435

select() function (dplyr), 244
separators

Internal Field Separator (IFS), 407
setting in awk, 161
setting in bioawk, 164

seq command, 130
SEQ field, 360
seqencing depth, 194
seqinfo() function, 316
seqlevels() function, 318
seqlevelsStyle() function, 318
seqnames() function, 301

Seqtk (SEQuence ToolKit), 71, 346
seqtk trimfq, inspecting and trimming low-

quality bases, 347
Sequence Alignment/Mapping (see SAM align‐

ment format)
sequence data, 339-354

base qualities, 344
counting FASTA/FASTQ entries, 342
counting nucleotides, FASTA/FASTQ pars‐

ing example, 349
FASTA format, 339
FASTQ format, 341
indexed FASTA files, 352
inspecting and trimming low-quality bases

(example), 346
nucleotide codes, 343

sequence lengths, table of, creating using bio‐
awk on a FASTA file, 164

sequence name, 264
sequencing depth

relationship of GC content to, 215
relationship with SNPs, 214

sequential command execution with ;, 53
sequential versus piped commands, 169
seq_along() function (R), 254
serialization, 260, 477
sessionInfo() function (R), 256
sessions (Tmux), 62
set operations

creating gaps using range operations, 320
on ranges, 280

pairwise set operations, 281
using range set operations to get intronic

regions, 321
setdiff() function, 321
setwd() function (R), 194

scripts and, 255
SFTP (secure FTP), 112
SHA-1 checksums, 79

checking data integrity with shasum, 115
shared central repository, collaborating over, 84
shebang, 397, 477
shell expansion, tips on, 27
shell scripting, basic Bash scripting, 396-410
shell wildcards (see wildcards)
short-circuit evaluation, 405
short-circuiting operators, 52
sickle program, 346
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inspecting and trimming low-quality bases
(example), 347

SIGHUP signals, 51, 61
SIGINT signals, 131
significant digits (R), 179
SIGPIPE signals, 131
silent errors, 8

implicit assumptions leading to, 12
single nucleotide polymorphisms (SNPs), 203

relationship with depth of sequencing, 214
slice() function, 296
slop (bedtools), 333
smoothing (ggplot2), 213-215

bin widths and, 218
snapshots of your project, keeping with Git, 68
SNPs (see single nucleotide polymorphisms)
soft and hard clipping, 363
soft masked, 343
software regression, 68
Solexa quality scheme, 345
sort (samtools), 367
sort program, 147

--parallel option, 152
-s option, sorting stability and, 149
-V option, 150
cleaning up gene names matched by grep,

145
grouping ranges for bedtools genomecov,

336
handling tabular data properly, 148
merge sort algorithm, 151
sort | uniq, 153
sorting BED files for bedtools intersect, 332
using different delimiters with sort, 148
validating sorting of a file, 150

sorting
dataframe columns in R, using dplyr func‐

tion arrange(), 245
using tools other than Unix sort, 152

sorting stability, 149, 477
source() function (R), 255
space-delimited file formats, 129
split() function (R)

GRangesList objects created by, 322
using on GRanges, 306

split-apply-combine pattern (R), 239-243
applying a function using lapply(), 239
combining data, 240

using do.call(), 241

using summay() function, 240
convenience functions wrapping split(), lap‐

ply() and combine steps, 242
splitting data with split(), 239
using with GRangesList, 307

spreadsheet syndrome, 448, 478
SQL (Structured Query Language), 430
SQLite, 428, 431-465

aggregate functions, 442
grouping rows with GROUP BY, 444

database underlying TranscriptDb objects,
313

dropping tables and deleting databases, 458
dumping databases, 465
exploring databases with the command-line

interface, 431
functions, 441
installing, 431
interacting with, from Python, 459

conecting to databases and creating
tables, 459

loading data into a table, 461
organizing relational databases and joins,

448-455
inner joins, 451
left outer joins, 453

querying data with SELECT command,
434-440
filtering rows with WHERE, 437
limiting results with LIMIT, 435
ordering rows with ORDER BY, 436
selecting columns, 435

RSQLite package, 196
subqueries, 447
writing to databases, 455-458

creating tables, 455
indexing, 457
inserting records into tables, 457

sqlite3 (command-line tool), 431
working with, 434

sqrt() function (R), 179
SSH, 478

connecting to remote machines via, 57
quick authentication with SSH keys, 59
SSH config files, 58
using SSH keys for authentication in Git‐

Hub, 87
ssh command, 57

-add option, 60
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-agent option, 60
-copy-id options, 60
-keygen option, 59
-p option, 58

stable sorting, 149
staging files (Git), 73

git diff and, 78
tracked files’ changes, staging and commit‐

ting, 76
undoing with git reset, 83

standard error, 478
file descriptor, 44
redirected, monitoring with tail -f, 45
redirecting, 43, 49

standard input, 478
file descriptor, 44
redirection, using, 45

standard output, 478
curl command writing to, 112
file descriptor, 44
redirecting standard error to, 49
redirecting to a file, 41

start position and end position (ranges), 264
accessing for GRanges object, 301
getting for IRanges object, 273

statistical analysis of high-dimensional genom‐
ics data, 176

statistics and probability, 468
stop() function (R), 252
stopifnot() function (R), 252
str() function (R), 230

calling on IRanges object, 273
strand() function, 301
strands, 265

bedtools intersect and, 332
flank() handling of, 315
forward and reverse, genomic features on,

268
gaps between ranges and, 319

streams, 39, 41, 45
(see also standard error; standard input;

standard output)
editing with sed, 165-169
file descriptors on Unix, 44

strings
character vectors in R, 189, 191
column of strings, coercion into factors,

197, 200
comparison operators in Bash, 402

concatenating in awk, 158
string-matching functions to search BSge‐

nome objects, 317
working with in R, 248-253

combining sub() and strsplit(), 252
grep() function, 248
nchar() function, 248
paste() function, 252
regexpr() function, 249
sub() function, 250
substr() function, 250

strsplit() function (R), 252
sub() function (R), 250, 258

combining with strsplit(), 252
subcommands (Git), 70
subject ranges (sbj), 283

and select parameter of findOverlaps(), 285
building interval trees from, 286
mapping between qry ranges and, repre‐

senting overlap, 283
using countOverlaps() and subsetByOver‐

laps() with, 289
subjectHits() function, 284
subj_it object, 287
subprojects, creating using diretories, 26
subqueries, 447
subset() function (R), 206
subsetByOverlaps() function, 289, 327
subsetting, 185

dataframes in R, 203-207
using filter() function in dplyr, 244

GRanges object, 302
IRanges object, 274
lists in R, 229
run-length encoded sequences, 295

subshells, 169, 426
combining sequential commands' standard

output into single stream, 170
substitute command (sed), 166
substr() function (R), 250

use of closed intervals, 267
sum program, 121
sum() function (R), 203
summarize() function (dplyr), 247
summary() function (R), 193, 203

using in split-apply-combine pattern, 240
suspending a process, 51
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T
t-test, 175
tab-delimited files, 128

bioawk options for working with, 164
columns and, 139
indexing with Tabix, 427
reading with read.delim() function in R, 196

Tabix, 426
compressing files for, using bgzip, 426
indexing files with, 427
using to make fast queries, 427

table() function (R), 192, 202
counting items in a bin, 216

tables (database)
creating, 455
dropping, 458

tabular data, wide and long formats, 198
tabular plain-text data formats, 128

handling tabular data with sort, 148
processing with awk, 136

tail -f, monitoring redirected standard error
with, 45

tail program, 130
cutting off comments with tail -n, 137
weakness of using tail -n to remove com‐

ment header, 137
Tandem Repeats Finder, 343
tapply() function (in R), 242
tar program, 120
tbl_df class, 243
tcsh shell, 40
tee program, 49
terminal colors setting (Git), 70
terminal multiplexer (see Tmux)
terminal pagers, 131
test command (Bash), 402

combining with if statements, 404
file and directory test expressions, 403

testing code, 13
importance of, strategy for determining, 13

text streams, 39
text-processing tasks, R language and, 248
titles, plot titles in ggplot2, 209
TLEN (template length), 360
Tmux (terminal multiplexer), 61-65

common key sequences, 64
common subcommands, 65
creating, detaching, and attaching sessions,

62

installing and configuring, 62
working with Tmux windows, 64

tools
developing frequently used scripts into, 15
for bioinformatics, 467
rapid development for bioinformatics, 3

TopHat and Cufflinks suite of tools, 325
Torvalds, Linus, 67
touch command, creating README files, 25
transcript annotation packages, 309

(see also annotation data)
TranscriptDb object, 308, 310

coercing chromosome information into
GRanges object, 320

creating, 312
extracting and collapsing overlapping exons

with reduce(), 325
extracting exons from, 322

transcription termination site (TTS), 277
transcripts, 269, 322

(see also TranscriptDb object)
retrieving with GenomicFeatures, 311

transcriptsByOverlaps() function, 312
transition start site (TSS), 277
transparency level (alpha), 211
trimmer program, 119
Tukey, J. W., 175
tuple unpacking, 351
tview (samtools), 372
TxDb.Mmusculus.UCSC.mm10.ensGene pack‐

age, 309
type affinities, 433
type coercion in R, 190

coercing TranscriptDb object's chromosome
information into GRanges, 320

column of strings, coercion into factors, 197
sum() function, coercing logical values to

integers, 203
typeof() function (R), 191

U
UCSC chromosome name style, 318
UCSC Ensembl track, 309
UCSC Genome Browser, 110, 440

creating TranscriptDb object for annotation
data, 312

no inconsistent naming issues with, 251
rtracklayer interfacing with, 314

undersmoothing, 218
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unified diff format, 78, 117
union, 280
unionbedg (bedtools), 337
uniq program, 152

-d (duplicates) option, 154
-i option for case insensitivity, 153
cleaning up gene names matched by grep,

145
sort | uniq, 153
sort | uniq and sort | uniq -c, 153

unit testing, 13, 478
Unix, 467

common filename wildcards, 29
Unix data tools, 125-174, 169, 330

(see also BEDTools)
(see also Unix shell)
implementations, BSD utils and GNU cor‐

eutils, 142
inspecting and manipulating text data, 128

bioawk, 163-165
column data, using cut and column, 138
decoding plain-text data, 145
finding uniqe values with uniq, 152
grep, 140-145
information on plain-text files with wc,

ls, and awk, 134
inspecting data with head and tail, 129
join, 155
sorting plain-text data with sort, 147
text processing with awk, 157-163
using less, 131

using one-liners and pipelines, historical
example, 125

using pipeline approach, 127
Unix philosophy, 173
Unix shell, 37-56

advanced shell tricks, 169-173
named pipes and process substitution,

171
subshells, 169

command substitution, 54
managing and interacting with processes,

50-53
many versions, 40
modularity and the Unix philosophy, 37
pipes, 45-50
power of, 40
working with streams and redirection,

41-45

unlist() function (R), 240
UNMAP flag, 369
unsplit() function (R), 241, 306
unstable sorting, 149
upstream flanking (ranges), 277
user accounts, getting with whoami command,

59
UTF-8 encoding, 146

V
values, special, in R, 190
variables

Bash, 398
in awk, 157, 160
in R, 182

Variant Call Format (VCF), 380-383, 478
variant calling, 378, 379-383
vectorization (R), 183

vectorized logical operations, 188
vectors (R), 183

accessing elements by name, 185
creating a dataframe from, 200
dataframe column returned as a vector, 202
dataframe columns as vectors, 205
factors and classes, 191
functions returning index of first minimum

or maximum element, 206
homogeneous data type and type coercion,

190
indexing of, 184
lists versus, 228
matching, 219
vector types, 189

version control systems (VCS), 67
(see also Git)

versions
documenting data version informtion, 25
documenting for software used, 25

views, 292, 296, 297
vignettes for Bioconductor packages, 270
visualization, 176

W
warning() function (R), 252
wc (word count) program, 134

assumption of well-formatted data, 136
wget program, 110

--user and --ask-password options, 110
recursive downloading, 111
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useful options, 111
wgsim read simulator, 356
WHERE clause, 437

aggregate functions with, 443
common operators used in, 438

which() function (R), 206
which.max() function (R), 206
which.min() function (R), 206
while loops (R), 253
whitespace, finding in a file with grep, 136
whoami command, 59
Wickham, Hadley, 207, 235, 243
wide format (tabular data), 198
wildcards

expanding to match file names, 28
matching, brace expansion versus, 29
using in Bash for file globbing, 410

Wilk, M. B., 175
word count program (see wc program)
word splitting in Bash, 407
workflows (GitHub)

forking repositories, 97
shared central repository, 84

working directory in R, 194, 255
write.table() function (R), 260

X
xargs program, 416

and parallelization, 419
BSD and GNU xargs, 419
playing safe with, 417
using, 411
using with replacement strings to apply

commands to files, 418
xargs, pipes, and redirects, 420

Z
zdiff program, 120
zeros, leading, in filenames, 30
zgrep, 120, 170

extracting FASTA headers from gzipped file,
121

zless program, 120
zsh (Z shell), 40
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