For this exercise, we will be taking RNA-seq reads off the sequencer in the form of FASTQ files and determining what genes are expressed higher in treatment group A compared to treatment group B. For this we will use Kallisto, which allows us to quantify transcription levels. The goal is to generate a volcano plot, a table of differentially expressed genes, and other helpful visualizations to assess

1 Kallisto installation

/home/shared/kallisto/kallisto

This code confirms installation of the Kallisto software.

2 Downloading reference genome

mkdir data  #creates a data folder
cd data
curl --insecure -O https://gannet.fish.washington.edu/seashell/bu-github/nb-2023/Cgigas/data/rna.fna  #downloads the reference genome 

This code is downloading the file rna.fna into the data directory.

/home/shared/kallisto/kallisto \
index -i \
data/cgigas_roslin_rna.index \
data/rna.fna

This added the cgigas_roslin_rna.index file to the data directory.

3 Downloading sequence reads

cd data 
wget --recursive --no-parent --no-directories \  #another command to get a file from a URL
--no-check-certificate \
--accept '*.fastq.gz' \
https://gannet.fish.washington.edu/seashell/bu-github/nb-2023/Cgigas/data/nopp/

This code downloads several fastq files into the data folder.

mkdir output/kallisto_01

find data/*fastq.gz \
| xargs basename -s _L001_R1_001.fastq.gz | xargs -I{} /home/shared/kallisto/kallisto \
quant -i data/cgigas_roslin_rna.index \
-o output/kallisto_01/{} \
-t 24 \
--single -l 100 -s 10 data/{}_L001_R1_001.fastq.gz

This creates an output directory and populates it with sequence reads.

4 Transcript quantification

Now we quantify the transcript expression levels using Kallisto. From the lecture notes: “Kallisto uses a pseudoalignment approach, which is much faster than traditional alignment-based methods and does not require a reference genome.”

perl /home/shared/trinityrnaseq-v2.12.0/util/abundance_estimates_to_matrix.pl \
--est_method kallisto \
    --gene_trans_map none \
    --out_prefix output/kallisto_01 \
    --name_sample_by_basedir \
    output/kallisto_01/D54_S145/abundance.tsv \
    output/kallisto_01/D56_S136/abundance.tsv \
    output/kallisto_01/D58_S144/abundance.tsv \
    output/kallisto_01/M45_S140/abundance.tsv \
    output/kallisto_01/M48_S137/abundance.tsv \
    output/kallisto_01/M89_S138/abundance.tsv \
    output/kallisto_01/D55_S146/abundance.tsv \
    output/kallisto_01/D57_S143/abundance.tsv \
    output/kallisto_01/D59_S142/abundance.tsv \
    output/kallisto_01/M46_S141/abundance.tsv \
    output/kallisto_01/M49_S139/abundance.tsv \
    output/kallisto_01/M90_S147/abundance.tsv \
    output/kallisto_01/N48_S194/abundance.tsv \
    output/kallisto_01/N50_S187/abundance.tsv \
    output/kallisto_01/N52_S184/abundance.tsv \
    output/kallisto_01/N54_S193/abundance.tsv \
    output/kallisto_01/N56_S192/abundance.tsv \
    output/kallisto_01/N58_S195/abundance.tsv \
    output/kallisto_01/N49_S185/abundance.tsv \
    output/kallisto_01/N51_S186/abundance.tsv \
    output/kallisto_01/N53_S188/abundance.tsv \
    output/kallisto_01/N55_S190/abundance.tsv \
    output/kallisto_01/N57_S191/abundance.tsv \
    output/kallisto_01/N59_S189/abundance.tsv

This code runs the abundance_estimates_to_matrix.pl script from Trinity RNA-seq to create a gene expression matrix from Kallisto output files.

5 Differential expression analysis

Now we will perform differential expression analysis to identify differentially expressed genes (DEGs) between a control and a desiccated condition.

countmatrix <- read.delim("output/kallisto_01.isoform.counts.matrix", header = TRUE, sep = '\t')
rownames(countmatrix) <- countmatrix$X
countmatrix <- countmatrix[,-1]
head(countmatrix)
##                D54_S145 D56_S136 D58_S144 M45_S140 M48_S137 M89_S138 D55_S146
## XM_034466747.1        0  4.46531        0        2  0.00000   2.6438        0
## XM_034468017.1        0  0.00000        0        0  0.00000   0.0000        0
## XM_011447437.3        0  0.00000        0        0  0.00000   0.0000        1
## XM_011451485.3        0  0.00000        0        0  0.00000   0.0000        0
## XM_034453812.1        0  0.00000        0        0  3.21794   0.0000        0
## XM_034446851.1        0  3.00000       12        0  0.00000   0.0000        0
##                D57_S143 D59_S142 M46_S141 M49_S139 M90_S147 N48_S194 N50_S187
## XM_034466747.1  1.59852        0        0        0        0        0        0
## XM_034468017.1  0.00000        0        0        0        0        0        0
## XM_011447437.3  0.00000        0        0        0        0        0        0
## XM_011451485.3  0.00000        0        0        0        0        0        0
## XM_034453812.1  0.00000        0        0        0        0        0        0
## XM_034446851.1  0.00000        0        0        0        0        3        0
##                N52_S184 N54_S193 N56_S192 N58_S195 N49_S185 N51_S186 N53_S188
## XM_034466747.1        0 0.000000        0        0        0        0        0
## XM_034468017.1        0 0.000000        0        0        0        0        0
## XM_011447437.3        0 0.000000        0        0        0        0        0
## XM_011451485.3        0 0.000000        0        0        0        0        0
## XM_034453812.1        0 0.386561        2        0        0        0        0
## XM_034446851.1        0 0.000000        0        0        0        0        1
##                N55_S190 N57_S191 N59_S189
## XM_034466747.1        0        0        0
## XM_034468017.1        0        0        0
## XM_011447437.3        0        0        1
## XM_011451485.3        0        0        0
## XM_034453812.1        0        0        0
## XM_034446851.1        0        3        0

We created a table showing differentially expressed genes.

countmatrix <- round(countmatrix, 0)
str(countmatrix)
## 'data.frame':    73307 obs. of  24 variables:
##  $ D54_S145: num  0 0 0 0 0 0 0 18 5 0 ...
##  $ D56_S136: num  4 0 0 0 0 3 1 18 0 0 ...
##  $ D58_S144: num  0 0 0 0 0 12 12 0 4 0 ...
##  $ M45_S140: num  2 0 0 0 0 0 1 0 12 0 ...
##  $ M48_S137: num  0 0 0 0 3 0 0 0 8 0 ...
##  $ M89_S138: num  3 0 0 0 0 0 0 0 1 0 ...
##  $ D55_S146: num  0 0 1 0 0 0 1 17 0 0 ...
##  $ D57_S143: num  2 0 0 0 0 0 0 0 5 0 ...
##  $ D59_S142: num  0 0 0 0 0 0 4 44 0 0 ...
##  $ M46_S141: num  0 0 0 0 0 0 2 32 0 0 ...
##  $ M49_S139: num  0 0 0 0 0 0 3 11 0 0 ...
##  $ M90_S147: num  0 0 0 0 0 0 0 0 10 0 ...
##  $ N48_S194: num  0 0 0 0 0 3 1 0 6 0 ...
##  $ N50_S187: num  0 0 0 0 0 0 1 0 5 0 ...
##  $ N52_S184: num  0 0 0 0 0 0 1 0 0 0 ...
##  $ N54_S193: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ N56_S192: num  0 0 0 0 2 0 0 0 0 0 ...
##  $ N58_S195: num  0 0 0 0 0 0 0 0 16 0 ...
##  $ N49_S185: num  0 0 0 0 0 0 6 0 14 0 ...
##  $ N51_S186: num  0 0 0 0 0 0 2 16 20 0 ...
##  $ N53_S188: num  0 0 0 0 0 1 0 0 6 0 ...
##  $ N55_S190: num  0 0 0 0 0 0 2 0 0 0 ...
##  $ N57_S191: num  0 0 0 0 0 3 0 0 4 0 ...
##  $ N59_S189: num  0 0 1 0 0 0 2 0 4 0 ...
deseq2.colData <- data.frame(condition=factor(c(rep("control", 12), rep("desicated", 12))), 
                             type=factor(rep("single-read", 24)))
rownames(deseq2.colData) <- colnames(data)
deseq2.dds <- DESeqDataSetFromMatrix(countData = countmatrix,
                                     colData = deseq2.colData, 
                                     design = ~ condition)

Below we convert counts to integer mode.

deseq2.dds <- DESeq(deseq2.dds)
deseq2.res <- results(deseq2.dds)
deseq2.res <- deseq2.res[order(rownames(deseq2.res)), ]
head(deseq2.res)
## log2 fold change (MLE): condition desicated vs control 
## Wald test p-value: condition desicated vs control 
## DataFrame with 6 rows and 6 columns
##                  baseMean log2FoldChange     lfcSE      stat      pvalue
##                 <numeric>      <numeric> <numeric> <numeric>   <numeric>
## NM_001305288.1   0.181270      1.0453698  3.002647  0.348149 7.27728e-01
## NM_001305289.1   0.881457     -2.8119577  1.068276 -2.632239 8.48240e-03
## NM_001305290.1 145.913728      0.4580323  0.116185  3.942251 8.07203e-05
## NM_001305291.1   0.261701      0.5618449  1.587076  0.354013 7.23329e-01
## NM_001305292.1   2.902430     -1.2181330  0.763421 -1.595624 1.10573e-01
## NM_001305293.1 234.342117      0.0663449  0.131969  0.502731 6.15154e-01
##                      padj
##                 <numeric>
## NM_001305288.1         NA
## NM_001305289.1         NA
## NM_001305290.1 0.00956401
## NM_001305291.1         NA
## NM_001305292.1 0.59541971
## NM_001305293.1 0.95562321

This actually previews our analysis. log2 fold change (MLE): condition dessicated vs control Wald test p-value: condition desicated vs control DataFrame with 6 rows and 6 columns.

# Count number of hits with adjusted p-value less then 0.05
dim(deseq2.res[!is.na(deseq2.res$padj) & deseq2.res$padj <= 0.05, ])

We have 607 significantly differentially expressed genes, based on padj <= 0.05. There are 6 columns of data for each.

6 Volcano plot of DEGs

tmp <- deseq2.res

# The main plot
plot(tmp$baseMean, tmp$log2FoldChange, pch=20, cex=0.45, ylim=c(-3, 3), log="x", col="darkgray",
     main="DEG Dessication  (pval <= 0.05)",
     xlab="mean of normalized counts",
     ylab="Log2 Fold Change")

#Getting the significant points and plotting them again so they're a different color
tmp.sig <- deseq2.res[!is.na(deseq2.res$padj) & deseq2.res$padj <= 0.05, ]
points(tmp.sig$baseMean, tmp.sig$log2FoldChange, pch=20, cex=0.45, col="red")
# 2 FC lines
abline(h=c(-1,1), col="blue")

Now we save the differentially expressed genes (DEGs) to a file.

write.table(tmp.sig, "output/DEGlist.tab", row.names = T)

7 PCA plot

We can also take the data and see if samples cluster by condition (control vs desiccated).

vsd <- vst(deseq2.dds, blind = FALSE)
plotPCA(vsd, intgroup = "condition") +
  ggtitle("PCA of RNA-Seq Samples (vsd transformed)")

There is some grouping/striation between the 2 conditions. So dessication may explain the variation.

8 Heatmap of top DEGs

top_genes <- head(order(deseq2.res$padj), 50)  # pulls the top DEGs
mat <- assay(vsd)[top_genes, ]  # extract expression values for those genes
mat <- mat - rowMeans(mat) #centers the rows

ann_col <- as.data.frame(colData(vsd)[, "condition", drop = FALSE])  #annotation dataframe
rownames(ann_col) <- colnames(mat)  # ensures rownames match matrix colnames

pheatmap(mat,
         cluster_rows = TRUE,
         cluster_cols = TRUE,
         annotation_col = ann_col,
         show_rownames = FALSE,
         fontsize_col = 8,
         main = "Top 50 Differentially Expressed Genes")