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Preface

This book is the answer to a question I asked myself two years ago: “What book
would I want to read first when getting started in bioinformatics?” When I began
working in this field, I had programming experience in Python and R but little else. I
had hunted around for a terrific introductory text on bioinformatics, and while I
found some good books, most were not targeted to the daily work I did as a bioinfor-
matician. A few of the texts I found approached bioinformatics from a theoretical and
algorithmic perspective, covering topics like Smith-Waterman alignment, phylogeny
reconstruction, motif finding, and the like. Although they were fascinating to read
(and I do recommend that you explore this material), I had no need to implement
bioinformatics algorithms from scratch in my daily bioinformatics work—numerous
terrific, highly optimized, well-tested implementations of these algorithms already
existed. Other bioinformatics texts took a more practical approach, guiding readers
unfamiliar with computing through each step of tasks like running an aligner or
downloading sequences from a database. While these were more applicable to my
work, much of those books’ material was outdated.

As you might guess, I couldn't find that best “first” bioinformatics book. Bioinformat-
ics Data Skills is my version of the book I was seeking. This book is targeted toward
readers who are unsure how to bridge the giant gap between knowing a scripting lan-
guage and practicing bioinformatics to answer scientific questions in a robust and
reproducible way. To bridge this gap, one must learn data skills—an approach that
uses a core set of tools to manipulate and explore any data you’ll encounter during a
bioinformatics project.

Data skills are the best way to learn bioinformatics because these skills utilize time-
tested, open source tools that continue to be the best way to manipulate and explore
changing data. This approach has stood the test of time: the advent of high-
throughput sequencing rapidly changed the field of bioinformatics, yet skilled bioin-
formaticians adapted to this new data using these same tools and skills. Next-
generation data was, after all, just data (different data, and more of it), and master
bioinformaticians had the essential skills to solve problems by applying their tools to
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this new data. Bioinformatics Data Skills is written to provide you with training in
these core tools and help you develop these same skills.

The Approach of This Book

Many biologists starting out in bioinformatics tend to equate “learning bioinformat-
ics” with “learning how to run bioinformatics software.” This is an unfortunate and
misinformed idea of what bioinformaticians actually do. This is analogous to think-
ing “learning molecular biology” is just “learning pipetting” Other than a few simple
examples used to generate data in Chapter 11, this book doesn’t cover running bioin-
formatics software like aligners, assemblers, or variant callers. Running bioinformat-
ics software isn’t all that difficult, doesn't take much skill, and it doesn’t embody any
of the significant challenges of bioinformatics. I don’t teach how to run these types of
bioinformatics applications in Bioinformatics Data Skills for the following reasons:

o It’s easy enough to figure out on your own

o The material would go rapidly out of date as new versions of software or entirely
new programs are used in bioinformatics

o The original manuals for this software will always be the best, most up-to-date
resource on how to run a program

Instead, the approach of this book is to focus on the skills bioinformaticians use to
explore and extract meaning from complex, large bioinformatics datasets. Exploring
and extracting information from these datasets is the fun part of bioinformatics
research. The goal of Bioinformatics Data Skills is to teach you the computational
tools and data skills you need to explore these large datasets as you please. These data
skills give you freedom; you’ll be able to look at any bioinformatics data—in any for-
mat, and files of any size—and begin exploring data to extract biological meaning.

Throughout Bioinformatics Data Skills, I emphasize working in a robust and reprodu-
cible manner. I believe these two qualities—reproducibility and robustness—are too
often overlooked in modern computational work. By robust, I mean that your work is
resilient against silent errors, confounders, software bugs, and messy or noisy data. In
contrast, a fragile approach is one that does not decrease the odds of some type of
error adversely affecting your results. By reproducible, I mean that your work can be
repeated by other researchers and they can arrive at the same results. For this to be
the case, your work must be well documented, and your methods, code, and data all
need to be available so that other researchers have the materials to reproduce every-
thing. Reproducibility also relies on your work being robust—if a workflow run on a
different machine yields a different outcome, it is neither robust nor fully reproduci-
ble. I introduce these concepts in more depth in Chapter 2, and these are themes that
reappear throughout the book.
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Why This Book Focuses on Sequencing Data

Bioinformatics is a broad discipline, and spans subfields like proteomics, metabolo-
mics, structure bioinformatics, comparative genomics, machine learning, and image
processing. Bioinformatics Data Skills focuses primarily on handling sequencing data
for a few reasons.

First, sequencing data is abundant. Currently, no other “omics” data is as abundant as
high-throughput sequencing data. Sequencing data has broad applications across
biology: variant detection and genotyping, transcriptome sequencing for gene expres-
sion studies, protein-DNA interaction assays like ChIP-seq, and bisulfite sequencing
for methylation studies just to name a few examples. The ways in which sequencing
data can be used to answer biological questions will only continue to increase.

Second, sequencing data is terrific for honing your data skills. Even if your goal is to
analyze other types of data in the future, sequencing data serves as great example data
to learn with. Developing the text-processing skills necessary to work with sequenc-
ing data will be applicable to working with many other data types.

Third, other subfields of bioinformatics are much more domain specific. The wide
availability and declining costs of sequencing have allowed scientists from all disci-
plines to use genomics data to answer questions in their systems. In contrast, bioin-
formatics subdisciplines like proteomics or high-throughput image processing are
much more specialized and less widespread. Still, if youre interested in these fields,
Bioinformatics Data Skills will teach you useful computational and data skills that will
be helpful in your research.

Audience

In my experience teaching bioinformatics to friends, colleagues, and students of an
intensive week-long course taught at UC Davis, most people wishing to learn bioin-
formatics are either biologists, or computer scientists/programmers. Biologists wish
to develop the computational skills necessary to analyze their own data, while the
programmers and computer scientists wish to apply their computational skills to bio-
logical problems. Although these two groups differ considerably in biological knowl-
edge and computational experience, Bioinformatics Data Skills covers material that
should be helpful to both.

If you're a biologist, Bioinformatics Data Skills will teach you the core data skills you
need to work with bioinformatics data. It’s important to note that Bioinformatics Data
Skills is not a how-to bioinformatics book; such a book on bioinformatics would
quickly go out of date or be too narrow in focus to help the majority of biologists. You
will need to supplement this book with knowledge of your specific research and sys-
tem, as well as the modern statistical and bioinformatics methods that your subfield
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uses. For example, if your project involves aligning sequencing reads to a reference
genome, this book won't tell you the newest and best alignment software for your
particular system. But regardless of which aligner you use, you will need to have a
thorough understanding of alignment formats and how to manipulate alignment data
—a topic covered in Chapter 11. Throughout this book, these general computational
and data skills are meant to be a solid, widely applicable foundation on which the
majority of biologists can build.

If youre a computer scientist or programmer, you are likely already familiar with
some of the computational tools I teach in this book. While the material presented in
Bioinformatics Data Skills may overlap knowledge you already have, you will still
learn about the specific formats, tools, and approaches bioinformaticians use in their
work. Also, working through the examples in this book will give you good practice in
applying your computational skills to genomics data.

The Difficulty Level of Bioinformatics Data Skills

Bioinformatics Data Skills is designed to be a thorough—and in parts, dense—book.
When I started writing this book, I decided the greatest misdeed I could do would be
to treat bioinformatics as a subject that’s easier than it truly is. Working as a professio-
nal bioinformatician, I routinely saw how very subtle issues could crop up and
adversely change the outcome of the analysis had they not been caught. I don’t want
your bioinformatics work to be incorrect because I've made a topic artificially simple.
The depth at which I cover topics in Bioinformatics Data Skills is meant to prepare
you to catch similar issues in your own work so your results are robust.

The result is that sections of this book are quite advanced and will be difficult for
some readers. Don't feel discouraged! Like most of science, this material is hard, and
may take a few reads before it fully sinks in. Throughout the book, I try to indicate
when certain sections are especially advanced so that you can skip over these and
return to them later.

Lastly, I often use technical jargon throughout the book. I don't like using jargon, but
it's necessary to communicate technical concepts in computing. Primarily it will help
you search for additional resources and help. It's much easier to Google successfully
for “left outer join” than “data merge where null records are included in one table”

Assumptions This Book Makes

Bioinformatics Data Skills is meant to be an intermediate book on bioinformatics. To
make sure everyone starts out on the same foot, the book begins with a few simple
chapters. In Chapter 2, I cover the basics of setting up a bioinformatics project, and in
Chapter 3 I teach some remedial Unix topics meant to ensure that you have a solid
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grasp of Unix (because Unix is a large component in later chapters). Still, as an inter-
mediate book, I make a few assumptions about you:

You know a scripting language

This is the biggest assumption of the book. Except for a few Python programs
and the R material (R is introduced in Chapter 8), this book doesn’t directly rely
on using lots of scripting. However, in learning a scripting language, you've
already encountered many important computing concepts such as working with
a text editor, running and executing programs on the command line, and basic
programming. If you do not know a scripting language, I would recommend
learning Python while reading this book. Books like Bioinformatics Programming
Using Python by Mitchell L. Model (O'Reilly, 2009), Learning Python, 5th Edition,
by Mark Lutz (O’Reilly, 2013), and Python in a Nutshell, 2nd, by Alex Martelli
(O'Reilly, 2006) are great to get started. If you know a scripting language other
than Python (e.g., Perl or Ruby), you'll be prepared to follow along with most
examples (though you will need to translate some examples to your scripting lan-
guage of choice).

You know how to use a text editor
It’s essential that you know your way around a text editor (e.g., Emacs, Vim, Text-
Mate2, or Sublime Text). Using a word processor (e.g., Microsoft Word) will not
work, and I would discourage using text editors such as Notepad or OS X’s Tex-
tEdit, as they lack syntax highlighting support for common programming lan-
guages.

You have basic Unix command-line skills

For example, I assume you know the difference between a terminal and a shell,
understand how to enter commands, what command-line options/flags and
arguments are, and how to use the up arrow to retrieve your last entered com-
mand. You should also have a basic understanding of the Unix file hierarchy
(including concepts like your home directory, relative versus absolute directories,
and root directories). You should also be able to move about and manipulate the
directories and files in Unix with commands like cd, 1s, pwd, mv, rm, rmdir, and
mkdir. Finally, you should have a basic grasp of Unix file ownership and permis-
sions, and changing these with chown and chmod. If these concepts are unclear, I
would recommend you play around in the Unix command line first (carefully!)
and consult a good beginner-level book such as Practical Computing for Biologists
by Steven Haddock and Casey Dunn (Sinauer, 2010) or UNIX and Perl to the Res-
cue by Keith Bradnam and Ian Korf (Cambridge University Press, 2012).

You have a basic understanding of biology
Bioinformatics Data Skills is a BYOB book—bring your own biology. The examples
don’t require a lot of background in biology beyond what DNA, RNA, proteins,
and genes are, and the central dogma of molecular biology. You should also be

Preface | xvii


http://bit.ly/bioinformatics-prog
Steven Roberts


http://bit.ly/bioinformatics-prog
http://bit.ly/LearningPython-5E
http://bit.ly/Python-IAN

familiar with some very basic genetics and genomic concepts (e.g., single nucleo-
tide polymorphisms, genotypes, GC content, etc.). All biological examples in the
book are designed to be quite simple; if youre unfamiliar with any topic, you
should be able to quickly skim a Wikipedia article and proceed with the example.

You have a basic understanding of regular expressions

Occasionally, I'll make use of regular expressions in this book. In most cases, I try
to quickly step through the basics of how a regular expression works so that you
can get the general idea. If you've encountered regular expressions while learning
a scripting language, you’re ready to go. If not, I recommend you learn the basics
—not because regular expressions are used heavily throughout the book, but
because mastering regular expressions is an important skill in bioinformatics.
Introducing Regular Expressions by Michael Fitzgerald (O’Reilly) is a great intro-
duction. Nowadays, writing, testing, and debugging regular expressions is easier
than ever thanks to online tools like http://regex101.com and http://www.debug-
gex.com. I recommend using these tools in your own work and when stepping
through my regular expression examples.

You know how to get help and read documentation

Throughout this book, I try to minimize teaching information that can be found
in manual pages, help documentation, or online. This is for three reasons:

« I want to save space and focus on presenting material in a way you can't find
elsewhere

o Manual pages and documentation will always be the best resource for this
information

« The ability to quickly find answers in documentation is one of the most
important skills you can develop when learning computing

This last point is especially important; you don’'t need to remember all arguments of a
command or R function—you just need to know where to find this information. Pro-
grammers consult documentation constantly in their work, which is why documenta-
tion tools like man (in Unix) and help() (in R) exist.

You can manage your computer system (or have a system administrator)

This book does not teach you system administration skills like setting up a bioin-
formatics server or cluster, managing user accounts, network security, managing
disks and disk space, RAID configurations, data backup, and high-performance
computing concepts. There simply isn't the space to adequately cover these
important topics. However, these are all very, very important—if you don’t have a
system administrator and need to fill that role for your lab or research group, its
essential for you to master these skills, too. Frankly, system administration skills
take years to master and good sysadmins have incredible patience and experience
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in handling issues that would make most scientists go insane. If you can employ a
full-time system administrator shared across labs or groups or utilize a university
cluster with a sysadmin, I would do this. Lastly, this shouldn’t need to be said, but
just in case: constantly back up your data and work. It’s easy when learning Unix
to execute a command that destroys files—your best protection from losing
everything is continual backups.

Supplementary Material on GitHub

The supplementary material needed for this book’s examples is available in the Git-
Hub repository. You can download material from this repository as you need it (the
repository is organized by chapter), or you can download everything using the
Download Zip link. Once you learn Git in Chapter 5, I would recommend cloning
the repository so that you can restore any example files should you accidentally over-
write them.

Try navigating to this repository now and poking around so you're familiar with the
layout. Look in the Preface’s directory and you’ll find the README.md file, which
includes additional information about many of the topics I've discussed. In addition
to the supplementary files needed for all examples in the book, this repository con-
tains:

o Documentation on how all supplementary files were produced or how they were
acquired. In some cases, I've used makefiles or scripts (both of these topics are
covered in Chapter 12) to create example data, and all of these resources are
available in each chapter’s GitHub directory. I've included these materials not
only for reproducible purposes, but also to serve as additional learning material.

« Additional information readers may find interesting for each chapter. This infor-
mation is in each chapter’s README.md file. I've also included other resources
like lists of recommended books for further learning.

o Errata, and any necessary updates if material becomes outdated for some reason.

I chose to host the supplementary files for Bioinformatics Data Skills on GitHub so
that I could keep everything up to date and address any issues readers may have. Feel
free to create a new issue on GitHub should you find any problem with the book or
its supplementary material.

Computing Resources and Setup

I've written this entire book on my laptop, a 15-inch MacBook Pro with 16 GB of
RAM. Although this is a powerful laptop, it is much smaller than the servers common
in bioinformatics computing. All examples are designed and tested to run a machine
this size. Nearly every example should run on a machine with 8 GB of memory.
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All examples in this book work on Mac OS X and Linux—other operating systems are
not supported (mostly because modern bioinformatics relies on Unix-based operat-
ing systems). All software required throughout the book is freely available and is
easily installable; I provide some basic instructions in each section as software instal-
lation is needed. In general, you should use your operating system’s package manage-
ment system (e.g., apt-get on Ubuntu/Debian). If youre using a Mac, I highly
recommend Homebrew, a terrific package manager for OS X that allows you to easily
install software from the command line. You can find detailed instructions on Home-
brew’s website, Most important, Homebrew maintains a collection of scientific soft-
ware packages called homebrew-science, including the bioinformatics software we
use throughout this book. Follow the directions in homebrew-science’s README.md
to learn how to install these scientific programs.

Organization of This Book

This book is composed of three parts: Part I, containing one chapter on ideology;
Part II, which covers the basics of getting started with a bioinformatics project; and
Part III, which covers bioinformatics data skills. Although chapters were written to be
read sequentially, if youre comfortable with Unix and R, you may find that you can
skip around without problems.

In Chapter 1, I introduce why learning bioinformatics by developing data skills is the
best approach. I also introduce the ideology of this book, and describe reproducible
and robust bioinformatics and some recommendations to apply in your own work.

Part II of Bioinformatics Data Skills introduces the basic skills needed to start a bioin-
formatics project. First, we'll look at how to set up and manage a project directory in
Chapter 2. This may seem like trivial topic, but complex bioinformatics projects
demand we think about project management. In the frenzy of research, there will be
files everywhere. Starting out with a carefully organized project can prevent a lot of
hassle in the future. We'll also learn about documentation with Markdown, a useful
format for plain-text project documentation.

In Chapter 3, we explore intermediate Unix in bioinformatics. This is to make sure
that you have a solid grasp of essential concepts (e.g., pipes, redirection, standard
input and output, etc.). Understanding these prerequisite topics will allow you to
focus on analyzing data in later chapters, not struggling to understand Unix basics.

Most bioinformatics tasks require more computing power than we have on our per-
sonal workstations, meaning we have to work with remote servers and clusters.
Chapter 4 covers some tips and tricks to increase your productivity when working
with remote machines.

In Chapter 5, we learn Git, which is a version control system that makes managing
versions of projects easy. Bioinformatics projects are filled with lots of code and data
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that should be managed using the same modern tools as collaboratively developed
software. Git is a large, powerful piece of software, so this is a long chapter. However,
this chapter was written so that you could skip the section on branching and return to
it later.

Chapter 6 looks at data in bioinformatics projects: how to download large amounts of
data, use data compression, validate data integrity, and reproducibly download data
for a project.

In Part III, our attention turns to developing the essential data skills all bioinformati-
cians need to tackle problems in their daily work. Chapter 7 focuses on Unix data
tools, which allow you to quickly write powerful stream-processing Unix pipelines to
process bioinformatics data. This approach is a cornerstone of modern bioinformat-
ics, and is an absolutely essential data skill to have.

In Chapter 8, I introduce the R language through learning exploratory data analysis
techniques. This chapter prepares you to use R to explore your own data using tech-
niques like visualization and data summaries.

Genomic range data is ubiquitous in bioinformatics, so we look at range data and
range operations in Chapter 9. We'll first step through the different ways to represent
genomic ranges, and work through range operations using Bioconductor’s IRanges
package to bolster our range-thinking intuition. Then, we’ll work with genomic data
using GenomicRanges. Finally, we'll look at the BEDTools Suite of tools for working
with range data on the command line.

In Chapter 10, we learn about sequence data, a mainstay of bioinformatics data. We'll
look at the FASTA and FASTQ formats (and their limitations) and work through
trimming low-quality bases off of sequences and seeing how this affects the distribu-
tion of quality scores. We'll also look at FASTA and FASTQ parsing.

Chapter 11 focuses on the alignment data formats SAM and BAM. Understanding
and manipulating files in these formats is an integral bioinformatics skill in working
with high-throughput sequencing data. We'll see how to use Samtools to manipulate
these files and visualize the data, and step through a detailed example that illustrates
some of the intricacies of variant calling. Finally, we'll learn how to use Pysam to
parse SAM/BAM files so you can write your own scripts that work with these special-
ized data formats.

Most daily bioinformatics work involves writing data-processing scripts and pipe-
lines. In Chapter 12, we look at how to write such data-processing pipelines in a
robust and reproducible way. We'll look specifically at Bash scripting, manipulating
files using Unix powertools like find and xargs, and finally take a quick look at how
you can write pipelines using Make and makefiles.
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In bioinformatics, our data is often too large to fit in our computer’s memory. In
Chapter 7, we saw how streaming with Unix pipes can help to solve this problem, but
Chapter 13 looks at a different method: out-of-memory approaches. First, we'll look
at Tabix, a fast way to access information in indexed tab-delimited files. Then, we'll
look at the basics of SQL through analyzing some GWAS data using SQLite.

Finally, in Chapter 14, I discuss where you should head next to further develop your
bioinformatics skills.

Code Conventions

Most bioinformatics data has one thing in common: its large. In code examples, I
often need to truncate the output to have it fit into the width of a page. To indicate
that output has been truncated, I will always use [...] in the output. Also, in code
examples I often use variable names that are short to save space. I encourage you to
use more descriptive names than those I've used throughout this book in your own
personal work.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.
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This element signifies a general note.

This element indicates a warning or caution.

\

Using Code Examples

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Bioinformatics Data Skills by Vince
Buffalo (O'Reilly). Copyright 2015 Vince Buffalo, 978-1-449-36737-47

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv-
‘ DC ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.
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Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’'Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/Bio-DS.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER1
How to Learn Bioinformatics

Right now, in labs across the world, machines are sequencing the genomes of the life
on earth. Even with rapidly decreasing costs and huge technological advancements in
genome sequencing, were only seeing a glimpse of the biological information con-
tained in every cell, tissue, organism, and ecosystem. However, the smidgen of total
biological information were gathering amounts to mountains of data biologists need
to work with. At no other point in human history has our ability to understand life’s
complexities been so dependent on our skills to work with and analyze data.

This book is about learning bioinformatics through developing data skills. In this
chapter, we'll see what data skills are, and why learning data skills is the best way to
learn bioinformatics. We'll also look at what robust and reproducible research entails.

Why Bioinformatics? Biology’s Growing Data

Bioinformaticians are concerned with deriving biological understanding from large
amounts of data with specialized skills and tools. Early in biology’s history, the data-
sets were small and manageable. Most biologists could analyze their own data after
taking a statistics course, using Microsoft Excel on a personal desktop computer.
However, this is all rapidly changing. Large sequencing datasets are widespread, and
will only become more common in the future. Analyzing this data takes different
tools, new skills, and many computers with large amounts of memory, processing
power, and disk space.

In a relatively short period of time, sequencing costs dropped drastically, allowing
researchers to utilize sequencing data to help answer important biological questions.
Early sequencing was low-throughput and costly. Whole genome sequencing efforts
were expensive (the human genome cost around $2.7 billion) and only possible
through large collaborative efforts. Since the release of the human genome, sequenc-




ing costs have decreased exponentially until about 2008, as shown in Figure 1-1. With
the introduction of next-generation sequencing technologies, the cost of sequencing a
megabase of DNA dropped even more rapidly. At this crucial point, a technology that
was only affordable to large collaborative sequencing efforts (or individual research-
ers with very deep pockets) became affordable to researchers across all of biology.
You're likely reading this book to learn to work with sequencing data that would have
been much too expensive to generate less than 10 years ago.

$1,000.00

$100.00 —

$10.00 5

Cost per Megabase of DNA Sequence

$1.00 -

$0.10 -

1 I 1 1 1 1
2002 2004 2006 2008 2010 2012
Date

Figure 1-1. Drop of sequencing costs (note the y-axis is on a logarithmic scale); the sharp
drop around 2008 was due to the introduction of next-generation sequencing data. (fig-
ure reproduced and data downloaded from the NIH)

What was the consequence of this drop in sequencing costs due to these new technol-
ogies? As you may have guessed, lots and lots of data. Biological databases have
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swelled with data after exponential growth. Whereas once small databases shared
between collaborators were sufficient, now petabytes of useful data are sitting on
servers all over the world. Key insights into biological questions are stored not just in
the unanalyzed experimental data sitting on your hard drive, but also spinning
around a disk in a data center thousands of miles away.

The growth of biological databases is as astounding as the drop of sequencing costs.
As an example, consider the Sequence Read Archive (previously known as the Short
Read Archive), a repository of the raw sequencing data from sequencing experiments.
Since 2010, it has experienced remarkable growth; see Figure 1-2.

To put this incredible growth of sequencing data into context, consider Moore’s Law.
Gordon Moore (a cofounder of Intel) observed that the number of transistors in
computer chips doubles roughly every two years. More transistors per chip translates
to faster speeds in computer processors and more random access memory in com-
puters, which leads to more powerful computers. This extraordinary rate of techno-
logical improvement—output doubling every two years—is likely the fastest growth
in technology humanity has ever seen. Yet, since 2011, the amount of sequencing data
stored in the Short Read Archive has outpaced even this incredible growth, having
doubled every year.

To make matters even more complicated, new tools for analyzing biological data are
continually being created, and their underlying algorithms are advancing. A 2012
review listed over 70 short-read mappers (Fonseca et al., 2012; see http://bit.ly/hts-
mappers). Likewise, our approach to genome assembly has changed considerably in
the past five years, as methods to assemble long sequences (such as overlap-layout-
consensus algorithms) were abandoned with the emergence of short high-throughput
sequencing reads. Now, advances in sequencing chemistry are leading to longer
sequencing read lengths and new algorithms are replacing others that were just a few
years old.

Unfortunately, this abundance and rapid development of bioinformatics tools has
serious downsides. Often, bioinformatics tools are not adequately benchmarked, or if
they are, they are only benchmarked in one organism. This makes it difficult for new
biologists to find and choose the best tool to analyze their data. To make matters
more difficult, some bioinformatics programs are not actively developed so that they
lose relevance or carry bugs that could negatively affect results. All of this makes
choosing an appropriate bioinformatics program in your own research difficult. More
importantly, it’s imperative to critically assess the output of bioinformatics programs
run on your own data. We'll see examples of how data skills can help us assess pro-
gram output throughout Part II.
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Figure 1-2. Exponential growth of the Short Read Archive; open access bases are SRA
submissions available to the public (figure reproduced and data downloaded from the
NIH)

Learning Data Skills to Learn Bioinformatics

With the nature of biological data changing so rapidly, how are you supposed to learn
bioinformatics? With all of the tools out there and more continually being created,
how is a biologist supposed to know whether a program will work appropriately on
her organism’s data?

The solution is to approach bioinformatics as a bioinformatician does: try stuft, and
assess the results. In this way, bioinformatics is just about having the skills to experi-
ment with data using a computer and understanding your results. The experimental
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part is easy; this comes naturally to most scientists. The limiting factor for most biol-
ogists is having the data skills to freely experiment and work with large data on a
computer. The goal of this book is to teach you the bioinformatics data skills neces-
sary to allow you to experiment with data on a computer as easily as you would run
experiments in the lab.

Unfortunately, many of the biologist’s common computational tools can’t scale to the
size and complexity of modern biological data. Complex data formats, interfacing
numerous programs, and assessing software and data make large bioinformatics data-
sets difficult to work with. Learning core bioinformatics data skills will give you the
foundation to learn, apply, and assess any bioinformatics program or analysis
method. In 10 years, bioinformaticians may only be using a few of the bioinformatics
software programs around today. But we most certainly will be using data skills and
experimentation to assess data and methods of the future.

So what are data skills? They are the set of computational skills that give you the abil-
ity to quickly improvise a way of looking at complex datasets, using a well-known set
of tools. A good analogy is what jazz musicians refer to as having “chops” A jazz
musician with good chops can walk into a nightclub, hear a familiar standard song
being played, recognize the chord changes, and begin playing musical ideas over
these chords. Likewise, a bioinformatician with good data skills can receive a huge
sequencing dataset and immediately start using a set of tools to see what story the
data tells.

Like a jazz musician that’s mastered his instrument, a bioinformatician with excellent
data chops masters a set of tools. Learning one’s tools is a necessary, but not sufficient
step in developing data skills (similarly, learning an instrument is a necessary, but not
sufficient step to playing musical ideas). Throughout the book, we will develop our
data skills, from setting up a bioinformatics project and data in Part II, to learning
both small and big tools for data analysis in Part III. However, this book can only set
you on the right path; real mastery requires learning through repeatedly applying
skills to real problems.

New Challenges for Reproducible and Robust Research

Biology’s increasing use of large sequencing datasets is changing more than the tools
and skills we need: it’s also changing how reproducible and robust our scientific find-
ings are. As we utilize new tools and skills to analyze genomics data, it’s necessary to
ensure that our approaches are still as reproducible and robust as any other experi-
mental approaches. Unfortunately, the size of our data and the complexity of our
analysis workflows make these goal especially difficult in genomics.

The requisite of reproducibility is that we share our data and methods. In the pre-
genomics era, this was much easier. Papers could include detailed method summaries
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and entire datasets—exactly as Kreitman’s 1986 paper did with a 4,713bp Adh gene
flanking sequence (it was embedded in the middle of the paper). Now papers have
long supplementary methods, code, and data. Sharing data is no longer trivial either,
as sequencing projects can include terabytes of accompanying data. Reference
genomes and annotation datasets used in analyses are constantly updated, which can
make reproducibility tricky. Links to supplemental materials, methods, and data on
journal websites break, materials on faculty websites disappear when faculty members
move or update their sites, and software projects become stale when developers leave
and don't update code. Throughout this book, well look at what can be done to
improve reproducibility of your project alongside doing the actual analysis, as I
believe these are necessarily complementary activities.

Additionally, the complexity of bioinformatics analyses can lead to findings being
susceptible to errors and technical confounding. Even fairly routine genomics
projects can use dozens of different programs, complicated input parameter combi-
nations, and many sample and annotation datasets; in addition, work may be spread
across servers and workstations. All of these computational data-processing steps cre-
ate results used in higher-level analyses where we draw our biological conclusions.
The end result is that research findings may rest on a rickety scaffold of numerous
processing steps. To make matters worse, bioinformatics workflows and analyses are
usually only run once to produce results for a publication, and then never run or tes-
ted again. These analyses may rely on very specific versions of all software used,
which can make it difficult to reproduce on a different system. In learning bioinfor-
matics data skills, it's necessary to concurrently learn reproducibility and robust best
practices. Let’s take a look at both reproducibility and robustness in turn.

Reproducible Research

Reproducing scientific findings is the only way to confirm they’re accurate and not
the artifact of a single experiment or analysis. Karl Popper, in The Logic of Scientific
Discovery, famously said: “non-reproducible single occurrences are of no significance
to science” (1959). Independent replication of experiments and analysis is the gold
standard by which we assess the validity of scientific findings. Unfortunately, most
sequencing experiments are too expensive to reproduce from the test tube up, so we
increasingly rely on in silico reproducibility only. The complexity of bioinformatics
projects usually discourages replication, so it’s our job as good scientists to facilitate
and encourage in silico reproducibility by making it easier. As we'll see later, adopting
good reproducibility practices can also make your life easier as a researcher.

So what is a reproducible bioinformatics project? At the very least, it’s sharing your
projects code and data. Most journals and funding agencies require you to share your
project’s data, and resources like NCBI’s Sequence Read Archive exist for this pur-
pose. Now, editors and reviewers will often suggest (or in some cases require) that a
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project’s code also be shared, especially if the code is a significant part of a study’s
results. However, there’s a lot more we can and should do to ensure our projects’
reproducibility. By having to reproduce bioinformatics analyses to verify results, I've
learned from these sleuthing exercises that the devil is in the details.

For example, colleagues and I once had a difficult time reproducing an RNA-seq dif-
ferential expression analysis we had done ourselves. We had preliminary results from
an analysis on a subset of samples done a few weeks earlier, but to our surprised, our
current analysis was producing a drastically smaller set of differentially expressed
genes. After rechecking how our past results were created, comparing data versions
and file creation times, and looking at differences in the analysis code, we were still
stumped—nothing could explain the difference between the results. Finally, we
checked the version of our R package and realized that it had been updated on our
server. We then reinstalled the old version to confirm this was the source of the dif-
ference, and indeed it was. The lesson here is that often replication, by either you in
the future or someone else, relies on not just data and code but details like software
versions and when data was downloaded and what version it is. This metadata, or
data about data, is a crucial detail in ensuring reproducibility.

Another motivating case study in bioinformatics reproducibility is the so-called
“Duke Saga” Dr. Anil Potti and other researchers at Duke University created a
method that used expression data from high-throughput microarrays to detect and
predict response to different chemotherapy drugs. These methods were the beginning
of a new level of personalized medicine, and were being used to determine the che-
motherapy treatments for patients in clinical trials. However, two biostatisticians,
Keith Baggerly and Kevin Coombes, found serious flaws in the analysis of this study
when trying to reproduce it (Baggerly and Coombes, 2009). Many of these required
what Baggerly and Coombes called “forensic bioinformatics”—sleuthing to try to
reproduce a study’s findings when there isn't sufficient documentation to retrace each
step. In total, Baggerly and Coombes found multiple serious errors, including:

o An off-by-one error, as an entire list of gene expression values was shifted down
in relation to their correct identifier

« Two outlier genes of biological interest were not on the microarrays used
o There was confounding of treatment with the day the microarray was run

o Sample group names were mixed up

Baggerly and Coombes’s work is best summarized by their open access article,
“Deriving Chemosensitivity from Cell Lines: Forensic Bioinformatics and Reproduci-
ble Research in High-Throughput Biology” (see this chapter’s GitHub directory for
this article and more information about the Duke Saga). The lesson of Baggerly and
Coombes’s work is that “common errors are simple, and simple errors are common”
and poor documentation can lead to both errors and irreproducibility. Documenta-
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tion of methods, data versions, and code would have not only facilitated reproducibil-
ity, but it likely would have prevented a few of these serious errors in their study.
Striving for maximal reproducibility in your project often will make your work more
robust, too.

Robust Research and the Golden Rule of Bioinformatics

Since the computer is a sharp enough tool to be really useful, you can cut yourself
on it.

— The Technical Skills of Statistics
(1964) John Tukey

In wetlab biology, when experiments fail, it can be very apparent, but this is not
always true in computing. Electrophoresis gels that look like Rorschach blots rather
than tidy bands clearly indicate something went wrong. In scientific computing,
errors can be silent; that is, code and programs may produce output (rather than stop
with an error), but this output may be incorrect. This is a very important notion to
put in the back of your head as you learn bioinformatics.

Additionally, it's common in scientific computing for code to be run only once, as
researchers get their desired output and move on to the next step. In contrast, con-
sider a video game: it’s run on thousands (if not millions) of different machines, and
is, in effect, constantly being tested by many users. If a bug that deletes a user’s score
occurs, it’s exceptionally likely to be quickly noticed and reported by users. Unfortu-
nately, the same is not true for most bioinformatics projects.

Genomics data also creates its own challenges for robust research. First, most bioin-
formatics analyses produce intermediate output that is too large and high dimen-
sional to inspect or easily visualize. Most analyses also involve multiple steps, so even
if it were feasible to inspect an entire intermediate dataset for problems, it would be
difficult to do this for each step (thus, we usually resort to inspecting samples of the
data, or looking at data summary statistics). Second, in wetlab biology, it’s usually eas-
ier to form prior expectations about what the outcome of an experiment might be.
For example, a researcher may expect to see a certain mRNA expressed in some tis-
sues in lower abundances than a particular housekeeping gene. With these prior
expectations, an aberrant result can be attributed to a failed assay rather than biology.
In contrast, the high dimensionality of most genomics results makes it nearly impos-
sible to form strong prior expectations. Forming specific prior expectations on the
expression of each of tens of thousands of genes assayed by an RNA-seq experiment
is impractical. Unfortunately, without prior expectations, it can be quite difficult to
distinguish good results from bad results.

Bioinformaticians also have to be wary that bioinformatics programs, even the large
community-vetted tools like aligners and assemblers, may not work well on their par-
ticular organism. Organisms are all wonderfully, strangely different, and their
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genomes are too. Many bioinformatics tools are tested on a few model diploid organ-
isms like human, and less well-tested on the complex genomes from the other parts of
the tree of life. Do we really expect that out-of-the-box parameters from a short-read
aligner tuned to human data will work on a polyploid genome four times its size?
Probably not.

The easy way to ensure everything is working properly is to adopt a cautious attitude,
and check everything between computational steps. Furthermore, you should
approach biological data (either from an experiment or from a database) with a
healthy skepticism that there might be something wrong with it. In the computing
community, this is related to the concept of “garbage in, garbage out”—an analysis is
only as good as the data going in. In teaching bioinformatics, I often share this idea as
the Golden Rule of Bioinformatics:

Never ever trust your tools (or data)

This isn’t to make you paranoid that none of bioinformatics can be trusted, or that
you must test every available program and parameter on your data. Rather, this is to
train you to adopt the same cautious attitude software engineers and bioinformati-
cians have learned the hard way. Simply checking input data and intermediate results,
running quick sanity checks, maintaining proper controls, and testing programs is a
great start. This also saves you from encountering bugs later on, when fixing them
means redoing large amounts of work. You naturally test whether lab techniques are
working and give consistent results; adopting a robust approach to bioinformatics is
merely doing the same in bioinformatics analyses.

Adopting Robust and Reproducible Practices Will Make
Your Life Easier, Too

Working in sciences has taught many of us some facts of life the hard way. These are
like Murphy’s law: anything that can go wrong, will. Bioinformatics has its own set of
laws like this. Having worked in the field and discussed war stories with other bioin-
formaticians, I can practically guarantee the following will happen:

 You will almost certainly have to rerun an analysis more than once, possibly with
new or changed data. Frequently this happens because you’ll find a bug, a collab-
orator will add or update a file, or you'll want to try something new upstream of a
step. In all cases, downstream analyses depend on these earlier results, meaning
all steps of an analysis need to be rerun.

« In the future, you (or your collaborators, or advisor) will almost certainly need to
revisit part of a project and it will look completely cryptic. Your only defense is to
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document each step. Without writing down key facts (e.g., where you downloa-
ded data from, when you downloaded it, and what steps you ran), you’ll certainly
forget them. Documenting your computational work is equivalent to keeping a
detailed lab notebook—an absolutely crucial part of science.

Luckily, adopting practices that will make your project reproducible also helps solve
these problems. In this sense, good practices in bioinformatics (and scientific com-
puting in general) both make life easier and lead to reproducible projects. The reason
for this is simple: if each step of your project is designed to be rerun (possibly with
different data) and is well documented, it’s already well on its way to being reproduci-
ble.

For example, if we automate tasks with a script and keep track of all input data and
software versions, analyses can be rerun with a keystroke. Reproducing all steps in
this script is much easier, as a well-written script naturally documents a workflow
(we'll discuss this more in Chapter 12). This approach also saves you time: if you
receive new or updated data, all you need to do is rerun the script with the new input
file. This isn't hard to do in practice; scripts aren’t difficult to write and computers
excel at doing repetitive tasks enumerated in a script.

Recommendations for Robust Research

Robust research is largely about adopting a set of practices that stack the odds in your
favor that a silent error won't confound your results. As mentioned above, most of
these practices are also beneficial for reasons other than preventing the dreaded silent
error—which is all the more reason to include apply the recommendations below in
your daily bioinformatics work.

Pay Attention to Experimental Design

Robust research starts with a good experimental design. Unfortunately, no amount of
brilliant analysis can save an experiment with a bad design. To quote a brilliant statis-
tician and geneticist:

To consult the statistician after an experiment is finished is often merely to ask him to
conduct a post mortem examination. He can perhaps say what the experiment died of.

—R.A. Fisher

This quote hits close to the heart; I've seen projects land on my desk ready for analy-
sis, after thousands of sequencing dollars were spent, yet they’re completely dead on
arrival. Good experimental design doesn’t have to be difficult, but as it's fundamen-
tally a statistical topic it's outside of the scope of this book. I mention this topic
because unfortunately nothing else in this book can save an experiment with a bad
design. It's especially necessary to think about experimental design in high-

10 | Chapter1: How to Learn Bioinformatics



throughput studies, as technical “batch effects” can significantly confound studies
(for a perspective on this, see Leek et al., 2010).

Most introductory statistics courses and books cover basic topics in experimental
design. Quinn and Keough's Experimental Design and Data Analysis for Biologists
(Cambridge University Press, 2002) is an excellent book on this topic. Chapter 18 of
O'Reilly’s Statistics in a Nutshell, 2nd Edition, by Sarah Boslaugh covers the basics
well, too. Note, though, that experimental design in a genomics experiment is a dif-
ferent beast, and is actively researched and improved. The best way to ensure your
multithousand dollar experiment is going to reach its potential is to see what the cur-
rent best design practices are for your particular project. It’s also a good idea to con-
sult your local friendly statistician about any experimental design questions or
concerns you may have in planning an experiment.

Write Code for Humans, Write Data for Computers

Debugging is twice as hard as writing the code in the first place. Therefore, if you write
the code as cleverly as possible, you are, by definition, not smart enough to debug it.

—Brian Kernighan

Bioinformatics projects can involve mountains of code, and one of our best defenses
against bugs is to write code for humans, not for computers (a point made in the
excellent article from Wilson et al., 2012). Humans are the ones doing the debugging,
so writing simple, clear code makes debugging easier.

Code should be readable, broken down into small contained components (modular),
and reusable (so you're not rewriting code to do the same tasks over and over again).
These practices are crucial in the software world, and should be applied in your bio-
informatics work as well. Commenting code and adopting a style guide are simple
ways to increase code readability. Google has public style guides for many languages,
which serve as excellent templates. Why is code readability so important? First, reada-
ble code makes projects more reproducible, as others can more easily understand
what scripts do and how they work. Second, it’s much easier to find and correct soft-
ware bugs in readable, well-commented code than messy code. Third, revisiting code
in the future is always easier when the code is well commented and clearly written.
Writing modular and reusable code just takes practice—we’ll see some examples of
this throughout the book.

In contrast to code, data should be formatted in a way that facilitates computer read-
ability. All too often, we as humans record data in a way that maximizes its readability
to us, but takes a considerable amount of cleaning and tidying before it can be pro-
cessed by a computer. The more data (and metadata) that is computer readable, the
more we can leverage our computers to work with this data.
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Let Your Computer Do the Work For You

Humans doing rote activities tend to make many mistakes. One of the easiest ways to
make your work more robust is to have your computer do as much of this rote work
as possible. This approach of automating tasks is more robust because it decreases the
odds you’ll make a trivial mistake such as accidentally omitting a file or naming out-
put incorrectly.

For example, running a program on 20 different files by individually typing out (or
copy and pasting) each command is fragile—the odds of making a careless mistake
increase with each file you process. In bioinformatics work, it’s good to develop the
habit of letting your computer do this sort of repetitive work for you. Instead of past-
ing the same command 20 times and just changing the input and output files, write a
script that does this for you. Not only is this easier and less likely to lead to mistakes,
but it also increases reproducibility, as your script serves as a reference of what you
did to each of those files.

Leveraging the benefits of automating tasks requires a bit of thought in organizing up
your projects, data, and code. Simple habits like naming data files in a consistent way
that a computer (and not just humans) can understand can greatly facilitate automat-
ing tasks and make work much easier. We'll see examples of this in Chapter 2.

Make Assertions and Be Loud, in Code and in Your Methods

When we write code, we tend to have implicit assumptions about our data. For exam-
ple, we expect that there are only three DNA strands options (forward, reverse, and
unknown), that the start position of a gene is less than the end position, and that we
can’t have negative positions. These implicit assumptions we make about data impact
how we write code; for example, we may not think to handle a certain situation in
code if we assume it won’t occur. Unfortunately, this can lead to the dreaded silent
error: our code or programs receive values outside our expected values, behave
improperly, and yet still return output without warning. Our best approach to pre-
vent this type of error is to explicitly state and test our assumptions about data in our
code using assert statements like Python’s assert() and R’s stopifnot().

Nearly every programming language has its own version of the assert function. These
assert functions operate in a similar way: if the statement evaluated to false, the assert
function will stop the program and raise an error. They may be simple, but these
assert functions are indispensable in robust research. Early in my career, a mentor
motivated me to adopt the habit of using asserts quite liberally—even when it seems
like there is absolutely no way the statement could ever be false—and yet I'm continu-
ally surprised at how many times these have caught a subtle error. In bioinformatics
(and all fields), it’s crucial that we do as much as possible to turn the dreaded silent
error into loud errors.
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Test Code, or Better Yet, Let Code Test Code

Software engineers are a clever bunch, and they take the idea of letting one’s com-
puter do the work to new levels. One way they do this is having code test other code,
rather than doing it by hand. A common method to test code is called unit testing. In
unit testing, we break down our code into individual modular units (which also has
the side effect of improving readability) and we write additional code that tests this
code. In practice, this means if we have a function called add(), we write an addi-
tional function (usually in separate file) called test_add(). This test_add() function
would call the add() function with certain input, and test that the output is as
expected. In Python, this may look like:

EPS = 0.00001 # a small number to use when comparing floating-point values

def add(x, y):
"""Add two things together."""
return x +y

def test_add():
"""Test that the add() function works for a variety of numeric types.
assert(add(2, 3) == 5)
assert(add(-2, 3) == 1)
assert(add(-1, -1) == -2)
assert(abs(add(2.4, 0.1) - 2.5) < EPS)

mwnn

The last line of the test_add() function looks more complicated than the others
because it’s comparing floating-point values. It's difficult to compare floating-point
values on a computer, as there are representation and roundoff errors. However, it’s a
good reminder that we're always limited by what our machine can do, and we must
mind these limitations in analysis.

Unit testing is used much less in scientific coding than in the software industry,
despite the fact that scientific code is more likely to contain bugs (because our code is
usually only run once to generate results for a publication, and many errors in scien-
tific code are silent). I refer to this as the paradox of scientific coding: the bug-prone
nature of scientific coding means we should utilize testing as much or more than the
software industry, but we actually do much less