--- title: "Environmental Data NMDS" author: "Yaamini Venkataraman" date: "11/30/2018" output: html_document --- In this script, I'll visualize differences in my environmental data between sites using a nonmetric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM). ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` # Load dependencies ```{r} #install.packages("vegan") require(vegan) #install.packages("cluster") require(cluster) source("../../biostats.R") #Load biostats file ``` ```{r} sessionInfo() ``` # Import and reformat data ## Tide data ```{r} tideData <- read.csv("../../../../data/DNR/2017-12-13-Tidal-Data-by-Site.csv", header = TRUE, strip.white = TRUE) #Import the tide data tideData$Date <- as.Date(tideData$Date, format = "%m/%d/%y") #Convert entries to dates tideData$DateTime <- paste(tideData$Date, tideData$Time) #Create new DateTime column to easily merge tide and environmental data colnames(tideData) <- c("Date", "Time", "CI-Tide", "FB-Tide", "PG-Tide", "SK-Tide", "WB-Tide", "DateTime") head(tideData) #Confirm changes ``` ## pH data ```{r} pHDOData <- read.csv("../../../../data/DNR/2017-11-14-Environmental-Data-from-Micah.csv", header = TRUE, na.strings = "NA") #Import file with pH and DO data colnames(pHDOData) #View column names ``` ```{r} pHData <- pHDOData[,c(2:3, 4:12)] #Subset only the bare and eelgrass outplant pH data head(pHData) #Confirm subset ``` ```{r} colnames(pHData) <- c("Date", "Time", "WBE-pH", "WBB-pH", "SKE-pH", "SKB-pH", "PGB-pH", "CIE-pH", "CIB-pH", "FBE-pH", "FBB-pH") #Rename columns pHData$Date <- as.Date(pHData$Date, format = "%m/%d/%y") #Convert entries to dates pHData <- pHData[pHData$Date >= "2016-06-19", ] #The outplant only started 6/19. I need to remove all data points before this time. pHData$DateTime <- paste(pHData$Date, pHData$Time) #Create new DateTime column to easily merge tide and environmental data head(pHData) #Confirm changes ``` ## Dissolved oxygen data ```{r} DOData <- pHDOData[,c(2:3, 22:31)] #Subset the bare and eelgrass outplant DO data head(DOData) #Confirm subset ``` ```{r} colnames(DOData) <- c("Date", "Time", "WBE-DO", "WBB-DO", "SKE-DO", "SKB-DO", "PGE-DO", "PGB-DO", "CIE-DO", "CIB-DO", "FBE-DO", "FBB-DO") #Rename columns DOData$Date <- as.Date(DOData$Date, format = "%m/%d/%y") #Convert entries to dates DOData <- DOData[DOData$Date >= "2016-06-19", ] #The outplant only started 6/19. I need to remove all data points before this time. DOData$DateTime <- paste(DOData$Date, DOData$Time) #Create new DateTime column to easily merge tide and environmental data head(DOData) #Confirm changes ``` ## Salinity ```{r} salinityData <- read.csv("../../../../data/DNR/2018-05-30-Fixed-Salinity-from-Micah.csv", header = TRUE, na.strings = "NA", strip.white = TRUE) #Import salinity data and remove white space from end of Date and Time columns salinityData <- salinityData[,c(1:2, 4, 6, 8, 10, 12, 14, 16, 20)] #Subset salinity from bare and eelgrass outplants. Needed to use PGE instead of PGB since PGB has no salinity data. Also use FBE and WBE due to probe burial at bare sites. head(salinityData) #Confirm subset ``` ```{r} colnames(salinityData) <- c("Date", "Time", "CIB-Salinity", "CIE-Salinity", "FBB-Salinity", "FBE-Salinity", "PGE-Salinity", "SKB-Salinity", "SKE-Salinity", "WBB-Salinity") #Rename columns salinityData$Date <- as.Date(salinityData$Date, format = "%d/%m/%Y") #Convert entries to dates salinityData <- salinityData[salinityData$Date >= "2016-06-19", ] #The outplant only started 6/19. I need to remove all data points before this time. salinityData$DateTime <- paste(salinityData$Date, salinityData$Time) #Create new DateTime column to easily merge tide and environmental data. head(salinityData) ``` ## Temperature data ```{r} temperatureData <- read.csv("../../../../data/DNR/2017-11-14-Environmental-Data-from-Micah.csv", header = TRUE, na.strings = "NA") #Import temperature data colnames(temperatureData) #Get column names ``` ```{r} temperatureData <- temperatureData[,c(2:3, 32:41)] #Save temperature data from bare outplants as a new dataframe head(temperatureData) #Confirm subset ``` ```{r} colnames(temperatureData) <- c("Date", "Time", "WBE", "WBB", "SKE", "SKB", "PGE", "PGB", "CIE", "CIB", "FBE", "FBB") #Rename columns temperatureData$Date <- as.Date(temperatureData$Date, format = "%m/%d/%y") #Convert entries to dates temperatureData <- temperatureData[temperatureData$Date >= "2016-06-19", ] #The outplant only started 6/19. I need to remove all data points before this time. temperatureData$DateTime <- paste(temperatureData$Date, temperatureData$Time) #Create new DateTime column to easily merge tide and environmental data head(temperatureData) #Confirm changes ``` ```{r} temperatureData <- temperatureData[-c(4897:4898), ] #Remove blank two rows at the end of the data tail(temperatureData) #Confirm changes ``` # Merge tidal data with environmental data Tide correction only needs to occur for pH, dissolved oxygen, and salinity data. Temperature data from low tide conditions is still an accurate representation of the oysters' environment. ## pH data ```{r} pHTideData <- merge(x = pHData, y = tideData, by = "DateTime") #Merge pH and tide data colnames(pHTideData) #Get column names ``` ```{r} pHTideData <- pHTideData[, -c(13:14)] #Remove redundant date and time columns colnames(pHTideData) <- c("DateTime", "Date", "Time", "WBE-pH", "WBB-pH", "SKE-pH", "SKB-pH", "PGB-pH", "CIE-pH", "CIB-pH", "FBE-pH", "FBB-pH", "CI-Tide", "FB-Tide", "PG-Tide", "SK-Tide", "WB-Tide") #Change column names head(pHTideData) #Confirm changes ``` ## Dissolved oxygen ```{r} DOTideData <- merge(x = DOData, y = tideData, by = "DateTime") #Merge DO and tide data colnames(DOTideData) #Get column names ``` ```{r} DOTideData <- DOTideData[, -c(14:15)] #Remove redundant date and time columns colnames(DOTideData) <- c("DateTime", "Date", "Time", "WBE-DO", "WBB-DO", "SKE-DO", "SKB-DO", "PGE-DO", "PGB-DO", "CIE-DO", "CIB-DO", "FBE-DO", "FBB-DO", "CI-Tide", "FB-Tide", "PG-Tide", "SK-Tide", "WB-Tide") #Change column names head(DOTideData) #Confirm changes ``` ## Salinity ```{r} salinityTideData <- merge(x = salinityData, y = tideData, by = "DateTime") #Merge salinity and tide data colnames(salinityTideData) #Get column names ``` ```{r} salinityTideData <- salinityTideData[, -c(12:13)] #Remove redundant date and time columns colnames(salinityTideData) <- c("DateTime", "Date", "Time", "CIB-Salinity", "CIE-Salinity", "FBB-Salinity", "FBE-Salinity", "PGE-Salinity", "SKB-Salinity", "SKE-Salinity", "WBB-Salinity", "CI-Tide", "FB-Tide", "PG-Tide", "SK-Tide", "WB-Tide") #Change column names head(salinityTideData) #Confirm changes ``` # Remove exposure times ## pH ```{r} colnames(pHTideData) ``` ```{r} pHTideData$`WBE-pH`[pHTideData$`WB-Tide` <= 1] <- NA #Replace WBE-pH values with "NA" when tide is less than 1 pHTideData$`WBB-pH`[pHTideData$`WB-Tide` <= 1] <- NA #Replace WBB-pH values with "NA" when tide is less than 1 pHTideData$`SKE-pH`[pHTideData$`SK-Tide` <= 1] <- NA #Replace SKE-pH values with "NA" when tide is less than 1 pHTideData$`SKB-pH`[pHTideData$`SK-Tide` <= 1] <- NA #Replace SKB-pH values with "NA" when tide is less than 1 pHTideData$`PGB-pH`[pHTideData$`PG-Tide` <= 1] <- NA #Replace PGB-pH values with "NA" when tide is less than 1 pHTideData$`CIE-pH`[pHTideData$`CI-Tide` <= 1] <- NA #Replace CIE-pH values with "NA" when tide is less than 1 pHTideData$`CIB-pH`[pHTideData$`CI-Tide` <= 1] <- NA #Replace CIB-pH values with "NA" when tide is less than 1 pHTideData$`FBE-pH`[pHTideData$`FB-Tide` <= 1] <- NA #Replace FBE-pH values with "NA" when tide is less than 1 pHTideData$`FBB-pH`[pHTideData$`FB-Tide` <= 1] <- NA #Replace FBB-pH values with "NA" when tide is less than 1 ``` ```{r} #Convert to numeric values pHTideData$`WBE-pH` <- as.numeric(pHTideData$`WBE-pH`) pHTideData$`WBB-pH` <- as.numeric(pHTideData$`WBB-pH`) pHTideData$`SKE-pH` <- as.numeric(pHTideData$`SKE-pH`) pHTideData$`SKB-pH` <- as.numeric(pHTideData$`SKB-pH`) pHTideData$`PGB-pH` <- as.numeric(pHTideData$`PGB-pH`) pHTideData$`CIE-pH` <- as.numeric(pHTideData$`CIE-pH`) pHTideData$`CIB-pH` <- as.numeric(pHTideData$`CIB-pH`) pHTideData$`FBE-pH` <- as.numeric(pHTideData$`FBE-pH`) pHTideData$`FBB-pH` <- as.numeric(pHTideData$`FBB-pH`) ``` ## Dissolved oxygen ```{r} colnames(DOTideData) ``` ```{r} DOTideData$`WBE-DO`[DOTideData$`WB-Tide` <= 1] <- NA #Replace WBE-DO values with "NA" when tide is less than 1 DOTideData$`WBB-DO`[DOTideData$`WB-Tide` <= 1] <- NA #Replace WBB-DO values with "NA" when tide is less than 1 DOTideData$`SKE-DO`[DOTideData$`SK-Tide` <= 1] <- NA #Replace SKE-DO values with "NA" when tide is less than 1 DOTideData$`SKB-DO`[DOTideData$`SK-Tide` <= 1] <- NA #Replace SKB-DO values with "NA" when tide is less than 1 DOTideData$`PGE-DO`[DOTideData$`PG-Tide` <= 1] <- NA #Replace PGE-DO values with "NA" when tide is less than 1 DOTideData$`PGB-DO`[DOTideData$`PG-Tide` <= 1] <- NA #Replace PGB-DO values with "NA" when tide is less than 1 DOTideData$`CIE-DO`[DOTideData$`CI-Tide` <= 1] <- NA #Replace CIE-DO values with "NA" when tide is less than 1 DOTideData$`CIB-DO`[DOTideData$`CI-Tide` <= 1] <- NA #Replace CIB-DO values with "NA" when tide is less than 1 DOTideData$`FBE-DO`[DOTideData$`FB-Tide` <= 1] <- NA #Replace FBE-DO values with "NA" when tide is less than 1 DOTideData$`FBB-DO`[DOTideData$`FB-Tide` <= 1] <- NA #Replace FBB-DO values with "NA" when tide is less than 1 ``` ```{r} #Convert to numeric values DOTideData$`WBE-DO` <- as.numeric(DOTideData$`WBE-DO`) DOTideData$`WBB-DO` <- as.numeric(DOTideData$`WBB-DO`) DOTideData$`SKE-DO` <- as.numeric(DOTideData$`SKE-DO`) DOTideData$`SKB-DO` <- as.numeric(DOTideData$`SKB-DO`) DOTideData$`PGE-DO` <- as.numeric(DOTideData$`PGE-DO`) DOTideData$`PGB-DO` <- as.numeric(DOTideData$`PGB-DO`) DOTideData$`CIE-DO` <- as.numeric(DOTideData$`CIE-DO`) DOTideData$`CIB-DO` <- as.numeric(DOTideData$`CIB-DO`) DOTideData$`FBE-DO` <- as.numeric(DOTideData$`FBE-DO`) DOTideData$`FBB-DO` <- as.numeric(DOTideData$`FBB-DO`) ``` ## Salinity ```{r} colnames(salinityTideData) ``` ```{r} salinityTideData$`CIB-Salinity`[salinityTideData$`CIB-Salinity` <= 1] <- NA #Replace CIB-Salinity values with "NA" when tide is less than 1 salinityTideData$`CIE-Salinity`[salinityTideData$`CIB-Salinity` <= 1] <- NA #Replace CIB-Salinity values with "NA" when tide is less than 1 salinityTideData$`FBB-Salinity`[salinityTideData$`FB-Salinity` <= 1] <- NA #Replace FBB-Salinity values with "NA" when tide is less than 1 salinityTideData$`FBE-Salinity`[salinityTideData$`FB-Salinity` <= 1] <- NA #Replace FBE-Salinity values with "NA" when tide is less than 1 salinityTideData$`PGE-Salinity`[salinityTideData$`PG-Salinity` <= 1] <- NA #Replace PGE-Salinity values with "NA" when tide is less than 1 salinityTideData$`SKB-Salinity`[salinityTideData$`SK-Salinity` <= 1] <- NA #Replace SKB-Salinity values with "NA" when tide is less than 1 salinityTideData$`SKE-Salinity`[salinityTideData$`SK-Salinity` <= 1] <- NA #Replace SKE-Salinity values with "NA" when tide is less than 1 salinityTideData$`WBB-Salinity`[salinityTideData$`WB-Salinity` <= 1] <- NA #Replace WBB-Salinity values with "NA" when tide is less than 1 ``` ```{r} #Convert to numeric values salinityTideData$`CIB-Salinity` <- as.numeric(salinityTideData$`CIB-Salinity`) salinityTideData$`CIE-Salinity` <- as.numeric(salinityTideData$`CIE-Salinity`) salinityTideData$`FBB-Salinity` <- as.numeric(salinityTideData$`FBB-Salinity`) salinityTideData$`FBE-Salinity` <- as.numeric(salinityTideData$`FBE-Salinity`) salinityTideData$`PGE-Salinity` <- as.numeric(salinityTideData$`PGE-Salinity`) salinityTideData$`SKB-Salinity` <- as.numeric(salinityTideData$`SKB-Salinity`) salinityTideData$`SKE-Salinity` <- as.numeric(salinityTideData$`SKE-Salinity`) salinityTideData$`WBB-Salinity` <- as.numeric(salinityTideData$`WBB-Salinity`) ``` # Remove outliers ## pH ```{r} nSites <- 17 #Sites are from columns 4 to 17 for(i in 4:nSites) { #For individual site-habitat data upperBound <- as.numeric((quantile(pHTideData[, i], na.rm = TRUE)[4]) + (1.5*(quantile(pHTideData[, i], na.rm = TRUE)[4] - quantile(pHTideData[, i], na.rm = TRUE)[2]))) #Calculate upper bound lowerBound <- as.numeric((quantile(pHTideData[, i], na.rm = TRUE)[2]) - (1.5*(quantile(pHTideData[, i], na.rm = TRUE)[4] - quantile(pHTideData[, i], na.rm = TRUE)[2]))) #Calculate lower bound pHTideData[, i][pHTideData[, i] > upperBound] <- NA #Replace any values higher than upper bound with NA pHTideData[, i][pHTideData[, i] < lowerBound] <- NA #Replace any values lower than upper bound with NA } #Replace outliers with NA values ``` ## Dissolved oxygen ```{r} nSites <- 18 #Sites are from columns 4 to 18 for(i in 4:nSites) { #For individual site data upperBound <- as.numeric((quantile(DOTideData[, i], na.rm = TRUE)[4]) + (1.5*(quantile(DOTideData[, i], na.rm = TRUE)[4] - quantile(DOTideData[, i], na.rm = TRUE)[2]))) #Calculate upper bound lowerBound <- 0 #Dissolved oxygen content cannot be less than zero DOTideData[, i][DOTideData[, i] > upperBound] <- NA #Replace any values higher than upper bound with NA DOTideData[, i][DOTideData[, i] < lowerBound] <- NA #Replace any values lower than upper bound with NA } #Replace outliers with NA values ``` ## Salinity ```{r} nSites <- 16 #Sites are from columns 4 to 16 for(i in 4:nSites) { #For individual site data upperBound <- as.numeric((quantile(salinityTideData[, i], na.rm = TRUE)[4]) + (1.5*(quantile(salinityTideData[, i], na.rm = TRUE)[4] - quantile(salinityTideData[, i], na.rm = TRUE)[2]))) #Calculate upper bound lowerBound <- as.numeric((quantile(salinityTideData[, i], na.rm = TRUE)[2]) - (1.5*(quantile(salinityTideData[, i], na.rm = TRUE)[4] - quantile(salinityTideData[, i], na.rm = TRUE)[2]))) #Calculate lower bound salinityTideData[, i][salinityTideData[, i] > upperBound] <- NA #Replace any values higher than upper bound with NA salinityTideData[, i][salinityTideData[, i] < lowerBound] <- NA #Replace any values lower than upper bound with NA } #Replace outliers with NA values ``` #Export corrected data ```{r} #write.csv(pHTideData, "2018-11-18-pH-Tide-Data-Corrected.csv") #Export pH data #write.csv(DOTideData, "2018-11-18-DO-Tide-Data-Corrected.csv") #Export DO data #write.csv(salinityTideData, "2018-11-18-Salinity-Tide-Data-Corrected.csv") #Export salinity data #write.csv(temperatureData, "2018-11-18-Temperature-Corrected.csv") #Export temperature data ``` # Obtain daily mean values for environmental data ```{r} outplantDates <- as.Date(unique(temperatureData$Date)) #Save outplant dates as a new vector outplantDates #Confirm vector creation ``` ## pH ```{r} head(pHTideData) ``` ```{r} pHMean <- data.frame("Date" = outplantDates, "WBE-pH-mean" = rep(0, length(outplantDates)), "WBB-pH-mean" = rep(0, length(outplantDates)), "SKE-pH-mean" = rep(0, length(outplantDates)), "SKB-pH-mean" = rep(0, length(outplantDates)), "PGB-pH-mean" = rep(0, length(outplantDates)), "CIE-pH-mean" = rep(0, length(outplantDates)), "CIB-pH-mean" = rep(0, length(outplantDates)), "FBE-pH-mean" = rep(0, length(outplantDates)), "FBB-pH-mean" = rep(0, length(outplantDates))) #Create an empty dataframe head(pHMean) ``` ```{r} nDates <- length(outplantDates) for (j in 4:12) { #For each column with pH data for(i in 1:nDates) { #For each date pHMean[i, j-2] <- mean(pHTideData[pHTideData$Date == outplantDates[i], j], na.rm = TRUE) #Find and save the mean value of the designated column at each date. } } #The loop will cycle through each date first in one column, then move to the next column. Any days with no non-missing data will save as "NaN" in the dataframe. is.na(pHMean) <- sapply(pHMean, is.nan) #Replace all "NaN" with N/A head(pHMean) #Confirm dataframe filling. All "NaN" values are now replaced with N/A. ``` ## Dissolved oxygen ```{r} head(DOTideData) ``` ```{r} DOMean <- data.frame("Date" = outplantDates, "WBE-DO-mean" = rep(0, length(outplantDates)), "WBB-DO-mean" = rep(0, length(outplantDates)), "SKE-DP-mean" = rep(0, length(outplantDates)), "SKB-DO-mean" = rep(0, length(outplantDates)), "PGE-DO-mean" = rep(0, length(outplantDates)), "PGB-DO-mean" = rep(0, length(outplantDates)), "CIE-DO-mean" = rep(0, length(outplantDates)), "CIB-DO-mean" = rep(0, length(outplantDates)), "FBE-DO-mean" = rep(0, length(outplantDates)), "FBB-DO-mean" = rep(0, length(outplantDates))) #Create an empty dataframe head(DOMean) ``` ```{r} for (j in 4:13) { #For each column with DO data for(i in 1:nDates) { #For each date DOMean[i, j-2] <- mean(DOTideData[DOTideData$Date == outplantDates[i], j], na.rm = TRUE) #Find and save the mean value of the designated column at each date. } } #The loop will cycle through each date first in one column, then move to the next column. Any days with no non-missing data will save as "NaN" in the dataframe. is.na(DOMean) <- sapply(DOMean, is.nan) #Replace all "NaN" with N/A head(DOMean) #Confirm dataframe filling. All "Inf" values are now replaced ``` ## Salinity ```{r} head(salinityTideData) ``` ```{r} salinityMean <- data.frame("Date" = outplantDates, "CIB-sal-mean" = rep(0, length(outplantDates)), "CIE-sal-mean" = rep(0, length(outplantDates)), "FBB-sal-mean" = rep(0, length(outplantDates)), "FBE-sal-mean" = rep(0, length(outplantDates)), "PGE-sal-mean" = rep(0, length(outplantDates)), "SKB-sal-mean" = rep(0, length(outplantDates)), "SKE-sal-mean" = rep(0, length(outplantDates)), "WBB-sal-mean" = rep(0, length(outplantDates))) #Create an empty dataframe head(salinityMean) ``` ```{r} for (j in 4:11) { #For each column with salinity data for(i in 1:nDates) { #For each date salinityMean[i, j-2] <- mean(salinityTideData[salinityTideData$Date == outplantDates[i], j], na.rm = TRUE) #Find and save the mean value of the designated column at each date. } } #The loop will cycle through each date first in one column, then move to the next column. Any days with no non-missing data will save as "NaN" in the dataframe. is.na(salinityMean) <- sapply(salinityMean, is.nan) #Replace all "NaN" with N/A head(salinityMean) #Confirm dataframe filling. All "NaN" values are now replaced ``` ## Temperature ```{r} head(temperatureData) ``` ```{r} outplantDateCharacters <- as.character(outplantDates) #Convert outplant dates to characters temperatureData$DateCharacters <- as.character(temperatureData$Date) #Convert dates to characters ``` ```{r} temperatureMean <- data.frame("Date" = outplantDateCharacters, "WBE-temp-mean" = rep(0, length(outplantDates)), "WBB-temp-mean" = rep(0, length(outplantDates)), "SKE-temp-mean" = rep(0, length(outplantDates)), "SKB-temp-mean" = rep(0, length(outplantDates)), "PGE-temp-mean" = rep(0, length(outplantDates)), "PGB-temp-mean" = rep(0, length(outplantDates)), "CIE-temp-mean" = rep(0, length(outplantDates)), "CIB-temp-mean" = rep(0, length(outplantDates)), "FBE-temp-mean" = rep(0, length(outplantDates)), "FBB-temp-mean" = rep(0, length(outplantDates))) #Create an empty dataframe, but be sure to use outplantDateCharacters head(temperatureMean) ``` ```{r} for (j in 3:12) { #For each column with temperature data for(i in 1:nDates) { #For each date temperatureMean[i, j-1] <- mean(temperatureData[temperatureData$DateCharacters == outplantDateCharacters[i], j], na.rm = TRUE) #Find and save the mean value of the designated column at each date. } } #The loop will cycle through each date first in one column, then move to the next column. Any days with no non-missing data will save as "Inf" in the dataframe. is.na(temperatureMean) <- sapply(temperatureMean, is.nan) #Replace all "NaN" with N/A head(temperatureMean) #Confirm dataframe filling. All "NaN" values are now replaced ``` ```{r} temperatureMean$Date <- outplantDates #Replace temperatureMean$Date with outplantDates so they are dates head(temperatureMean) ``` ## Merge all dataframes together I'm going to ordinate means and variances separately, so they need to be in seaprate dataframes. ```{r} dailyMeanData <- cbind(pHMean, DOMean, salinityMean, temperatureMean) #Use cbind to merge all of the dataframes together colnames(dailyMeanData) #View column names ``` ```{r} dailyMeanData <- dailyMeanData[,-c(11, 22, 31)] #Remove all redundant "Date" columns colnames(dailyMeanData) #Confirm column removal ``` # Environmental data NMDS ## Transform data ```{r} dailyMeanDataCorrected <- dailyMeanData #Duplicate dataframe rownames(dailyMeanDataCorrected) <- dailyMeanDataCorrected$Date #Save dates as rownames dailyMeanDataCorrected <- dailyMeanDataCorrected[, -1] #Remove date column head(dailyMeanDataCorrected) #Confirm changes ``` ```{r} meanData.log <- log(dailyMeanDataCorrected + 1) #Log transform data before analysis meanData.log <- meanData.log[-c(32:34),] #Remove last three rows since the outplant ended before then tail(meanData.log) ``` ```{r} meanData.log.trans <- data.frame(t(meanData.log)) #Transpose dataframe so objects are environmental conditions at site-habitat combinations, and descriptors are dates. This is the data I will use for the NMDS. colnames(meanData.log.trans) <- rownames(meanData.log) #Rename columns so there is no "X" in front of dates head(meanData.log.trans) #View transformation ``` ```{r} #write.csv(meanData.log.trans, "2018-12-01-Mean-Environmental-Data-Log-Transformed.csv", row.names = TRUE) #Write out transformed data for future analyses ``` ## Calculate dissimilarity matrix ```{r} meanDataGowerDiss <- daisy(meanData.log.trans, metric = "gower") #Calculate a dissimilarity (distance) matrix based on Gower's coefficient. Since vegan cannot handle missing values, use the daisy function from the cluster library to calculate the dissimilarity matrix to use in all vegan functions. meanDataGowerDiss #Confirm matrix calculation ``` ## Conduct the NMDS ```{r} nmds.scree(meanDataGowerDiss, distance = "euclidean", k = 10, autotransform = FALSE, trymax = 20) #Create a screeplot to compare the stress for solutions across different k values from 2 to 10. Use 20 different random start configurations. As the number of ordination axes increases, stress is minimized because the NMDS algorithm is trying to represent p dimensional data in k dimensions. There is an elbow at 2 ordination axes, which tells me that 2 axes should suffice for the analysis. ``` ```{r} meanData.log.gower.NMDS <- metaMDS(meanDataGowerDiss, distance = 'euclidean', k = 2, trymax = 10000, autotransform = FALSE) #Make MDS dissimilarity matrix on log transformed data using Gower's. meanData.log.gower.NMDS$stress #Stress = 0.01740668 ``` ```{r} #Use code from Jennifer Gardner to define a new function, nmds.montejg, to calculate a p-value with a permutation test for missing data. nmds.montejg <- function(dissim,rawdata,k,nmds.distance='bray',daisy.distance='gower', trymax=50,autotransform=FALSE, trace=0,zerodist='add',perm=99,col.hist='blue',col.line='red', lty=2,las=1,lab=c(5,5,4),...){ library(vegan) library(MASS) z<-metaMDS(comm=dissim,k=k,distance=nmds.distance,trymax=trymax, autotransform=autotransform,trace=trace,...) #nmds analysis on dissimilarity matrix z.stress<-z$stress #get stress y.stress<-rep(0,perm) for(i in 1:perm){ y<-apply(rawdata,2,sample) #permute raw data matrix y<- daisy(y, metric = daisy.distance) # calculate gower's for permuted data y<-metaMDS(comm=y,k=k,distance=nmds.distance,trymax=trymax, autotransform=autotransform,trace=trace,...) #nmds analysis on dissimilarity matrix y.stress[i]<-y$stress #get stress } n<-sum(y.stress<=z.stress) #compute number of random runs with stress < observed p.value<-(1+n)/(1+perm) #compute p-value xmin<-min(z.stress,min(y.stress)) xmax<-max(z.stress,max(y.stress)) hist(y.stress,col=col.hist,las=las,lab=lab, xaxs='i',yaxs='i',xlim=c(xmin,xmax),xlab='Stress', main=paste('Random Permutation Distribution of Stress for',k,'Dimensions',sep=' '),...) abline(v=z.stress,col=col.line,lty=lty,lwd=2,...) cat('Randomization Test of Stress:\n') cat('Permutation stress values:\n') print(y.stress) z<-rbind('Observed stress'=z.stress,'P-value'=p.value,'Times Permute Less Than Observed'=n) return(z) } ``` ```{r} nmds.montejg(dissim = meanDataGowerDiss, rawdata = meanData.log.trans, nmds.distance = 'euclidean', k = 2, autotransform = FALSE, trymax = 20) #Perform a randomization test to determine if the solution for 2 dimensions is significant. The observed stress value is less than the expected stress value. P-value = 0.01000000 ``` ```{r} stressplot(meanData.log.gower.NMDS) #Make Shepard plot to visualize the relationship between original dissimilarities (distance matrix) and distnaces in ordination space. The non-metric R-squared value is 1 (redundant with observed stress value and p-value from the randomization test) ``` ```{r} vec.meanData.log.gower <- envfit(meanData.log.gower.NMDS$points, meanData.log.trans, perm = 1000, na.rm = TRUE) #Calculate loadings by correlating NMDS scores with original variables vec.meanData.log.gower #Look at loadings. All are equally significant. ``` ```{r} ordiplot(meanData.log.gower.NMDS, choices = c(1,2), type = "text", display = "sites", xlab = "Axis 1", ylab = "Axis 2") #Plot basic NMDS plot(vec.meanData.log.gower, p.max = 0.001, col = 'blue') #Plot loadings that are significant at the 0.001 level ``` ## Customize NMDS ```{r} plotCustomization <- data.frame("Site" = rep(0, times = length(meanData.log.trans$`2016-06-19`)), "Habitat" = rep(0, times = length(meanData.log.trans$`2016-06-19`)), "Site-Habitat" = rep(0, times = length(meanData.log.trans$`2016-06-19`)), "Shape" = rep(0, times = length(meanData.log.trans$`2016-06-19`)), "Color" = rep(0, times = length(meanData.log.trans$`2016-06-19`)), "Shape2" = rep(0, times = length(meanData.log.trans$`2016-06-19`))) #Create a new dataframe to store plot customization information rownames(plotCustomization) <- rownames(meanData.log.trans) #Use rownames from NMDS data as rownames for the customization information head(plotCustomization) #Confirm creation ``` ### Site information ```{r} plotCustomization[grep(rownames(plotCustomization), pattern = "CI"), "Site"] <- "CI" #For each rowname with "CI", add "CI" to the site column plotCustomization[grep(rownames(plotCustomization), pattern = "FB"), "Site"] <- "FB" #For each rowname with "FB", add "FB" to the site column plotCustomization[grep(rownames(plotCustomization), pattern = "PG"), "Site"] <- "PG" #For each rowname with "PG", add "PG" to the site column plotCustomization[grep(rownames(plotCustomization), pattern = "SK"), "Site"] <- "SK" #For each rowname with "SK", add "SK" to the site column plotCustomization[grep(rownames(plotCustomization), pattern = "WB"), "Site"] <- "WB" #For each rowname with "WB", add "WB" to the site column head(plotCustomization) #Confirm changes ``` ### Habitat information ```{r} plotCustomization[grep(rownames(plotCustomization), pattern = "CIB"), "Habitat"] <- "Bare" #For each rowname with "CIB", add "Bare" to the habitat column plotCustomization[grep(rownames(plotCustomization), pattern = "FBB"), "Habitat"] <- "Bare" #For each rowname with "FBB", add "Bare" to the habitat column plotCustomization[grep(rownames(plotCustomization), pattern = "PGB"), "Habitat"] <- "Bare" #For each rowname with "PGB", add "Bare" to the habitat column plotCustomization[grep(rownames(plotCustomization), pattern = "SKB"), "Habitat"] <- "Bare" #For each rowname with "SKB", add "Bare" to the habitat column plotCustomization[grep(rownames(plotCustomization), pattern = "WBB"), "Habitat"] <- "Bare" #For each rowname with "WBB", add "Bare" to the habitat column head(plotCustomization) #Confirm changes ``` ```{r} plotCustomization[grep(rownames(plotCustomization), pattern = "CIE"), "Habitat"] <- "Eelgrass" #For each rowname with "CIE", add "Eelgrass" to the habitat column plotCustomization[grep(rownames(plotCustomization), pattern = "FBE"), "Habitat"] <- "Eelgrass" #For each rowname with "FBE", add "Eelgrass" to the habitat column plotCustomization[grep(rownames(plotCustomization), pattern = "PGE"), "Habitat"] <- "Eelgrass" #For each rowname with "PGE", add "Eelgrass" to the habitat column plotCustomization[grep(rownames(plotCustomization), pattern = "SKE"), "Habitat"] <- "Eelgrass" #For each rowname with "SKE", add "Eelgrass" to the habitat column plotCustomization[grep(rownames(plotCustomization), pattern = "WBE"), "Habitat"] <- "Eelgrass" #For each rowname with "WBE", add "Eelgrass" to the habitat column head(plotCustomization) #Confirm changes ``` ### Site and habitat information ```{r} plotCustomization$Site.Habitat <- paste(plotCustomization$Site, "", plotCustomization$Habitat) #Combine "Site" and "Habitat" columns for Site.Habitat head(plotCustomization) #Confirm changes ``` ### Shape assignment #### Bare vs. Eelgrass ```{r} plotCustomization[grep(plotCustomization$Habitat, pattern = "Eelgrass"), "Shape"] <- 16 #Add 16 (filled circles) to the Shape column for each instance of "Eelgrass" in the Habitat column plotCustomization[grep(plotCustomization$Habitat, pattern = "Bare"), "Shape"] <- 1 #Add 1 (open circles) to the Shape column for each instance of "Bare" in the Habitat column head(plotCustomization) #Confirm changes ``` #### Habitat and environmental variable ```{r} #pH plotCustomization[grep(rownames(plotCustomization), pattern = "B.pH"), "Shape2"] <- 0 #Add 0 "open square" to the Shape2 column for each instance pH measurement from a bare habitat identified in the row names plotCustomization[grep(rownames(plotCustomization), pattern = "E.pH"), "Shape2"] <- 22 #Add 22 "closed square" to the Shape2 column for each instance pH measurement from a bare habitat identified in the row names #Dissolved oxygen plotCustomization[grep(rownames(plotCustomization), pattern = "B.DO"), "Shape2"] <- 1 #Add 1 "open circle" to the Shape2 column for each instance pH measurement from a bare habitat identified in the row names plotCustomization[grep(rownames(plotCustomization), pattern = "E.DO"), "Shape2"] <- 21 #Add 21 "closed circle" to the Shape2 column for each instance pH measurement from a bare habitat identified in the row names #Salinity plotCustomization[grep(rownames(plotCustomization), pattern = "B.sal"), "Shape2"] <- 5 #Add 5 "open diamond" to the Shape2 column for each instance pH measurement from a bare habitat identified in the row names plotCustomization[grep(rownames(plotCustomization), pattern = "E.sal"), "Shape2"] <- 23 #Add 23 "closed diamond" to the Shape2 column for each instance pH measurement from a bare habitat identified in the row names #Temperature plotCustomization[grep(rownames(plotCustomization), pattern = "B.temp"), "Shape2"] <- 6 #Add 6 "open triangle" to the Shape2 column for each instance pH measurement from a bare habitat identified in the row names plotCustomization[grep(rownames(plotCustomization), pattern = "E.temp"), "Shape2"] <- 25 #Add 25 "closed triangle" to the Shape2 column for each instance pH measurement from a bare habitat identified in the row names tail(plotCustomization) #Confirm changes ``` ### Color assignment ```{r} plotCustomization[grep(plotCustomization$Site, pattern = "CI"), "Color"] <- "#00A9BD" #Add "#00A9BD" to the Color column for each instance of "CI" in the Site column plotCustomization[grep(plotCustomization$Site, pattern = "FB"), "Color"] <- "#38001C" #Add "#38001C" to the Color column for each instance of "FB" in the Site column plotCustomization[grep(plotCustomization$Site, pattern = "PG"), "Color"] <- "#440D82" #Add "#440D82" to the Color column for each instance of "PG" in the Site column plotCustomization[grep(plotCustomization$Site, pattern = "SK"), "Color"] <- "#017A74" #Add "#017A74" to the Color column for each instance of "SK" in the Site column plotCustomization[grep(plotCustomization$Site, pattern = "WB"), "Color"] <- "#EB8B0C" #Add "#EB8B0C" to the Color column for each instance of "WB" in the Site column head(plotCustomization) #Confirm changes ``` ### Remake NMDS #### Site only ```{r} fig.nmds <- ordiplot(meanData.log.gower.NMDS, choices=c(1,2), type = "none", display = "sites", xlab = "Axis 1", ylab = "Axis 2", cex = 0.5) #Save NMDS as a new object points(fig.nmds, "sites", col = plotCustomization$Color, pch = 16) ordiellipse(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "CI", col = "#00A9BD") #Add confidence ellipse around the data from Case Inlet ordiellipse(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "FB", col = "#38001C") #Add confidence ellipse around the data from Fidalgo Bay ordiellipse(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "PG", col = "#440D82") #Add confidence ellipse around the data from Port Gamble Bay ordiellipse(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "SK", col = "#017A74") #Add confidence ellipse around the data from Skokomish River Delta ordiellipse(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "WB", col = "#EB8B0C") #Add confidence ellipse around the data from Willapa Bay legend("topright", pch = c(rep(x = 16, times = 5)), legend=c('Case Inlet', "Fidalgo Bay", "Port Gamble Bay", "Skokomish River Delta", "Willapa Bay"), col=c('#00A9BD', '#38001C', '#440D82', '#017A74', '#EB8B0C'), cex = 0.5, bty = "n") ``` ```{r} fig.nmds <- ordiplot(meanData.log.gower.NMDS, choices=c(1,2), type = "none", display = "sites", xlab = "Axis 1", ylab = "Axis 2", cex = 0.5) #Save NMDS as a new object points(fig.nmds, "sites", col = plotCustomization$Color, pch = 16) ordihull(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "CI", col = "#00A9BD") #Add confidence ellipse around the data from Case Inlet ordihull(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "FB", col = "#38001C") #Add confidence ellipse around the data from Fidalgo Bay ordihull(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "PG", col = "#440D82") #Add confidence ellipse around the data from Port Gamble Bay ordihull(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "SK", col = "#017A74") #Add confidence ellipse around the data from Skokomish River Delta ordihull(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "WB", col = "#EB8B0C") #Add confidence ellipse around the data from Willapa Bay legend("topright", pch = c(rep(x = 16, times = 5)), legend=c('Case Inlet', "Fidalgo Bay", "Port Gamble Bay", "Skokomish River Delta", "Willapa Bay"), col=c('#00A9BD', '#38001C', '#440D82', '#017A74', '#EB8B0C'), cex = 0.5, bty = "n") ``` #### Site and Habitat ```{r} fig.nmds <- ordiplot(meanData.log.gower.NMDS, choices=c(1,2), type = "none", display = "sites", xlab = "Axis 1", ylab = "Axis 2", cex = 0.5) #Save NMDS as a new object points(fig.nmds, "sites", col = plotCustomization$Color, pch = plotCustomization$Shape) ordiellipse(meanData.log.gower.NMDS, plotCustomization$Habitat, show.groups = "Eelgrass", col = "grey80", lty = 1) #Add confidence ellipse around the data from eelgrass habitats ordiellipse(meanData.log.gower.NMDS, plotCustomization$Habitat, show.groups = "Bare", col = "grey80", lty = 2) #Add confidence ellipse around the data from bare habitats legend("topright", pch = c(rep(x = 1, times = 6), 16), legend=c('Case Inlet', "Fidalgo Bay", "Port Gamble Bay", "Skokomish River Delta", "Willapa Bay", "Bare", "Eelgrass"), col=c('#00A9BD', '#38001C', '#440D82', '#017A74', '#EB8B0C', "grey80", "grey80"), cex = 0.5, bty = "n") ``` ```{r} fig.nmds <- ordiplot(meanData.log.gower.NMDS, choices=c(1,2), type = "none", display = "sites", xlab = "Axis 1", ylab = "Axis 2", cex = 0.5) #Save NMDS as a new object points(fig.nmds, "sites", col = plotCustomization$Color, pch = plotCustomization$Shape) ordihull(meanData.log.gower.NMDS, plotCustomization$Habitat, show.groups = "Eelgrass", col = "grey80", lty = 1) #Add confidence ellipse around the data from eelgrass habitats ordihull(meanData.log.gower.NMDS, plotCustomization$Habitat, show.groups = "Bare", col = "grey80", lty = 2) #Add confidence ellipse around the data from bare habitats legend("topright", pch = c(rep(x = 1, times = 6), 16), legend=c('Case Inlet', "Fidalgo Bay", "Port Gamble Bay", "Skokomish River Delta", "Willapa Bay", "Bare", "Eelgrass"), col=c('#00A9BD', '#38001C', '#440D82', '#017A74', '#EB8B0C', "grey80", "grey80"), cex = 0.5, bty = "n") ``` #### Site, habitat, and environmental variables ```{r} fig.nmds <- ordiplot(meanData.log.gower.NMDS, choices=c(1,2), type = "none", display = "sites", xlab = "", ylab = "", cex = 0.5, xaxt = "n", yaxt = "n") #Save NMDS as a new object points(fig.nmds, "sites", col = plotCustomization$Color, pch = plotCustomization$Shape2, bg = plotCustomization$Color) axis(side = 1, labels = TRUE, col = "grey80", cex.axis = 0.75) mtext(side = 1, text = "NMDS1", line = 2) axis(side = 2, labels = TRUE, col = "grey80", cex.axis = 0.75) mtext(side = 2, text = "NMDS2", line = 2) box(col = "grey80") legend("topleft", pch = c(rep(x = 1, times = 6), 16, 0, 1, 5, 6), legend=c('Case Inlet', "Fidalgo Bay", "Port Gamble Bay", "Skokomish River Delta", "Willapa Bay", "Bare", "Eelgrass", "pH", "Dissolved Oxygen", "Salinity", "Temperature"), col=c('#00A9BD', '#38001C', '#440D82', '#017A74', '#EB8B0C', "black", "black", "black", "black", "black", "black"), cex = 0.4, bty = "n") ordiellipse(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "CI", col = "#00A9BD88") #Add confidence ellipse around the data from Case Inlet ordiellipse(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "FB", col = "#38001C88") #Add confidence ellipse around the data from Fidalgo Bay ordiellipse(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "PG", col = "#440D8288") #Add confidence ellipse around the data from Port Gamble Bay ordiellipse(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "SK", col = "#017A7488") #Add confidence ellipse around the data from Skokomish River Delta ordiellipse(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "WB", col = "#EB8B0C88") #Add confidence ellipse around the data from Willapa Bay ``` ```{r} fig.nmds <- ordiplot(meanData.log.gower.NMDS, choices=c(1,2), type = "none", display = "sites", xlab = "Axis 1", ylab = "Axis 2", cex = 0.5) #Save NMDS as a new object points(fig.nmds, "sites", col = plotCustomization$Color, pch = plotCustomization$Shape2, bg = plotCustomization$Color) ordihull(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "CI", col = "#00A9BD") #Add confidence ellipse around the data from Case Inlet ordihull(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "FB", col = "#38001C") #Add confidence ellipse around the data from Fidalgo Bay ordihull(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "PG", col = "#440D82") #Add confidence ellipse around the data from Port Gamble Bay ordihull(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "SK", col = "#017A74") #Add confidence ellipse around the data from Skokomish River Delta ordihull(meanData.log.gower.NMDS, plotCustomization$Site, show.groups = "WB", col = "#EB8B0C") #Add confidence ellipse around the data from Willapa Bay legend("topright", pch = c(rep(x = 1, times = 6), 16, 0, 1, 5, 6), legend=c('Case Inlet', "Fidalgo Bay", "Port Gamble Bay", "Skokomish River Delta", "Willapa Bay", "Bare", "Eelgrass", "pH", "Dissolved Oxygen", "Salinity", "Temperature"), col=c('#00A9BD', '#38001C', '#440D82', '#017A74', '#EB8B0C', "black", "black", "black", "black", "black", "black"), cex = 0.5, bty = "n") ``` #### Loadings only ```{r} sigLoadings <- envfit(meanData.log.gower.NMDS$points, meanData.log.trans[,c(1:3, 5, 18:19)], perm = 1000, na.rm = TRUE) #Only calculate loadings simper identified as driving differences between FB-WB and SK-WB. See ANOSIM section for simper results. sigLoadings #View loadings ``` ```{r} fig.nmds <- ordiplot(meanData.log.gower.NMDS, choices=c(1,2), type = "none", display = "sites", xlab = "", ylab = "", cex = 0.5, xaxt = "n", yaxt = "n") #Save NMDS as a new object plot(sigLoadings, col = 'grey20') #Plot loadings that simper determined were significant axis(side = 1, labels = TRUE, col = "grey80", cex.axis = 0.75) mtext(side = 1, text = "NMDS1", line = 2) axis(side = 2, labels = TRUE, col = "grey80", cex.axis = 0.75) mtext(side = 2, text = "NMDS2", line = 2) box(col = "grey80") ``` ## Analysis of Similarities (ANOSIM) ### Global ANOSIM #### Site ```{r} siteANOSIM <- anosim(meanData.log.trans, grouping = plotCustomization$Site) #One-way ANOSIM by Site siteANOSIM$statistic #R = -0.07799145 siteANOSIM$signif #p = 0.968 plot(siteANOSIM) #Obtain boxplots and permutation test histogram ``` #### Habitat ```{r} habitatANOSIM <- anosim(meanData.log.trans, grouping = plotCustomization$Habitat) #One-way ANOSIM by Habitat habitatANOSIM$statistic #R = -0.03833658 habitatANOSIM$signif #p = 0.925 plot(habitatANOSIM) #Obtain boxplots and permutation test histogram ``` #### Site and Habitat ```{r} siteAndHabitatANOSIM <- anosim(meanData.log.trans, grouping = plotCustomization$Site.Habitat) #Two-way ANOSIM by Site and Habitat siteAndHabitatANOSIM$statistic #R = -0.2203411 siteAndHabitatANOSIM$signif #p = 1 plot(siteAndHabitatANOSIM) #Obtain boxplots and permutation test histogram ``` #### Environmental Variable ```{r} plotCustomization$EnvironmentalVariable <- rep(0, times = length(plotCustomization$Site)) plotCustomization[grep(rownames(plotCustomization), pattern = "pH"), "EnvironmentalVariable"] <- "pH" plotCustomization[grep(rownames(plotCustomization), pattern = "DO"), "EnvironmentalVariable"] <- "DO" plotCustomization[grep(rownames(plotCustomization), pattern = "sal"), "EnvironmentalVariable"] <- "S" plotCustomization[grep(rownames(plotCustomization), pattern = "temp"), "EnvironmentalVariable"] <- "T" tail(plotCustomization) ``` ```{r} environmentalVariableANOSIM <- anosim(meanData.log.trans, grouping = plotCustomization$EnvironmentalVariable) #One-way ANOSIM by Environmental Variable environmentalVariableANOSIM$statistic #R = 0.8339003 environmentalVariableANOSIM$signif #p = 0.001 plot(environmentalVariableANOSIM) #Obtain boxplots and permutation test histogram ``` #### Environmental Variable and Site ```{r} plotCustomization$EnvVariable.Site <- paste(plotCustomization$EnvironmentalVariable, "", plotCustomization$Site) #Combine Environmental Variable and Site environmentalVariableSiteANOSIM <- anosim(meanData.log.trans, grouping = plotCustomization$EnvVariable.Site) #Two-way ANOSIM by Environmental Variable and Site environmentalVariableSiteANOSIM$statistic #R = 0.7675 environmentalVariableSiteANOSIM$signif #p = 0.001 plot(environmentalVariableSiteANOSIM) #Obtain boxplots and permutation test histogram ``` #### Environmental Variable and Habitat ```{r} plotCustomization$EnvVariable.Habitat <- paste(plotCustomization$EnvironmentalVariable, "", plotCustomization$Habitat) #Combine Environmental Variable and Habitat environmentalVariableHabitatANOSIM <- anosim(meanData.log.trans, grouping = plotCustomization$EnvVariable.Habitat) #Two-way ANOSIM by Environmental Variable and Habitat environmentalVariableHabitatANOSIM$statistic #R = 0.698505 environmentalVariableHabitatANOSIM$signif #p = 0.001 plot(environmentalVariableHabitatANOSIM) #Obtain boxplots and permutation test histogram ``` ### Pairwise ANOSIM ```{r} pairwiseData <- merge(x = meanData.log.trans, y = plotCustomization, by = "row.names") #Merge dataframes rownames(pairwiseData) <- pairwiseData$Row.names #Make the column the rownames pairwiseData <- pairwiseData[, -1] #Remove Sample.Number column head(pairwiseData) #Confirm merge ``` #### Environmental Variable and Habitat ##### pH: Bare vs. Eelgrass ```{r} datapH <- pairwiseData[grep(rownames(pairwiseData), pattern = "pH"),] #Subset data head(datapH) #Confirm subset ``` ```{r} pHHabitatANOSIM <- anosim(datapH[,1:31], grouping = datapH$Habitat) #Conduct ANOSIM pHHabitatANOSIM$statistic #R = 0.2125 pHHabitatANOSIM$signif #p = 0.135 plot(pHHabitatANOSIM) #Obtain boxplots and permutation test histogram ``` ##### Dissolved oxygen: Bare vs. Eelgrass ```{r} dataDO <- pairwiseData[grep(rownames(pairwiseData), pattern = "DO"),] #Subset data head(dataDO) #Confirm subset ``` ```{r} DOHabitatANOSIM <- anosim(dataDO[,1:31], grouping = dataDO$Habitat) #Conduct ANOSIM DOHabitatANOSIM$statistic #R = -0.14375 DOHabitatANOSIM$signif #p = 0.922 plot(DOHabitatANOSIM) #Obtain boxplots and permutation test histogram ``` ##### Salinity: Bare vs. Eelgrass ```{r} dataSalinity <- pairwiseData[grep(rownames(pairwiseData), pattern = "sal"),] #Subset data head(dataSalinity) #Confirm subset ``` ```{r} salinityHabitatANOSIM <- anosim(dataSalinity[,1:31], grouping = dataSalinity$Habitat) #Conduct ANOSIM salinityHabitatANOSIM$statistic #R = -0.1666667 salinityHabitatANOSIM$signif #p = 0.971 plot(salinityHabitatANOSIM) #Obtain boxplots and permutation test histogram ``` ##### Temperature: Bare vs. Eelgrass ```{r} dataTemperature <- pairwiseData[grep(rownames(pairwiseData), pattern = "temp"),] #Subset data head(dataTemperature) #Confirm subset ``` ```{r} temperatureHabitatANOSIM <- anosim(dataTemperature[,1:31], grouping = dataTemperature$Habitat) #Conduct ANOSIM temperatureHabitatANOSIM$statistic #R = -0.192 temperatureHabitatANOSIM$signif #p = 0.905 plot(temperatureHabitatANOSIM) #Obtain boxplots and permutation test histogram ``` #### Environmental Variable and Site ##### pH: All sites ```{r} pHSiteANOSIM <- anosim(datapH[,1:31], grouping = datapH$Site) #Conduct ANOSIM pHSiteANOSIM$statistic #R = 0.328125 pHSiteANOSIM$signif #p = 0.151 plot(pHSiteANOSIM) #Obtain boxplots and permutation test histogram ``` ##### Dissolved oxygen: All sites ```{r} DOSiteANOSIM <- anosim(dataDO[,1:31], grouping = dataDO$Site) #Conduct ANOSIM DOSiteANOSIM$statistic #R = 0.40625 DOSiteANOSIM$signif #p = 0.053 plot(DOSiteANOSIM) #Obtain boxplots and permutation test histogram ``` ```{r} simperDOSite <- simper(dataDO[,1:31], group = dataDO$Site) #Identify what could be driving significant differences summary(simperDOSite) ``` ##### Salinity: All sites ```{r} salinitySiteANOSIM <- anosim(dataSalinity[,1:31], grouping = dataSalinity$Site) #Conduct ANOSIM salinitySiteANOSIM$statistic #R = -0.01333333 salinitySiteANOSIM$signif #p = 0.482 plot(salinitySiteANOSIM) #Obtain boxplots and permutation test histogram ``` ##### Temperature: All sites ```{r} temperatureSiteANOSIM <- anosim(dataTemperature[,1:31], grouping = dataTemperature$Site) #Conduct ANOSIM temperatureSiteANOSIM$statistic #R = 1 temperatureSiteANOSIM$signif #p = 0.002 plot(temperatureSiteANOSIM) #Obtain boxplots and permutation test histogram ``` ```{r} simperTemperatureSite <- simper(dataTemperature[,1:31], group = dataTemperature$Site) #Identify what could be driving significant differences summary(simperTemperatureSite) ```