---
title: "04-deseq2-summer2022"
output: html_document
date: "2023-11-29"
---
Rmd to make PCA plots comparing different groups of summer 2022 RNAseq data from sea star wasting disease challenge experiments. Count data from comparison to Up in Arms transcriptome.
```{r}
sessionInfo()
```
```{r}
#if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
#BiocManager::install("DESeq2")
```
Load packages:
```{r}
library(DESeq2)
library(tidyverse)
library(pheatmap)
library(RColorBrewer)
library(data.table)
library(ggplot2)
```
## Read in count matrix from comparing the 2022 _Pycnopodia helianthoides_ coelomocyte RNAseq libraries with the 2015 _Pycnopodia helianthoides_ transcriptome:
```{r}
countmatrix <- read.delim("../analyses/Kallisto/2015Phel_transcriptome/kallisto-20231129_2015.isoform.counts.matrix", header = TRUE, sep = '\t')
rownames(countmatrix) <- countmatrix$X
countmatrix <- countmatrix[,-1]
head(countmatrix)
```
29,476 obs, 32 variables
Round integers up to whole numbers for analyses:
```{r}
countmatrix <- round(countmatrix, 0)
head(countmatrix)
```
## Get DEGs based on healthy adults vs healthy juveniles from day 0:
healthy adults day 0 --> PSC 0085, 0087, 0090, 0093
healthy juveniles day 0 --> PSC 0118, 0119, 0132, 0141
### 2023-11-29
Need to subset the countmatrix for those 8 libraries:
```{r}
counts_hvs <- countmatrix[,c("PSC.0085", "PSC.0087", "PSC.0090", "PSC.0093", "PSC.0118", "PSC.0119", "PSC.0132", "PSC.0141")]
head(counts_hvs)
```
29476 rows, 8 columns
Make a data frame for the comparison:
```{r}
colData <- data.frame(condition=factor(c("hadult","hadult","hadult","hadult","hjuve","hjuve","hjuve","hjuve")),
type=factor(rep("paired-end",8)))
rownames(colData) <- colnames(counts_hvs)
dds <- DESeqDataSetFromMatrix(countData = counts_hvs,
colData = colData,
design = ~ condition)
```
```{r}
dds <- DESeq(dds)
res <- results(dds)
res <- res[order(rownames(res)), ]
```
From [Bioconductor `DESeq2` Vignette](http://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html):
```{r}
vsd <- vst(dds, blind=FALSE)
rld <- rlog(dds, blind=FALSE)
head(assay(vsd), 3)
```
```{r}
plotPCA(vsd, intgroup=c("condition", "type"))
```
PLot PCA comparing sick adults and sick juveniles:
first arm drop of exposed adults --> PSC 0149, 0150, 0174, 0190
first arm drop of exposed juves --> PSC 0187, 0188, 0198, 0228
Need to subset the countmatrix for those 8 libraries:
```{r}
counts_hvs2 <- countmatrix[,c("PSC.0149", "PSC.0150", "PSC.0174", "PSC.0190", "PSC.0187", "PSC.0188", "PSC.0198", "PSC.0228")]
head(counts_hvs2)
```
Make a data frame for the comparison:
```{r}
colData <- data.frame(condition=factor(c("eadult","eadult","eadult","eadult","ejuve","ejuve","ejuve","ejuve")),
type=factor(rep("paired-end",8)))
rownames(colData) <- colnames(counts_hvs2)
dds <- DESeqDataSetFromMatrix(countData = counts_hvs2,
colData = colData,
design = ~ condition)
```
```{r}
dds2 <- DESeq(dds2)
res2 <- results(dds2)
res2 <- res[order(rownames(res2)), ]
```
```{r}
vsd2 <- vst(dds2, blind=FALSE)
rld2 <- rlog(dds2, blind=FALSE)
head(assay(vsd2), 3)
```
```{r}
plotPCA(vsd2, intgroup=c("condition", "type"))
```