--- title: "02-RNAseq" format: html editor: visual --- Today we will be taking RNA-seq reads off the sequencer, and determining what genes are expressed higher in treatment group A compared to treatments group B. For this we will use Kallisto, which is already installed on Raven. The goal is to generate a plot and table of differentially expressed genes. For this we will be using fastq files. # RNA seq ```{bash} /home/shared/kallisto/kallisto ``` Confirming installation of kallisto 0.46.1. # Downloading reference genome ```{bash} mkdir data cd data curl --insecure -O https://gannet.fish.washington.edu/seashell/bu-github/nb-2023/Cgigas/data/rna.fna ``` This code is indexing the file rna.fna into the data directory. The directory has been added to .gitignore. ```{bash} /home/shared/kallisto/kallisto \ index -i \ data/cgigas_roslin_rna.index \ data/rna.fna ``` This added the cgigas_roslin_rna.index file to the data directory. # Downloading sequence reads ```{bash} cd data wget --recursive --no-parent --no-directories \ --no-check-certificate \ --accept '*.fastq.gz' \ https://gannet.fish.washington.edu/seashell/bu-github/nb-2023/Cgigas/data/nopp/ ``` Downloaded several fastq files. ```{bash} mkdir output/kallisto_01 find data/*fastq.gz \ | xargs basename -s _L001_R1_001.fastq.gz | xargs -I{} /home/shared/kallisto/kallisto \ quant -i data/cgigas_roslin_rna.index \ -o output/kallisto_01/{} \ -t 24 \ --single -l 100 -s 10 data/{}_L001_R1_001.fastq.gz ``` This creates an output directory and populates it with sequence reads. # Transcript quantification Now we quantify the transcript expression levels using Kallisto. From the lecture notes: "Kallisto uses a pseudoalignment approach, which is much faster than traditional alignment-based methods and does not require a reference genome." ```{bash} perl /home/shared/trinityrnaseq-v2.12.0/util/abundance_estimates_to_matrix.pl \ --est_method kallisto \ --gene_trans_map none \ --out_prefix output/kallisto_01 \ --name_sample_by_basedir \ output/kallisto_01/D54_S145/abundance.tsv \ output/kallisto_01/D56_S136/abundance.tsv \ output/kallisto_01/D58_S144/abundance.tsv \ output/kallisto_01/M45_S140/abundance.tsv \ output/kallisto_01/M48_S137/abundance.tsv \ output/kallisto_01/M89_S138/abundance.tsv \ output/kallisto_01/D55_S146/abundance.tsv \ output/kallisto_01/D57_S143/abundance.tsv \ output/kallisto_01/D59_S142/abundance.tsv \ output/kallisto_01/M46_S141/abundance.tsv \ output/kallisto_01/M49_S139/abundance.tsv \ output/kallisto_01/M90_S147/abundance.tsv \ output/kallisto_01/N48_S194/abundance.tsv \ output/kallisto_01/N50_S187/abundance.tsv \ output/kallisto_01/N52_S184/abundance.tsv \ output/kallisto_01/N54_S193/abundance.tsv \ output/kallisto_01/N56_S192/abundance.tsv \ output/kallisto_01/N58_S195/abundance.tsv \ output/kallisto_01/N49_S185/abundance.tsv \ output/kallisto_01/N51_S186/abundance.tsv \ output/kallisto_01/N53_S188/abundance.tsv \ output/kallisto_01/N55_S190/abundance.tsv \ output/kallisto_01/N57_S191/abundance.tsv \ output/kallisto_01/N59_S189/abundance.tsv ``` This code runs the abundance_estimates_to_matrix.pl script from Trinity RNA-seq to create a gene expression matrix from Kallisto output files. # Differential expression analysis Now we will perform differential expression analysis to identify differentially expressed genes (DEGs) between a control and a desiccated condition. First we need to install DESeq2 from BiocManager and get the other packages set up. ```{r} #install.packages("BioManager") #BiocManager::install("DESeq2") library(DESeq2) library(tidyverse) library(pheatmap) library(RColorBrewer) library(data.table) ``` ```{r echo=TRUE} countmatrix <- read.delim("output/kallisto_01.isoform.counts.matrix", header = TRUE, sep = '\t') rownames(countmatrix) <- countmatrix$X countmatrix <- countmatrix[,-1] head(countmatrix) ``` We created a table showing differentially expressed genes. ```{r echo=TRUE} countmatrix <- round(countmatrix, 0) str(countmatrix) ``` ```{r} deseq2.colData <- data.frame(condition=factor(c(rep("control", 12), rep("desicated", 12))), type=factor(rep("single-read", 24))) rownames(deseq2.colData) <- colnames(data) deseq2.dds <- DESeqDataSetFromMatrix(countData = countmatrix, colData = deseq2.colData, design = ~ condition) ``` Here we are converting counts to integer mode... ```{r} deseq2.dds <- DESeq(deseq2.dds) deseq2.res <- results(deseq2.dds) deseq2.res <- deseq2.res[order(rownames(deseq2.res)), ] ``` ```{r} head(deseq2.res) ``` This actually previews our analysis. log2 fold change (MLE): condition desicated vs control Wald test p-value: condition desicated vs control DataFrame with 6 rows and 6 columns etc... ```{r} # Count number of hits with adjusted p-value less then 0.05 dim(deseq2.res[!is.na(deseq2.res$padj) & deseq2.res$padj <= 0.05, ]) ``` prints - 607 6 - which is the number of hits? # Creating a plot ```{r} tmp <- deseq2.res # The main plot plot(tmp$baseMean, tmp$log2FoldChange, pch=20, cex=0.45, ylim=c(-3, 3), log="x", col="darkgray", main="DEG Dessication (pval <= 0.05)", xlab="mean of normalized counts", ylab="Log2 Fold Change") # Getting the significant points and plotting them again so they're a different color tmp.sig <- deseq2.res[!is.na(deseq2.res$padj) & deseq2.res$padj <= 0.05, ] points(tmp.sig$baseMean, tmp.sig$log2FoldChange, pch=20, cex=0.45, col="red") # 2 FC lines abline(h=c(-1,1), col="blue") ``` ```{r} write.table(tmp.sig, "output/DEGlist.tab", row.names = T) ```