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Abstract

Delineating the relative influence of genotype and the environment on DNA methylation 

is critical for characterizing the spectrum of organism fitness as driven by adaptation and 

phenotypic plasticity. In this study, we integrated genomic and DNA methylation data for two 

distinct Olympia oyster (Ostrea lurida) populations while controlling for within-generation 

environmental influences. In addition to providing the first characterization of genome-wide DNA

methylation patterns in the oyster genus Ostrea, we identified 3,963 differentially methylated loci

between populations. Our results show a clear coupling between genetic and epigenetic 

patterns of variation, with 27% of variation in inter-individual methylation differences explained 

by genotype. Underlying this association are both direct genetic changes in CpGs (CpG-SNPs) 

and genetic variation with indirect influence on methylation (mQTLs). The association between 

genetic and epigenetic patterns breaks down when comparing measures of population 

divergence at specific genomic regions, which has implications for the methods used to study 

epigenetic and genetic coupling in marine invertebrates. 
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Significance statement 

We know that genotype and epigenetic patterns are primarily responsible for phenotype, 

yet there is a lack of understanding to what degree the two are linked. Here we characterized 

the mechanisms and the degree by which genetic variation and DNA methylation variation are 

coupled in a marine invertebrate, with almost a third of the methylation variation attributable to 

genotype. This study provides a framework for future studies in environmental epigenetics to 

take genetic variation into account when teasing apart the drivers of phenotypic variation. By 

identifying methylation variation that cannot be attributed to genotype or environmental changes

during development, our results also highlight the need for future research to characterize 

molecular mechanisms adjacent to genetic adaptation for producing long-term shifts in 

phenotype. 

Introduction

It is increasingly evident that epigenetic processes both influence phenotype and interact

with genetic variation. One such epigenetic process is DNA methylation, which commonly refers

to the methylation of a cytosine in a CpG dinucleotide. The role of DNA methylation is diverse 

across taxa and varies based on the genomic location. In most vertebrates, DNA methylation is 

widespread across the genome and silences transcriptional activity when present in the 

promoter regions (Wagner et al. 2014; Zemach et al. 2010; Varriale 2014). In contrast many 

marine invertebrates have sparsely methylated genomes and the influence of methylation on 

transcription is more complex (Suzuki & Bird 2008; Roberts & Gavery 2012; de Mendoza et al. 

2019). In both vertebrates and invertebrates, the removal and addition of methyl groups can 
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become canalized during the lifetime of that organism, and if occurring in germ cells has the 

potential to influence subsequent generations. This heritability of DNA methylation, as well as 

taxa-specific methylation rates and patterns, suggest that methylation differences arose in part 

due to evolutionary forces (Varriale 2014). 

While the patterns and functions of CpG methylation differ among vertebrate and 

invertebrate taxa, in both systems methylation is highly variable. The evolutionary source of this 

variation is now an area of active research, with the two dominant factors appearing to be 1) an 

organism’s environmental history (intra- and inter-generational), and 2) its genotype (Jaenisch &

Bird 2003; Lienert et al. 2011; Danchin et al. 2011). Understanding how the environment and 

genotype interact to influence DNA methylation is critical for delineating organism fitness as 

driven by phenotypic plasticity and adaptation, particularly in the context of global climate 

change. Bivalves, and oysters in particular, are a valuable model for investigating invertebrate 

methylation patterns due to their experimental tractability and concordant development of 

genomic resources (Timmins-Schiffman et al. 2013). 

DNA methylation has been shown to vary in response to environmental factors in marine

invertebrates (Eirin-Lopez & Putnam 2019). In oysters, differential methylation has been 

reported in response to ocean acidification (Lim et al. 2020; Downey-Wall et al. 2020), salinity 

stress (Xin Zhang et al. 2017), air exposure (X. Zhang et al. 2017), and the herbicide diuron 

(Akcha et al. 2020). Because there are clear associations between methylation and 

transcriptional activity (Gavery & Roberts 2013; Olson & Roberts 2014; Rivière 2014; Johnson 

et al. 2020; Song et al. 2017), methylation changes may contribute to phenotypic plasticity in 

response to abiotic stressors (Venkataraman et al. 2020; Wang et al. 2021a; Lim et al. 2020; 

Gonzalez-Romero et al. 2017; Wang et al. 2020; Downey-Wall et al. 2020). Methylation 

changes triggered by the environment may themselves be heritable if they occur in gametes, 

leading to transgenerational plasticity. It is the dynamic characteristics of the methylome that is 
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fueling a growing body of research associating methylation variation with environmental 

exposures, particularly in trans-generational studies (Eirin-Lopez & Putnam 2019). However, 

few studies have controlled for (or described) the relationship between methylotype and 

genotype in test organisms (but see (Wang et al. 2021b; Johnson & Kelly 2020; Kvist et al. 

2018), likely because in non-model taxa there is limited understanding of how the methylome is 

shaped by the genome.

While efforts to explore the influence of genotype on DNA methylation are limited in 

marine invertebrates, studies in taxa with advanced genomic resources have identified 

associations between genetic variants and DNA methylation (Banovich et al. 2014; Taudt et al. 

2016). In oysters, genes with constitutive high levels of methylation have less genetic variation 

within populations (Roberts & Gavery 2012). Similar results have been found in the coral Apis 

mellifera and the jewel wasp (Nasonia vitripennis)(Lyko et al. 2010)(Park et al. 2011). One direct

mechanism by which genetic and epigenetic variation can be associated are single nucleotide 

polymorphisms (SNPs) that create or remove CpG loci (CpG-SNPs), and therefore can 

immediately affect local methylation status (Shoemaker et al. 2010; Zhi et al. 2013). 

Alternatively, methylation status itself may change the likelihood of a SNP from occurring by 

“shielding” genetic mutations from selection, allowing genetic differentiation to accumulate 

(Klironomos et al. 2013), and by changing rates of homologous recombination (Li et al. 2012) 

and copy number variation mutation (discussed in (Skinner et al. 2014)). Surprisingly, some 

recent studies in oysters have found no relationship between genetic and epigenetic 

differentiation among populations or breeding cohorts, resulting in the suggestion that these two

processes are uncoupled (Johnson & Kelly 2020; Jiang et al. 2013; Wang et al. 2020). 

Genetic changes that are associated with methylation state but located some distance 

from the associated CpG are referred to as methylation quantitative trait loci (mQTLs). In 

humans, mQTLs may contribute up to 15-20% of inter-individual variation in methylation and up 
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to 70% of population-level methylation variation (Heyn et al. 2013; McClay et al. 2015; Husquin 

et al. 2018; van Dongen et al. 2016). These genetic and epigenetic variants are often 

associated with complex traits or environmental differences, such as immunity or history of 

tobacco exposure (Gao et al. 2017; Bonder et al. 2017; McClay et al. 2015). Mechanistically, 

mQTLs have been proposed to operate in a number of ways. Global methylation patterns can 

be influenced by changing the expression or activity of methyltransferases, although mQTLs are

rarely found in these genes. Increasingly, transcription factors and their binding sites have been 

implicated with mQTLs, as transcription factor binding can prevent methylation of nearby CpGs 

(Héberlé & Bardet 2019). Under this model, genetic variants in transcription factor binding sites 

can influence local methylation (local mQTLs), while genetic variants that affect the activity of 

wide-acting transcription factors can influence methylation at many distant CpGs near binding 

sites for that specific transcription factors (distant mQTLs). While these mechanisms have not 

been investigated in most non-model taxa, the conserved roles of transcription factors across 

taxa suggests that they may also play a role in shaping methylation variation in invertebrates 

and bivalves (Nitta et al. 2015; Bell et al. 2011). Functional genomics are needed to further 

investigate these relationships to ascertain the mechanisms underlying genetic and epigenetic 

relationships in nonmodel taxa.

The Olympia oyster (Ostrea lurida) is an emerging model taxa for investigating the links 

between environment, genetic adaptation, and epigenetic plasticity (White et al. 2017; Silliman 

2019; Maynard et al. 2018; Timmins-Schiffman et al. 2013). Native to estuaries from Baja 

California to the central coast of Canada, O. lurida extends over strong environmental clines 

and mosaics (Chan et al. 2017; Schoch et al. 2006). Significant neutral and putatively adaptive 

genetic variation has been detected between populations at both regional and local scales, 

which is surprising given the potential for high connectivity during the planktonic larval phase 

(Silliman 2019). Experimental tests for local adaptation among neighboring sites within San 
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Francisco Bay, CA (Maynard et al. 2018) and Puget Sound, WA (Silliman et al. 2018; Heare et 

al. 2017) have found phenotypic variation at fitness-related traits, such as growth, salinity 

tolerance, and reproductive timing. By controlling for environmental variation, these studies 

suggest a strong heritable component underlying population differences. Whether this 

component is due to genetic variation, inherited epigenetic modifications, or a combination is 

still unknown. 

The objective of the current study was to leverage a new O. lurida draft genome to 

investigate the relationship between CpG methylation and genetic variation based on 2b-RAD SNPs. 

Oysters from two populations in Puget Sound, WA were raised to maturity for one generation in 

common conditions to remove lifetime exposure to environmental variation. These populations 

have phenotypic variation in larval and adult size and reproductive timing (Silliman et al. 2018; 

Heare et al. 2017; Spencer et al. 2020), show varied gene expression profiles under stress 

(Heare et al. 2018), and come from sites with different environmental profiles in dissolved 

oxygen, temperature, pH, salinity, and food availability (Moore et al. 2008; Banas et al. 2015; 

Khangaonkar et al. 2018). While some marine invertebrate studies have associated overall 

patterns of epigenetic and genetic differentiation between populations (e.g., (Johnson & Kelly 

2020), to our knowledge this is the first to directly link epigenetic and genetic variability by 

identifying and functionally characterizing CpG-SNPs and meth-QTLs.  

Results

Study Design 

Adult Olympia oysters (O. lurida) derived from two separate parent populations in Puget 

Sound, Washington were reared in Clam Bay, Washington. The two parental populations were 
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from Hood Canal and South Sound. Details on broodstock collection and outplanting are 

described in (Heare et al. 2017). Shell length and wet weight were measured immediately prior 

to adductor tissue dissection. Biallelic SNPs were genotyped in 114 individuals (57 from each 

population) using a reduced-representation 2b-RAD approach (Wang et al. 2012) by mapping to

a draft O. lurida genome assembly (GCA_903981925.1) (159,429 scaffolds, N50 = 12,947). 

After filtering for sample coverage (at least 3 reads in >70% of individuals) and a minimum 

overall minor allele frequency (MAF) of 0.01, genotype likelihoods were calculated with ANGSD 

for 5,269 SNPs and used for subsequent population genetic analyses (Korneliussen et al. 

2014). 

To characterize CpG methylation patterns, we randomly selected 9 genotyped 

individuals from each population and used methyl-CpG binding domain (MBD) bisulfite 

sequencing (MBD-BS). These 18 samples are referred to as the MBD18 samples. This reduced 

representation approach is efficient for taxa with sparse methylation patterns, as it enriches for 

methylated DNA regions while providing single base resolution through bisulfite conversion 

(Trigg et al. 2021). Reads from all MBD18 samples were concatenated into one ‘meta-sample’ 

and aligned to the O. lurida genome to describe general methylation patterns in the Olympia 

oyster. Out of 2,030,624 CpG loci with at least 5x sequencing coverage in the ‘meta-sample’, 

1,839,241 (90.6%) were methylated, defined as loci with greater than 50% of reads remaining 

cytosines after bisulfite conversion. 

For comparative methylation analyses, reads from each MBD18 sample were aligned 

separately, and a more conservative set of 252,115 loci were used by filtering for loci with 5x 

coverage across at least 7 of the 9 samples within each population. As MBD-BS enriches for 

methylated regions, this conservative filtering approach may exclude regions that were 

methylated in one population but largely unmethylated in the other. Therefore, we included an 

additional 251 CpG loci that were minimally sequenced in one population (≤1 sample) and 
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widely sequenced in the other population (≥7 samples), and annotated samples with missing 

data in the low-sequenced population as unmethylated at 5x coverage. 

Genome annotation and general methylation landscape

The draft genome assembly (Accession # GCA_903981925.1) is 1.1 Gb in size with a 

contig N50 of 7.8kb. Gene prediction identified 32,210 genes, 170,394 exons, and 163,637 

coding sequences. Additionally, 27,331,887 CpG motifs were identified in the genome 

assembly.

Transposable element identification determined GC content of the genome to be 

36.58%. Retroelements comprised 6.24% of the genome assembly. Those retroelements 

consisted of 0.03% small interspersed nuclear elements (SINEs), 5.69% long interspersed 

nuclear elements (LINEs), and 0.53% of long terminal repeat (LTR) elements. DNA transposons

made up 3.13% of genome assembly. 

Of the 27,331,887 CpGs in the O. lurida genome we found that 1,839,241 were 

methylated (6.73%) using the concatenated MBD18 reads. Of the 1,839,241 methylated loci 

34.5% were intragenic (14.7% in exons, 19.8% in introns), 4.6% and 4.7% were located 2kb 

upstream and downstream of known genes, respectively, and 13.8% were within transposable 

elements. 32.3% of the methylated loci were not associated with known regions (i.e. intergenic 

beyond 2kb gene flanking regions) (Figure 1). The distribution of methylated loci across 

genomic features differed significantly from the distribution of all CpG loci in the O. lurida 

genome (𝝌2=685,890, df=5, p~0), and methylated CpG loci were ~3.7x more likely to be located 

within an exon (Supplemental Figure 2). 
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Figure 1: Comparison of the percentages of CpGs in genome (light blue) vs. methylated CpG loci (dark 

blue) in O. lurida muscle tissue that intersect with each of the following genomic features: exon, intron, 

promoter region (within 2kb of the 5’ end of a gene), transposable element, unknown region of genome. 

Compared to all CpGs in the O. lurida genome methylated loci are more likely to be located in exons 

(3.7x) and introns (1.4x), and less likely to be located in unknown regions (0.60x).

Population genetic structure

Population genetic analyses of all 114 individuals found evidence of divergence with 

gene flow between the two populations. Principal component analysis (PCA) of 5,269 SNPs 

clustered individuals primarily by population of origin along PC1, which represented 6.64% of 

the total variation (Figure 2). NGSadmix was used to perform an ADMIXTURE analysis based 

on genotype likelihoods of 3,724 SNPs, after filtering further for a minimum overall allele 

frequency of 0.05 (Skotte et al. 2013). The most likely number of genetic clusters (K) was 

determined to be K = 2, with evidence of admixture between the two sampled populations 
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(Supplemental Figure 7). Outlier analyses with BayeScan detected 12 SNPs as potentially 

under divergent selection (Foll & Gaggiotti 2008). One of these SNPs was found in a gene 

involved in cell mitosis (G2/mitotic-specific cyclin-B) and another was within 2kb downstream of 

a gene involved in protein ubiquitination (SOCS5) (Supplemental Table 3).

Figure 2: PCA based on 5,269 SNPs for 114 individuals, with colors and shape referring to parental 

population.

Population genetic differentiation (FST) was measured overall and separately for each 

SNP and each gene region (± flanking 2 kb) (Reynolds et al. 1983). These values were derived 

from estimates of the site-frequency spectrum (SFS) in ANGSD, and therefore used 5,882 

SNPs that were filtered as to avoid distorting the allele frequency spectrum (Korneliussen et al. 

2014). Overall unweighted FST between the two populations was 0.0596 (SD=0.087), and 

weighted Fst was 0.0971. Per-SNP FST was calculated for 5,882 SNPs, with 1,909 of these SNPs

found across 1,386 genes. Mean FST for SNPs in genes was slightly lower than overall FST with 

an unweighted FST of 0.0586 (SD=0.084) and weighted FST of 0.093. 38 genes had an FST  > 0.3,
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and were enriched for four biological processes, including steroid hormone mediated signaling 

pathway and three processes related to autophagy (Supplemental Table 4).

DNA methylation differences between populations

Population methylation analyses of the MBD18 individuals found evidence of epigenetic 

divergence. Principal component analysis, which was performed on a percent methylation 

matrix (252,366 loci x 18 samples), clustered individuals by population of origin along PC2, 

which represented 8.5% of the total variation (Figure 3b). Logistic regression analysis identified 

3,963 differentially methylated loci between populations (DMLs, methylation difference >25% 

and Q-value <0.01, Supplemental Figure 4), 1,915 of which were located within known genes 

(48.3% of DMLs), and 1,504 of which were within exons (40.0% of DMLs). An additional 178 

and 171 of the DMLs were found upstream and downstream of genes (within 2kb; 4.5% and 

4.4%, respectively), and 188 were located within transposable elements (4.7%). There were 500

DMLs that were not found in any known feature (12.6%). 54% of DMLs had higher methylation 

levels in SS (2,154 loci), and 46% were higher in HC (1,809) (Supplemental Figure 2). 

Population divergence of methylation was also assessed at the gene level for gene 

regions containing ≥5 informative loci. Of the 6,299 gene regions assessed, 1,447 were 

differentially methylated (DMGs) as determined by binomial GLMs. DMGs and gene regions 

containing DMLs were each enriched for 31 biological processes, both of which included 

sarcomere organization (GO:0045214), and metabolic process (GO:0008152) (Supplemental 

Table 2). Mean PST, a measure of population divergence in methylation (Johnson & Kelly 2020), 

averaged across 14,088 random 10kb bins was 0.30 ±SD 0.26.
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Figure 3: A. PCA of SNP data for the MBD18 samples. B. 

PCA of DNA methylation data (using all loci) for MBD18 

samples. C. Scatter plot of PC1 from SNP genotype data 

and PC2 from DNA methylation data showing the linear 

regression line, Pearson correlation coefficient, and p-

value.

Relationship between genetic and epigenetic variation

To investigate the relationship between genetic and DNA methylation variation, we first 

compared pairwise genetic distances between MBD18 samples with pairwise Manhattan 

distance based on all filtered methylation data and found a weak, but significant relationship 

(Pearson’s R = 0.27, p-value =0.00077 and Spearman’s ρ = 0.22, p-value = 0.0069, Figure 4a). 

This correlation was stronger when comparing against Manhattan distances based on DMLs 
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(Pearson’s R = 0.73, p-value <2.2E10-16 and Spearman’s ρ = 0.70 p-value < 2.2E10-16) (Figure 

4b). This suggests that the rate of genetic changes between individuals is similar to the rate of 

methylation changes, especially for CpG sites that diverge between populations. We further 

compared population specificity of our data by correlating the 1st PC scores from SNP data 

(9.5% of variation, Figure 3a) with the 2nd PC scores of methylation data (8.5%, Figure 3b), as 

these two axes clearly separated individuals by population. These were strongly correlated 

(Pearson’s R = -0.83, p-value = 1.65E10-5 and Spearman’s ρ = -0.86, p-value < 2.2E10-16, 

Figure 3c), suggesting that common underlying mechanisms may be involved in population 

divergence at variable genetic and epigenetic sites. However, we found no significant 

correlation between FST and PST at 827 random 10kb genomic bins where we had both SNP and

methylation data (Figure 5). This result suggests that the strong correlation between population-

specific genetic and epigenetic patterns on the individual level is not primarily driven by 

genomically linked epigenetic and genetic sites.

Figure 4: Epigenetic divergence as a linear function of genetic distance. The x axes represent genetic 

distances calculated from genotype probabilities for 5,269 SNPs. The y axes are the Manhattan distances

from CpG methylation x1000 (a; using all methylation data and b; using DMLs). The linear regression 

lines are shown, together with the Pearson correlation coefficient and p-value.
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Figure 5: Scatterplot of PST (measure of epigenetic divergence between populations) and FST (measure of

genetic divergence) for 827 random 10kb genomic bins with both SNP and methylation data. 

mQTL analysis

To determine if genetic variants are associated with loci showing inter-individual 

methylation variation, we conducted a mQTL analysis using a linear regression model in the R 

package MatrixEQTL (Shabalin 2012). For this analysis, we used 2,860 SNPs that had a MAF >

0.05 across the MBD18 samples as the explanatory variable, PC1-3 of SNP genotype data as a

covariate to control for ancestry, and the percent methylation at 232,567 CpG sites as the 

response variable. ‘Local’ mQTLs were determined to be SNPs within 50kb of the CpG and an 

un-adjusted p-value threshold of 0.01, while distant mQTLs were greater than 50kb from the 

CpG or on a different scaffold and had an FDR threshold of 0.05. Results of the mQTL analysis 

are summarized in Table 1, with 1,985 SNPs (69.4%) detected as mQTLs and 7,157 CpGs 

(3.1%) associated with a mQTL. Due to linkage disequilibrium (LD) among SNPs as well as our 

reduced representation genetic sequencing, most of these SNPs are unlikely to be the actual 

causal variant influencing the methylated site. Therefore, we follow the recommendation of 
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(McClay et al. 2015) and evaluate the methylated sites under genetic control as a better 

representation of genetic influence on the methylome. 

Compared to background rates, local mQTLs were overrepresented in gene regions (83 

annotated genes, 67% vs. 37%, p=8.665 E-16), as were their associated CpGs (78% vs. 59%, 

p=7.23E-9) (Supplemental Figure 9). Genes containing these sites were functionally enriched 

for the GO term “DNA repair” (8.7% of genes), InterPro term “SWI/SNF chromatin-remodeling 

complex” (3.6%), and UP keywords “transcription regulation” (16.8%) and “disease mutation” 

(18%), among other functions. Distant mQTL SNPs were found in 309 genes but were not 

enriched for any functional categories. The CpG loci associated with distant mQTLs were found 

in 1,809 annotated genes and enriched for the COG category “RNA processing and 

modification” (0.7% of genes), 49 GO categories including “transcription DNA-templated” 

(12.1%), “mRNA processing” (2.6%), “covalent chromatin modification” (2.4%), “regulation of 

translational initiation” (0.66%), “chromatin remodeling” (1.1%), nucleic acid binding (5.7%), 

chromatin binding (3.8%), and “transcription factor activity”(3.8%), as well as 87 UP keywords 

and sequence features including “phosphoprotein”(49.7%), “nucleus” (33.2%), “acetylation” 

(22%), “RNA-binding” (6.7%), “methylation” (6.4%), and “chromatin regulator” (3.9%). Some 

genes containing these distantly controlled CpGs include 7 different RNA binding motif proteins,

6 RNA polymerase genes, 8 DEAD-box type helicases, 17 eukaryotic translation initiation factor 

(eif) genes, and six SWI/SNF regulator of chromatin. While most other enrichment tests 

presented here were not significant after Benjamini FDR correction (P < 0.1), 17 (10%) of the 

enriched functions for CpGs with distant mQTLs were significant (Supplementary File 2).

SNPs that create or remove CpGs (CpG-SNPs) may contribute to individual differences 

in methylation, and therefore lead to mQTL associations or correlations between genetic and 

epigenetic distances. We identified 651 CpG-SNPs (12.4%) from our full set of 5,269 SNPs 

through mapping to our draft genome. CpG-SNPs were more likely to be within 350bp of a 
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methylated CpG than non-CpG-SNPs (40.9% vs 34.5%, p=0.00161), when using all CpGs in 

the genome as the background. This 350bp window size represents the maximum length of a 

library fragment, and therefore is the maximum distance at which a CpG-SNP could directly 

affect our measure of methylation. CpG-SNPs were slightly more likely to be within 350bp of a 

DML than non-CpG-SNPs (0.9% vs 0.4%, p=0.04086), suggesting that CpG-SNPs only play a 

minor role in creating DMLs. More of the methylated sites with local meth-QTLs had a CpG-SNP

compared to distant mQTLs (12 vs 8, p=1.508e-13). Due to the sparse genetic sequencing of 

the genome, we are likely missing many CpG-SNPs associated with both local and distant 

mQTLs.

We investigated the spatial overlap between population DMLs and CpGs associated with

local mQTLs, and found CpGs with local mQTLs were more likely to overlap with DMLs than 

CpGs without an mQTL association (24.1% vs. 15.9%, p=0.001289). Genes of particular 

interest included PRICKLE2 (developmental processes, linked to growth in Crassostrea gigas 

(Takeuchi et al. 2003; Yang et al. 2020), TRIM2 (innate immunity, differential methylation to low 

pH in C. hongkongensis larvae (Ozato et al. 2008; Lim et al. 2020)), eukaryotic translation 

initiation factor 3 (eif3) (translation initiation through mRNA recruitment and interactions with 

methyltransferases, response to low pH in Saccostrea glomerata (Wolf et al. 2020; Ertl et al. 

2016), OXCT1 (ketone catabolic process, variably methylated in humans (Feng et al. 2021)), 

Mapk6 (signal transduction, immune signaling in S. glomerata (Ertl et al. 2016)), and MLH3 

(DNA mismatch repair protein (Lipkin et al. 2000)). Examples of two local mQTLs that are also a

DML are shown in Figure 6. A significantly lower proportion of distant mQTLs were associated 

with DMLs (9.5%, p = 1.243e-8). Of these 655 sites, 363 were in 311 genes, which were 

enriched for numerous processes relative to all distant mQTL genes, including functions related 

to development, immune response, transcription factor activity, and coiled coil domains. Unlike 
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local mQTLs, distant mQTLs were deficient in DMLs relative to non-distant mQTLs (9.5% vs 

14%, p < 2.2 10e-16).  

Table 1. Summary statistics for mQTL analyses.

Local (< 50kb) 

p < 0.01

Distant (> 50kb,

different scaffolds)

FDR < 0.05

Number of CpG loci tested 10,320 232,567

Number of SNPs tested 853 2,860

Number and percent of unique SNPs with mQTLs 181 (21.2%) 1,936 (67.7%)

Number and percent of unique methylated sites with mQTLs 240 (2.3%) 6,926 (3.0%)

Number and percent of methylated sites associated with an mQTL

and a CpG-SNP / Number of tested sites with a CpG-SNP

12/179 (6.7%) 8/273 (2.9%)

Number and percent of methylated sites with an mQTL and a DML 58/240 (24.1%) 655/6926 (9.5%) 
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Figure 6: Two example CpG loci that are associated with a local SNP and are differentially 

methylated between populations. Each dot is an individual, with the genotype of the SNP on the 

x-axis and percent methylation on the y-axis. Boxplots are grouped and colored by population. 

A) CpG (Contig54624.19738) is found on a gene annotated as “similar to eif3d”, is differentially 

methylated 38.6% between populations, and associated with SNP Contig54624.19920. B) CpG 

(Contig60108.5780) is found on a gene annotated as “similar to MLH3”, is differentially 

methylated 37.3% between populations, and is associated with SNP Contig60108.2787.

Discussion

Research primarily from humans and plants have shown that both environment and 

ancestry can influence variation in DNA methylation, however these associations are still not 

fully understood in less studied taxa such as marine invertebrates. In this study, we describe the

genotype x epigenotype relationship by integrating high-throughput genomic and methylation 

data for two distinct oyster populations raised in the same environment for one generation. In 

addition to providing the first characterization of genome-wide methylation patterns in the oyster 

genus Ostrea, our results show a clear association between genetic and epigenetic patterns of 
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variation. Underlying this association are both direct genetic changes in CpGs (CpG-SNPs), and

mQTLs with indirect functional influence on methylation. The association between genetic and 

epigenetic patterns breaks down when comparing measures of population divergence at 

specific genomic regions, suggesting that individual variation can outweigh population-level 

variation when comparing these patterns at local genomic scales. 

General DNA methylation patterns 

O. lurida CpG methylation is disproportionately found in gene bodies. When compared to

all CpG loci in the genome, O. lurida methylation is ~3.7x more likely to occur in exons, and 

~1.4x more likely to occur in introns (Figure 1, Supplemental Figure 2). Gene body methylation 

has also been reported for the Eastern oyster (Crassostrea virginica) (Venkataraman et al. 

2020; Johnson & Kelly 2020; Downey-Wall et al. 2020), Pacific oyster (C. gigas) (Gavery & 

Roberts 2013; Song et al. 2017; Wang et al. 2020, 2014), Hong Kong oyster (C. 

hongkongensis) (Lim et al. 2020), and pearl oyster (Pinctada fucata martensii) (Zhang et al. 

2020). The precise role and function of gene body methylation is not yet clear. However, in 

contrast to the suppressive role of promoter methylation in vertebrates, gene body methylation 

in invertebrates is hypothesized to mediate transcriptional activity because it is positively 

associated with gene expression (Roberts & Gavery 2012). Without expression data we cannot 

directly assess the relationship between genic methylation and transcription in O. lurida. 

However the high preponderance for methylation in O. lurida exons, and to a lesser extent 

introns, supports a role in mediating alternative splicing activity. That methylated genes in the O.

lurida genome are enriched for a variety of biological processes, including those related to cell 

cycle and biogenesis, DNA, RNA and protein metabolism, transport, and stress response 

(Supplemental Table 1), supports the theory that methylation regulates both housekeeping and 

inducible processes in marine invertebrates.
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Epigenetic and genetic population structure

Population-specific methylation patterns

Global DNA methylation patterns in O. lurida are influenced by population of origin 

(Figure 3b), despite rearing oysters in common conditions. To examine biological functions 

associated with differential methylation among these populations, we performed enrichment 

analyses on both the 1,447 differentially methylated gene regions (DMGs) and genes containing

the 3,963 differentially methylated loci (DMLs) (Supplemental Table 2). DMGs and genes 

containing DMLs were both enriched for biological processes involved in transport, cell 

adhesion and migration, protein ubiquitination, and sarcomere organization. DMGs were also 

enriched for 27 other processes, including several related to reproduction (e.g. germ cell 

development, lipid storage, oogenesis), and growth (e.g. cell morphogenesis, epithelium 

development, regulation of neurogenesis and growth). The two focal populations have distinct 

abiotic stress tolerances, as well as reproductive and growth strategies, some of which have 

been shown to be transgenerational (Silliman et al. 2018; Spencer et al. 2020; Heare et al. 

2017). As gene expression is associated with methylation status in oysters (Gavery & Roberts 

2013; Johnson et al. 2020), protein-coding genes identified here with population-specific 

methylation rates are good candidates for future studies exploring epigenetic control of 

phenotype in marine invertebrates.

Our methylation data is biased towards hyper-methylated loci (average proportion 

methylation for loci with 5x coverage is ~80%, and only 2.5% of sequenced loci had no 

methylated reads)(Supplemental Figure 1). This type of data is excellent for characterizing the 

methylation landscape, but does limit our ability to compare loci where methylation varies 

significantly among populations (e.g. loci that are hyper-methylated in one population, but hypo-

methylated in the other). To partially mitigate this concern, we implemented a filtering approach 
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that is atypical of MBD-BS studies in order to include some such divergently methylated loci that

may be missed with otherwise strict data filtering. Of these 251 included loci, 246 were DMLs 

and 17 were associated with distant mQTLs, supporting this choice when going forward with 

comparative MBDseq or MBD-BS. As the cost of sequencing decreases, other sequencing 

methods (e.g. WGBS) should be used to detect other regions where methylation differs 

substantially. However, by detecting population-specific epigenetic differences, our results 

contribute to the limited number of studies from Crassostrea oyster species that also found 

population-specific (Johnson & Kelly 2020; Zhang et al. 2018) or family-specific methylation 

patterns (Olson & Roberts 2014). In contrast to these previous studies, the present study 

controls for changes to the methylome that could arise due to differing environments during 

development. Therefore, the observed population-specific methylation patterns reflect either 

heritable methylation differences, or those acquired as germ cells in the parental environments. 

Population genetic variation

Low but significant population genetic divergence had previously been described for 

Olympia oyster populations in Puget Sound using de novo genotype-by-sequencing and 2b-

RAD data (Silliman et al. 2018; Silliman 2019). The current study validates these findings using 

a reference-based 2b-RAD approach and 5,269 SNPs, finding weak (FST= 0.059), but significant

genetic differentiation (Figure 2, Supplemental Figure 7). Similar genetic differentiation patterns 

are observed for other bivalve species on comparable spatial scales, such as the Eastern oyster

(C. virginica) and the Pacific oyster (C. gigas) (Johnson & Kelly 2020; Kawamura et al. 2017). 

Given the potential for gene flow between neighboring oyster populations during the planktonic 

larval stage, the continued evidence for population genetic differentiation suggests that either 

larvae do not disperse as far as would be predicted (Shanks 2009; Pritchard et al. 2015), or that
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adaptive and neutral processes can override the effects of gene flow for some parts of the 

genome (Sanford & Kelly 2011; Weersing & Toonen 2009). 

A benefit of using a reference genome in this study is the ability to also evaluate 

functional patterns of genetic divergence. SNPs in genes had lower mean FST than the genome-

wide average, which aligns with expectations of gene bodies in general showing higher 

sequence conservation due to purifying selection (Kimura 1983). Two gene regions contained 

outlier SNPs, and therefore may be under divergent selection: G2/mitotic-specific cyclin-B and 

SOCS5. G2/mitotic-specific cyclin-B is associated with gametogenesis in C. gigas (Dheilly et al. 

2012), as well as tidally-influenced gene expression changes in the mussel Mytilus californianus

(Gracey et al. 2008). SOCS5, a member of the cytokine signaling family, is highly expressed in 

hemocytes, gills, and the digestive gland of C. gigas (Li et al. 2015). Our 2b-RAD SNPs only 

represented 1,386 genes out of 32,211 in the genome, and therefore our outliers are likely only 

a fraction of genes diverging between these populations (Lowry et al. 2017). Nevertheless, 

these genes should be added to a growing list of candidate loci to investigate further for local 

adaptation in the Olympia oyster (Silliman 2019; Heare et al. 2018; Maynard et al. 2018).   

Associations between methylation patterns and genetic variation  

Previous studies associating genetic variation and DNA methylation patterns in marine 

invertebrates mainly compared measures of population divergence (e.g., FST and PST) at 

overlapping genomic regions, and found little or no relationship (Johnson & Kelly 2020; Wang et

al. 2020; Liew et al. 2020). In the current study, we also found no relationship between FST and 

PST for overlapping genomic regions. However, by further comparing genome-wide summary 

statistics and PCAs at the individual level, we revealed the significant relationship between 

interindividual patterns in methylation and genetic variation, with 27% of variation in inter-

individual methylation differences explained by genetic distance. Similar analyses have found 
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significant correlations in reef-building coral (Dimond & Roberts 2020) and humans (Carja et al. 

2017). By only focusing on measures of population differentiation, previous marine invertebrate 

studies may have missed couplings between methylation and genetic patterns. There are three 

nonexclusive scenarios that could explain the observed relationship between genetic and 

epigenetic patterns: 1) genetic state results in methylation change (e.g. CpG-SNPs), 2) 

methylation state results in genetic change, and 3) epigenetic and genetic changes occur in 

parallel due to independent molecular mechanisms, but are associated through either physical 

linkage or shared evolutionary pressures (Figure 7). 

CpG-SNPs have been implicated as important drivers of genome-epigenome 

interactions in vertebrates, either by removing a CpG site on one or both strands and directly 

disrupting methylation, or by influencing local methylation activity (Zhi et al. 2013; McClay et al. 

2015). A considerable proportion of the SNPs in our study were CpG-SNPs (12.3%), 40.1% of 

which were within 350bp of a methylated CpG, and therefore capable of influencing our MBD-

BS measurements. The enrichment of CpG-SNPs associated with methylated CpGs supports 

the hypothesis that methylation could have preceded and induced genetic variation by altering 

genome stability and mutation rates (Flores et al. 2013). Methylated cytosines readily mutate to 

thymine by deamination, which results in an overall depletion of CpG dinucleotides (Coulondre 

et al. 1978; Schorderet & Gartler 1992; Bird 1980). For instance, in the Pacific oyster C. gigas 

mutation rate is biased towards GC -> AT, particularly at methylated CpG sites, and in coding 

regions (Song 2020), and genes predicted to have low levels of methylation (analyzed in-silico 

using the established CpG observed / expected relationship) are less 
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Figure 7: Molecular and evolutionary mechanisms linking genetic variation and methylation variation. 

DNA mutations can change or create methylation epialleles at CpGs, either directly through CpG-SNPs, 

or indirectly through the creation of local or distant mQTLs. Some of these mQTL associations will be 

spurious, due to linkage disequilibrium (LD) with CpG-SNPs or other mQTLs. Methylation epialleles can 

be created or changed by stochastic epimutations or external signals from the environment. Methylation 

status in turn can change the rate of DNA mutations at a local scale. Observed epigenetic and genetic 

associations may instead be due to independent molecular mechanisms that occur in parallel due to 

shared evolutionary pressures.     

genetically diverse (analyzed via SNPs) (Roberts & Gavery 2012). Alternatively, some CpG-

SNPs may have preceded methylation and led to beneficial methylation variation, in which case 

they may be associated with mQTLs.

High-density methylome and genotyping studies in model taxa have determined that a 

substantial proportion of variably methylated sites are under local genetic control by mQTLs. To 

our knowledge, this is the first mQTL analysis in a marine invertebrate. We found 7,166 of 
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tested CpGs were under genetic control, either locally (2.3%) or distantly (3.0%). This is lower 

than that found for human blood cells (15% local, 0.08% distant)(McClay et al. 2015) and 

Arabidopsis thaliana (18%) (Dubin et al. 2015), although our study has much lower coverage in 

both methylation and genetic data. The McClay human study also found that 97.7% of SNPs 

were local meth-QTLs, which is much higher than the 21% found in our study. One likely 

explanation for this is the highly fragmented status of our draft genome, with 158,535 scaffolds 

under 50kb in length. It is likely that some SNPs within 50kb of a CpG were actually tested as 

distant mQTLs. While our mQTL analysis is not entirely comparable to larger scaled studies in 

humans and plants, it nevertheless shows that associations with genetic variants can be a 

significant source of variation in methylation, and should therefore be investigated further with 

whole genome genotyping. CpG-SNPs are one possible mechanism underlying local mQTLs, 

and we do see an enrichment of CpG-SNPs in local mQTLs compared to distant mQTLs. This 

result has also been seen in model organisms and humans, however in those cases CpG-SNPs

contributed to over 75% of local mQTLs (McClay et al. 2015).    

For mQTLs that lack CpG-SNPs, alternative mechanisms must be considered. Binding 

of transcription factors has been linked to changes in local methylation levels, for example a 

loss of methylation upon transcription factor binding (Héberlé & Bardet 2019). In this framework,

a SNP within a transcription factor binding site may affect methylation locally, while a SNPs that 

affects the expression or activity of transcription factors could generate changes in methylation 

wherever the transcription factor binds (Lienert et al. 2011; Martin-Trujillo et al. 2020). Our 

functional enrichment tests suggest this mechanism may be acting in O. lurida by finding genes 

with mQTL SNPs enriched for “DNA-binding” and “transcription regulation”, and five distant 

mQTLs SNPs within genes involved in transcription factor complexes. Genetic differences that 

affect binding of different chromatin classes have also been shown to modulate local 

methylation patterns (Jeffery & Nakielny 2004; Banovich et al. 2014). One particularly exciting 
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result is that genes containing distantly associated CpGs were highly enriched for RNA 

processing and binding functions, including multiple RNA binding motif proteins and DEAD-box 

RNA helicases. DEAD-box RNA helicases are known to co-regulate transcription factors and 

contribute to chromatin remodeling in multicellular organisms, although the exact molecular 

mechanisms are still unclear (Giraud et al. 2018). They have also been linked to epigenetic 

control of abiotic stress-responsive transcription factors in plants through an RNA-directed DNA 

methylation pathway (Barak et al. 2014). More research integrating chromatin annotations (e.g., 

ATACseq), CpG methylation, genetic diversity, and gene expression are required to begin 

elucidating how these mechanisms interact to drive phenotypic divergence.

To confidently state that epigenomic variation is under genetic control for all detected 

local mQTLs, one assumes that epigenetic inheritance by other means is absent. If epigenetic 

marks can be inherited between generations, then associations with local genetic variants may 

simply be due to LD between the segregating epiallele and nearby SNPs. Epigenetic inheritance

is well characterized in plants (Taudt et al. 2016), and there is evidence of environmentally-

driven epigenetic changes that persist across generations in corals and oysters, although the 

mechanisms of invertebrate epigenetic inheritance is still not understood (Johnson et al. 2020; 

Downey-Wall et al. 2020; Lim et al. 2020; Wang et al. 2020; Akcha et al. 2020; Venkataraman et

al. 2020). It is also possible that genetic variants and epialleles may be under parallel selection 

due to phenotype-genotype interactions, which may lead to a spurious mQTL association 

(Schmid et al. 2018; Taudt et al. 2016). However, since epialleles can undergo both forward and

backward changes, epimutation rates are much higher than DNA mutations and therefore 

spurious mQTL associations will break down rapidly. Comparing mQTL analyses between 

generations would help identify both the heritability of CpG methylation and the consistency of 

mQTL results.
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Evolutionary implications 

Many marine invertebrates with large ranges experience spatial heterogeneity in abiotic 

and biotic factors that lead to population-level divergence in fitness-related traits (Sanford & 

Kelly 2011). This environmentally-driven divergence may be facilitated through phenotypic 

plasticity, selection for locally-favorable genotypes, or a combination. Here we were able to 

examine the primary molecular mechanisms underlying plasticity and adaptation: epigenetic 

modifications and genetic variation. Interestingly, in this system we found a clear coupling of the

two, with 27% of individual epigenetic variation attributable to genetics. This result has profound 

implications for studies of both evolutionary processes and molecular machinery. First, studies 

of plasticity and epigenetic variation among groups from different environments must also 

account for genetic variation, rather than attributing all differences to the environment. Second, 

as genetic variation is clearly heritable, our results suggest that some proportion of DNA 

methylation (and likely associated phenotypes) are also heritable. Finally, despite our two 

populations being raised in the same environment, 73% of the epigenetic variation in our system

was not attributable to genetics. Characterizing the basis of this additional epigenetic diversity, 

such as a historical influence of the environment or independent heritable mechanisms, will 

identify avenues adjacent to genetic adaptation for producing  long-term shifts in phenotype. 

Methods

Draft Genome Assembly and Annotation

To facilitate the analysis of genetic and epigenetic data, a draft genome for the Olympia 

oyster was developed using a combination of short-read sequence data (Illumina HiSeq4000) 

combined with long-read sequence data (PacBio RSII) using PBJelly (PBSuite_15.8.24; English
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et al, 2012). Short reads (NCBI SRA: SRP072461) were assembled using SOAPdenovo (Li et 

al, 2008). The scaffolds (n=765,755) from this assembly were combined with the PacBio long-

read data (NCBI SRA: SRR5809355) using PBJelly (PBSuite_15.8.24; English et al, 2012). 

Assembly with PBJelly was performed using the default settings. Only contigs longer than 1000 

bp were used for further analysis. Genome assembly parameters were compiled using QUAST 

(v4.5; Gurevich et al, 2013).

Genome annotation was performed using MAKER (v.2.31.10; Campbell et al, 2014) 

configured to use Message Passing Interface (MPI). A custom repeat library for use in MAKER 

was generated using RepeatModeler (open-1.0.11; . Hubley and Smit, 2008). RepeatModeler 

was configured with the following software: RepeatMasker (open-4.0.7; configured with 

Repbase RepeatMasker v20170127; (Bao et al. 2015), RECON (v1.08; Bao and Eddy, 2002) 

with RepeatMasker patch, RepeatScout (v1.0.5; Price et al, 2005) and RepeatMaskerBlast 

(RMBLast (2.6.0)) configured with the isb-2.6.0+-changes-vers2 patch file, and TRF (v4.0.4; 

Benson, 1999).

MAKER was run on two high performance computing (HPC) nodes (Lenov NextScale, 

E5-2680 v4 dual CPUs, 28 cores, 128GB RAM) on the University of Washington's shared 

scalable compute cluster (Hyak) using the icc_19-ompi_3.1.2 module (Intel C compiler v19, 

Open MPI v3.1.2). An Olympia oyster transcriptome assembly was used for EST data. Protein 

data used was a concatenation of NCBI proteomes from Crassostrea gigas and Crassostrea 

virginica. Ab-initio gene training was performed twice using the included SNAP software (Korf, 

2004). Functional protein annotation was performed using BLASTp (v.2.6.0+; Altschul et al, 

1990) against a UniProt SwissProt BLAST database (FastA file formatted using BLAST 2.8.1+) 

downloaded on 01/09/2019. The MAKER functions `maker_functional_gff` and 

`maker_functional_fasta` both used the same UniProt SwissProt BLAST database. Protein 

domain annotation was performed using InterProScan 5 (v5.31-70.0; Jones et al, 2014). Code 

29

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

29



and data files used for genome annotation are available in the accompanying repository 

https://github.com/sr320/paper-oly-mbdbs-gen.

Experimental Design

DNA was extracted from adductor muscle tissue from 184 individuals (88 from Hood 

Canal and 96 from Oyster Bay), using E.Z.N.A. Mollusc Kit with RNase A treatment (Omega) 

according to the manufacturer’s instructions. DNA quality was examined on a 1% TAE agarose 

gel and DNA concentration was determined using the dsDNA BR Assay Kit on a Qubit 2 

fluorometer (Invitrogen).

Genetic Analysis

2bRAD Sequencing and Genotyping

Using a 2b-RAD reduced-representation sequencing approach (Wang et al. 2012), we 

sequenced 184 individuals and 53 technical replicates from the two Puget Sound populations 

for a total of 237 samples across 4 lanes of 50bp single-end Illumina HiSeq2500 and 1 

HiSeq4000 lane. The frequent-cutter restriction enzyme AlfI was used with modified adaptors 

(5’-NNR-3’) to target ¼ of all AlfI restriction sites in the genome. We followed the 2bRAD library 

protocol developed by Eli Meyer (available at https://github.com/sr320/paper-oly-mbdbs-gen), 

except that we used 900 ng of starting DNA, 19 PCR cycles as determined by a test PCR, and 

we concentrated the final pooled libraries using a Qiagen PCR kit prior to sequencing. 

Sequencing and sample demultiplexing was performed by GENEWIZ for the four HiSeq2500 

lanes and the University of Chicago’s Functional Genomics Center for the one HiSeq4000 lane. 

Sequencing of some of these samples was previously described in (Silliman et al. 2018). 

30

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

30



 Scripts by Mikhail Matz were used for quality filtering, read trimming, and mapping to 

the reference genome (https://github.com/z0on/2bRAD_denovo). Read trimming was performed

by cutadapt (Martin 2011). Samples were retained for mapping to the genome and genotyping if

they had greater than 1.3 million reads after filtering. Samples were mapped to the genome 

using Bowtie2 with the --local option (Langmead & Salzberg 2012). Genotype likelihoods were 

calculated using ANGSD (Korneliussen et al. 2014) with the following filters: no triallelic sites, p‐

value that SNP is true 1e‐3, minimal mapping quality 20, minimal base quality 25, minimal 

number of genotyped individuals 80 (~70% of individuals passing filter), minimal number of 

reads at a site 3, minimum p‐value for strand bias 1e-5, and minimum overall allele frequency 

0.01. This filtering retained 114 samples and 5,269 SNPs. 

Genetic distance, PCA, Admixture

The genotype likelihoods produced by ANGSD were used for examining population 

genetic structure and estimating pairwise genetic distance. NGSadmix was used to perform an 

ADMIXTURE analysis based on genotype likelihoods of 3,724 SNPs, after filtering further for a 

minimum overall allele frequency of 0.05 (Skotte et al. 2013). The most likely number of genetic 

clusters (K) was determined using the (Evanno et al. 2005) method by running NGSadmix 10 

times for each value of K, with K ranging from one to five, and then uploading the results to 

Clumpak (Kopelman et al. 2015). The q values for the best K were plotted in R. Pairwise genetic

distances between all individuals were estimated using ngsDist with default parameters (Vieira 

et al. 2016). A matrix of genetic distances for the MBD18 samples was subsetted and used for 

comparative analyses with methylation data. 

For a Principal Components Analysis (PCA) of all samples, we used ANGSD to estimate

a covariance matrix by sampling a single read at each polymorphic site using the same filtering 

parameters as previously described. We then performed an eigenvalue decomposition on the 
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matrix and plotted the PCA in R. For the PCA on only the MBD18 samples, we subsetted the 

covariance matrix and ran an eigenvalue decomposition on those samples alone.  

To detect SNPs under putative directional selection, we used qctool v2.0 

(https://www.well.ox.ac.uk/~gav/qctool_v2/) to convert our genotype likelihoods to a VCF of 

SNPs with > 90% confidence. SNPs with less than 90% confidence were coded as missing. We 

used BayeScan v2.1 (Foll & Gaggiotti 2008) with 1:10 prior odds, 100,000 iterations, a burn-in 

length of 50,000, a false discovery rate (FDR) of 10%, and default parameters. Results were 

visualized in R.

To measure population genetic differentiation (FST), we used the realSFS command in 

ANGSD to estimate the Site Frequency Spectrum (SFS) separately for each population, then 

calculated the 2D-SFS which was used as a prior for estimating the joint allele frequency 

probabilities at each site. In order to avoid distorting the allele frequency spectrum, we did not 

filter our data based on the p-value that a SNP was true or for minimum allele frequency. We 

then filtered out potential lumped paralogs sites by removing sites where heterozygotes likely 

compromised more than 75% of all genotypes. This filtering strategy resulted in 363,405 sites 

and 5,882 SNPs. Global FST between populations and per-site FST was calculated using 

ANGSD, based on (Reynolds et al. 1983). A weighted FST estimate was calculated for each 

gene by including all SNPs within ± 2kb of an annotated gene region. 

DNA Methylation

MBD-BS Library Preparation and Alignment

DNA was isolated from adductor tissue using the E.Z.N.A. Mollusc Kit (Omega) 

according to the manufacturer’s protocol. A total of 18 samples were extracted for DNA 

methylation analysis, 9 from the Hood Canal population and 9 from the Oyster Bay population. 

Samples were sheared to a target size of 350bp using a Bioruptor 300 (Diagenode) sonicator. 
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Fragmentation was confirmed with a Bioanalyzer 2100 (Agilent). Methylated DNA was selected 

using the MethylMiner Methylated DNA Enrichment Kit (Invitrogen) according to the 

manufacturer’s instructions for a single, high-salt elution. Samples were sent to ZymoResearch 

for bisulfite conversion, and Illumina library preparation for 50bp single-end reads and 

sequencing with the Pico Methyl-Seq Library Prep Kit (ZymoResearch). Samples were 

multiplexed into a single library and sequenced on an Illumina HiSeq2500 (Illumina). This library

was sequenced across three lanes to achieve the desired number of reads.

Sequence quality was checked by FastQC v0.11.8 and adapters were trimmed using 

TrimGalore! version 0.4.5 (Andrews 2010; Krueger 2012). Bisulfite-converted genomes were 

created in-silico with Bowtie 2-2.3.4 (Linux x84_64 version; (Langmead & Salzberg 2012) using 

bismark_genome_preparation through Bismark v0.21.0 (Krueger & Andrews 2011). Trimmed 

reads were aligned to these genomes with Bismark v0.21.0. Alignment files were deduplicated 

with deduplicate_bismark and sorted using SAMtools v.1.9 (Li et al. 2009). Methylation calls 

were extracted from sorted deduplicated alignment files using coverage2cystosine with --

merge_CpG parameter. 

General DNA methylation landscape 

To assess general methylation patterns in O. lurida, quality trimmed MBD-BS reads from

all samples (n=18) were concatenated, then re-aligned to the genome using Bismark with 

settings as described above. Only loci with at least 5x coverage were examined. A cytosine 

locus was deemed methylated if 50% or more of the reads remained cytosines after bisulfite 

conversion (Gavery & Roberts 2013; Venkataraman et al. 2020). To characterize methylation 

landscape, loci were intersected with the following O. lurida genome features using bedtools 

v2.29.0: exons, introns, gene flanking regions (2kb upstream and downstream), transposable 

elements, and unknown regions (Quinlan 2014). All CpG loci in the O. lurida draft genome were 
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similarly annotated to characterize the distribution of candidate CpG methylation sites across 

features. Using chi-squared contingency tests in R, we examined whether the distribution of 

methylated loci across genomic features differed from the distribution of all CpG sites in the 

genome (ɑ=0.05). 

Comparative methylation analyses

Associations between O. lurida population (Hood Canal, South Puget Sound) and 

methylation patterns were examined by assessing differentially methylated loci (DMLs) and 

differentially methylated gene regions (DMGs). Bismark alignment files (.bam format) were first 

processed in methylKit (version 1.8.1) (Akalin et al. 2012) by using processBismarkAln to 

convert them to a methylRawList object, which contains per-base methylation calls for each 

sample. Loci were filtered to retain those with at minimum 5x coverage using 

filterByCoverage, and unite selected only loci that were retained across 7 of the 9 

samples within each population (N=18). Additional loci were included in the comparative 

analyses to incorporate loci that were very likely unmethylated in one population but highly 

methylated in the other, which is not captured in MBDSeq data due to the heavy bias for 

methylated regions. This was accomplished by identifying CpG loci that were widely sequenced 

in one population (data present for seven of the nine samples) and minimally sequenced in the 

other population (data present for one sample or less), and assuming that the samples with no 

data in the low-sequenced population were unmethylated at 5x coverage. Global differences in 

methylation patterns were assessed by Principal Component Analysis (PCA) using the 

PCASamples function (a version of prcomp), from a percent methylation matrix that was built 

using percMethylation. A matrix of sample x sample manhattan distances was generated 

from the percent methylation matrix using dist() from the stats package for R v4.0.4 and used for

comparative analyses with genetic data. 
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Differentially Methylated Loci (DMLs)

DMLs were determined for each CpG locus using logistic regression in MethylKit with 

calculateDiffMeth, and P-values were adjusted to Q-values using the SLIM method (Wang

et al. 2011). Loci with Q-value<0.01 and percent methylation difference >25% were determined 

to be differentially methylated (DMLs). 

Differentially Methylated Gene Regions (DMGs)

Gene regions were assessed for differential methylation among populations. Methylated 

loci that overlapped with known gene regions were identified using the BEDtools 

intersectBed function, a list of known genes that were identified using the genome 

annotation tool MAKER (Cantarel et al. 2008), and expanded to include 2kb upstream and 

downstream of gene bodies using BEDtools slopBed. Gene regions were assessed 

individually for differential methylation between oyster populations using binomial GLMs and 

Chi-square tests (Liew et al. 2018). P-values were adjusted using the Benjamini and Hochberg 

method (Benjamini & Hochberg 1995). Gene regions that contained fewer than 5 methylated 

loci were discarded prior to GLM analysis. Epigenetic divergence was estimated by PST 

(Johnson & Kelly 2020) for 14,088 random 10kb bins using Pst from the Pstat R package 

(Blondeau Da Silva Stephane [aut 2017).

Gene Enrichment Analyses

DMGs and genes that contain DMLs were each tested for enriched biological functions. 

For each gene set, gene sequences were merged with the O. lurida genome to generate a list of

Uniprot IDs from annotated genes. Enriched biological processes in each gene set were 

identified with the Gene-Enrichment and Functional Annotation Tool from DAVID v6.8 as those 

with modified Fisher Exact P-Values (EASE Scores) <0.1 (Huang et al. 2009). 
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Comparing DNA Methylation and Genetics

To investigate the relationship between genetic and DNA methylation variation, we 

compared summary statistics at both the level of the individual and genomic region for the 18 

individuals where we had both genetic and epigenetic data (MBD18). First we compared 

pairwise genetic distances based on 5,269 SNPs against pairwise Manhattan distances based 

on all filtered methylation data, and determined both the Pearson and Spearman correlations in 

R. We also compared the distances when only using DMLs for methylation distances (Figure 4).

We then assessed the correlation between the 1st PC scores from SNP data against the 2nd 

PC scores of methylation data (Figure 3). We also calculated mean FST and PST  for the 827 

10kb genomic bins where we had both SNP and methylation data. These FST and PST values 

were calculated as previously described for gene regions, with overlapping 10kb regions 

identified with BEDtools (Quinlan 2014). To identify CpG-SNPs in our set of 5,269 SNPs, we 

used the injectSNPsMAF and getCpGsetCG functions in the R package RaMWAS v1.18 

(Shabalin et al. 2018) and the package bedR v1.0.7 (Haider et al. 2016).

To determine the relationship between regions of the genome with genetic variation and 

regions with inter-individual methylation variation, we conducted a mQTL analysis using a linear 

regression model ‘modelLINEAR’ in the R package MatrixEQTL (Shabalin 2012). CpGs were 

removed if no samples had greater than 12% difference in methylation, resulting in 232,567 

CpGs for the analysis. Methylation values were corrected using the inverse quantile normal 

transformation of ranked values using custom R code (McCaw et al. 2020). 2,860 SNPs 

remained after filtering for those genotyped in at least 7 individuals of both populations and with 

an overall MAF > 0.05. To control for ancestry, the first three PCs of the SNP data were 

included as covariates in the regression model. Local mQTLs were determined to be SNPs 

within 50kb of the CpG and a p-value threshold of 0.01, while disant mQTLs were greater than 

50kb from the CpG or on a different scaffold, had a p-value threshold of 0.01, and an FDR of 
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1% after Benjamini–Hochberg correction. Summary and plotting of mQTL loci was performed in 

R and ggplot2 (Wickham 2016). Gene regions containing mQTL SNPs and their associated 

CpGs were analyzed for functional enrichment with DAVID as described for DMLs, however for 

the CpGs associated with distant mQTLs we used an EASE score cutoff of 0.05.
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