--- title: "04-venn" format: html editor: visual --- ```{r} # Install and load the necessary packages #install.packages("VennDiagram") library(VennDiagram) library(grid) # Create a list containing 20 themes or keywords for each project project_themes <- list( Project1 = c("marine", "corals", "epigenetics", "environment", "stressors", "inheritance", "reef_building", "physiology", "ecology", "evolution", "symbiosis", "education", "energetics", "metabolic", "phenotype", "E5_platform", "STEM", "open_science", "quantitative_approaches", "research_reproducibility"), Project2 = c("marine", "oysters", "epigenetics", "environment", "stressors", "inheritance", "aquaculture", "DNA_methylation", "Crassostrea_virginica", "ocean_acidification", "intergenerational_response", "genomics", "adaptation", "bioinformatics", "biogeochemistry", "E2O", "girls_in_STEM", "low_income_schools", "open_science", "reproducibility"), Project3 = c("marine", "oysters", "epigenetics", "environment", "stressors", "inheritance", "climate_change", "physiology", "Crassostrea_gigas", "tetraploid", "triploid", "temperature", "salinity", "low_pH", "oxygen_consumption", "shell_morphology", "survival_rates", "proteomics", "DNA_methylation", "environmental_conditions"), Project4 = c("marine", "oysters", "epigenetics", "environment", "stressors", "inheritance", "genomics", "Olympia_oyster", "Puget_Sound", "restoration", "protection", "environmental_change", "ecological_interactions", "population_structure", "genetic_variation", "RAD-Seq", "BS-Seq", "web-based_platform", "discovery", "collaboration") ) # Generate the Venn diagram to visualize the relationships venn.plot <- venn.diagram( x = project_themes, category.names = c("Project 1", "Project 2", "Project 3", "Project 4"), filename = NULL, output = TRUE ) grid.draw(venn.plot) ``` ```{r} # Install and load the necessary packages #install.packages("eulerr") library(eulerr) # Create a data frame containing 20 themes or keywords for each project project_themes <- data.frame( themes = c(rep("Project1", 20), rep("Project2", 20), rep("Project3", 20), rep("Project4", 20)), keywords = c("marine", "corals", "epigenetics", "environment", "stressors", "inheritance", "reef_building", "physiology", "ecology", "evolution", "symbiosis", "education", "energetics", "metabolic", "phenotype", "E5_platform", "STEM", "open_science", "quantitative_approaches", "research_reproducibility", "marine", "oysters", "epigenetics", "environment", "stressors", "inheritance", "aquaculture", "DNA_methylation", "Crassostrea_virginica", "ocean_acidification", "intergenerational_response", "genomics", "adaptation", "bioinformatics", "biogeochemistry", "E2O", "girls_in_STEM", "low_income_schools", "open_science", "reproducibility", "marine", "oysters", "epigenetics", "environment", "stressors", "inheritance", "climate_change", "physiology", "Crassostrea_gigas", "tetraploid", "triploid", "temperature", "salinity", "low_pH", "oxygen_consumption", "shell_morphology", "survival_rates", "proteomics", "DNA_methylation", "environmental_conditions", "marine", "oysters", "epigenetics", "environment", "stressors", "inheritance", "genomics", "Olympia_oyster", "Puget_Sound", "restoration", "protection", "environmental_change", "ecological_interactions", "population_structure", "genetic_variation", "RAD-Seq", "BS-Seq", "web-based_platform", "discovery", "collaboration") ) # Create an euler diagram project_euler <- euler(project_themes, input = "binary") # Plot the diagram plot(project_euler, quantities = TRUE) ``` ```{r} # Install and load the necessary packages install.packages("venn") library(venn) # Create a list containing 20 themes or keywords for each project project_themes <- list( Project1 = c("marine", "corals", "epigenetics", "environment", "stressors", "inheritance", "reef_building", "physiology", "ecology", "evolution", "symbiosis", "education", "energetics", "metabolic", "phenotype", "E5_platform", "STEM", "open_science", "quantitative_approaches", "research_reproducibility"), Project2 = c("marine", "oysters", "epigenetics", "environment", "stressors", "inheritance", "aquaculture", "DNA_methylation", "Crassostrea_virginica", "ocean_acidification", "intergenerational_response", "genomics", "adaptation", "bioinformatics", "biogeochemistry", "E2O", "girls_in_STEM", "low_income_schools", "open_science", "reproducibility"), Project3 = c("marine", "oysters", "epigenetics", "environment", "stressors", "inheritance", "climate_change", "physiology", "Crassostrea_gigas", "tetraploid", "triploid", "temperature", "salinity", "low_pH", "oxygen_consumption", "shell_morphology", "survival_rates", "proteomics", "DNA_methylation", "environmental_conditions"), Project4 = c("marine", "oysters", "epigenetics", "environment", "stressors", "inheritance", "genomics", "Olympia_oyster", "Puget_Sound", "restoration", "protection", "environmental_change", "ecological_interactions", "population_structure", "genetic_variation", "RAD-Seq", "BS-Seq", "web-based_platform", "discovery", "collaboration") ) # Plot the Venn diagram with keywords venn(project_themes, ilab = TRUE, zcolor = "style", cexil = 0.6) ``` ```{r} # Install and load the necessary packages install.packages("igraph") library(igraph) # Create a list containing 20 themes or keywords for each project project_themes <- list( Project1 = c("marine", "corals", "epigenetics", "environment", "stressors", "inheritance", "reef_building", "physiology", "ecology", "evolution", "symbiosis", "education", "energetics", "metabolic", "phenotype", "E5_platform", "STEM", "open_science", "quantitative_approaches", "research_reproducibility"), Project2 = c("marine", "oysters", "epigenetics", "environment", "stressors", "inheritance", "aquaculture", "DNA_methylation", "Crassostrea_virginica", "ocean_acidification", "intergenerational_response", "genomics", "adaptation", "bioinformatics", "biogeochemistry", "E2O", "girls_in_STEM", "low_income_schools", "open_science", "reproducibility"), Project3 = c("marine", "oysters", "epigenetics", "environment", "stressors", "inheritance", "climate_change", "physiology", "Crassostrea_gigas", "tetraploid", "triploid", "temperature", "salinity", "low_pH", "oxygen_consumption", "shell_morphology", "survival_rates", "proteomics", "DNA_methylation", "environmental_conditions"), Project4 = c("marine", "oysters", "epigenetics", "environment", "stressors", "inheritance", "genomics", "Olympia_oyster", "Puget_Sound", "restoration", "protection", "environmental_change", "ecological_interactions", "population_structure", "genetic_variation", "RAD-Seq", "BS-Seq", "web-based_platform", "discovery", "collaboration") ) # Create edges between project nodes and theme nodes edges <- do.call(rbind, lapply(names(project_themes), function(project) { cbind(project, project_themes[[project]]) })) # Create the graph object g <- graph_from_edgelist(edges) # Set vertex attributes V(g)$type <- bipartite_mapping(g)$type V(g)$color <- ifelse(V(g)$type, "lightblue", "gold") V(g)$label.color <- "black" V(g)$label.font <- 2 V(g)$label.cex <- 0.8 V(g)$size <- ifelse(V(g)$type, 15, 5) # Set edge attributes E(g)$color <- "gray" # Plot the network diagram plot(g, layout = layout_as_bipartite, vertex.label.dist = 1, main = "Project Keyword Network Diagram") ```