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Methods

400 [TK: this was for the full experiment, should we reduce to, say, the 9 with libraries?] male C. bairdi
were collected with pots from Stephen’s Passage in southeastern Alaska in October 2017. Crabs were then
transported to the Ted Stevens Marine Research Institute in Juneau, AK and placed in TK L flow-through
seawater tanks. They were then (TK: assuming covered w/ insulating foam board) held at 7.5°C for a 9-day
acclimation period. At the end of this acclimation period, 0.2 ml of hemolymph was drawn from each crab
and preserved in 1200 pl RNAlater.

At the conclusion of the acclimation period, crabs were divided randomly into three treatment groups. The
control group was held at 7.5°C. The water temperature of the other two groups (henceforth the elevated
and decreased groups) was gradually changed to 10°C and 4°C, respectively. This change took place over
two days. At the end of the two-day temperature adjustment, an additional 0.2 ml of hemolymph was drawn
from each crab and preserved in 1200 pl RNAlater. Tanks were held at their temperatures for an additional
15 days, for a total experimental duration of 17 days. All surviving crabs then had three additional 0.2 ml
hemolymph samples withdrawn and preserved in 1200 ul RNAlater. Due to a mass mortality event in the
elevated group, no samples in this group were taken. Crabs were then humanely euthanized.

For samples from Day 17 of the experiment [TK: this looks like a real soft spot for any conclusions of high
vs. low infection status for me - we're determining high vs. low after the majority of the samples were taken],
DNA was extracted and subjected to gPCR following established protocol for Hematodinium sp. (Crosson
2011) and aligned to a provided species-specific standard curve. Samples were tested in duplicate. This
provided a measure of the level of Hematodinium sp. infection.

RNA was extracted from all samples using Quick DNA /RNA Microprep Plus Kit (Zymo Research) according
to the manufacturer’s protocol [TK: Cite Zymo in references?]. Samples were quantified (2 pl) on Qubit
3.0 using the Qubit RNA HS Kit (Invitrogen) [TK: Cite Invitrogen in references?]. Based on RNA yield,
three crabs were chosen from each treatment group, and all samples from these crabs were submitted to the
Northwest Genomics Center at Foege Hall at the University of Washington for construction and sequencing
of RNA-seq libraries.

Transcriptome Assembly and Annotation

Raw sequence data were assessed using FastQC (v0.11.8; Andrews 2010) and MultiQC (v1.6; Ewels et
al. 2016) pre- and post-trimming. Data were quality trimmed using fastp (v0.20.0) (Chen et al. 2018). A
transcriptome was de novo assembled from all libraries from the nine sequenced crabs, along with a number



of pooled samples (Supp. Table TK), using Trinity (v2.9.0; Grabherr et al. 2011; Haas et al. 2013). This is
hereafter referred to as the unfiltered transcriptome. Trimmed sequencing reads were functionally annotated
with DTAMOND BLASTx (0.9.26; Buchfink et al. 2015) using the UniProt Swiss-Prot database (downloaded
2020-01-23) [TK: Sprot = Swiss-Prot db right?].

To examine host expression specifically, the individual libraries used in the creation of the unfiltered transcrip-
tome were compared and annotated using DIAMOND BLASTXx (v0.9.29) to a publicly-available Chionoecetes
opilio genome (NCBI Acc: GCA_016584305.1, citation TK). C. opilio and C. bairdi are quite closely re-
lated, and often produce viable hybrids. Sequences from the libraries with an e-value below 1x10°-4 were
kept and assembled using Trinity (v2.12.0) into a transcriptome. This is hereafter referred to as the host
transcriptome.

A third transcriptome was created to examine expression in Hematodinium sp. The same set of libraries
were imported into MEGANG6 (citation TK) and a taxonomic filter was applied to select only Alveolata
sequences. These sequences were then assembled using Trinity (v2.9.0) and annotated with DIAMOND
BLASTX (v0.9.29). This transcriptome is hereafter referred to as the parasite transcriptome

Library Alignment and Differential Expression Analysis

Every library was pseudoaligned to each of the three transcriptomes (unfiltered, host, and parasite) using
kallisto (Bray et al. 2016), and abundance matrices were then produced using a perl script provided within
the Trinity pipeline (v2.12.0). Pairwise comparisons for differential expression of contigs was performed with
the R package DESeq2 (Love et al. 2014). Libraries were grouped based on treatment group, temperature
at time of sample, and day for this series of pairwise comparisons. [TK: supplemental table of pairwise
comparisons?|

Gene ontology (GO) terms were obtained by cross-referencing the accession IDs of each contig with the
Gene Ontology database (TK citation). For each pairwise comparison, the log2-fold changes were extracted
from the DESeq2 output. These were used as input for GO-MWU (Wright et al. 2015), which performs a
Mann-Whitney U test and utilizes adaptive clustering to examine gene ontology term enrichment.

Characterizing Immune Genes

The cross-referenced table of accession IDs and GO terms for each transcriptome was filtered to examine
genes with the GO term for “Immune Response” (GO: 0006955). Literature searches for functions within
closely-related species were then performed

Network Analysis

The libraries produced by the pseudoalignments were used for three weighted correlation network analyses
- one per transcriptome. For this, the R package WGCNA (Langfelder & Horvath 2008) was used. Contigs
were clustered by expression patterns into module eigengenes. Those modules were then correlated with
sample traits, such as crab, temperature, day, carapace width, and infection level as determined by qPCR.

Analyzing WGCNA Modules

All modules with a significant correlation to a sample trait were examined. If the significance appeared to be
the result of correlation to libraries from a single crab, the module was discarded. The module membership
(KME) of contigs belonging to that module was extracted and analyzed using GO-MWU.



Table 1: Individual libraries

Crab ID | Treatment group | Day 0 sample ID | Day 2 sample ID | Day 17 sample ID
A Ambient 178 359 463
B Ambient 118 349 481
C Ambient 132 334 485
D Decreased 73 221 427
E Decreased 151 254 445
F Decreased 113 222 425
G Elevated 173 272 NA
H Elevated 72 294 NA
1 Elevated 127 280 NA

TK section

Talk here about how lots of genes from the unfiltered transcriptome didn’t match closely to either the host
genome or parasite genes? Also did we make sure there was no overlap in transcripts between the two
(i.e. none that were assigned to both the host and parasite transcriptome)?

Results

DESeq2

The DESeq2 package was used to examine differential expression between libraries, and to perform various
pairwise comparisons between sample groups. Principal component analyses of samples taken from the
elevated-temperature treatment group showed clustering by day, and thus by temperature. This was observed
for libraries aligned to both the unfiltered and host-only transcriptomes. Due to low counts, a PCA could
not be created for libraries aligned to the parasite-only transcriptome. No such clustering was observed for
the ambient-temperature libraries, regardless of transcriptome, along this same timeframe.

[TK: CHANGE IMAGE LEGENDS FROM TEMPERATURE TO DAY. Done for hematl.6, just rerun
DESeq for other PCAs needed (after updating exp_ design table)].
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Figure 1: PCA for elevated-temperature libraries, Days 0-2 (unfiltered transcriptome)
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Figure 2: PCA for elevated-temperature libraries, Days 0-2 (crab transcriptome)
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Figure 3: PCA for ambient-temperature libraries, Days 0-2 (unfiltered transcriptome)
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GO-MWU

Pairwise comparisons were performed using GO-MWU to determine which biological processes were enriched.

Temperature Adaptation

Adaptation to temperature over the two-day temperature change period and, if applicable, the length of the
experiment, was examined.

Unfiltered Transcriptome Unfiltered libraries from both the elevated-temperature treatment group saw
enrichment in numerous biological processes over the two-day period of temperature change from ambient.
Notably, enriched pathways included TK, TK, and TK. A large number of pathways were also enriched for
the decreased-temperature treatment group over this same time period, including TK, TK, and TK. Within
the ambient-temperature control group, process enrichment was minimal over this timespan.
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Figure 7: GO term enrichment for decreased—tempe(%ature libraries, Days 0-2 (unfiltered transcriptome)
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Time

Unfiltered Transcriptome Over the 17 days of the experiment, GO term expression changed substan-
tially within the control group. Overall, the control group saw changes in TK, TK, and TK pathways.
Based on this, it appears that TK, TK, and TK pathways are involved in over the course of an infection
with Hematodinium.

TK: DISCUSSION, TALK ABOUT HOW THIS COULD EITHER BE AN INDICATION OF CHANGES
OVER COURSE OF INFECTION OR INDICATION OF TANK ADAPTATION.
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Figure 9: GO term enrichment for ambient—tempella?ture libraries, Days 0-17 (unfiltered transcriptome)



Host Transcriptome Over the course of the experiment, only minor pathway expression changes were
observed. This indicates TK IMMUNOSUPPRESSIVE TALK HERE - IS OTHER STUFF GETTING IN
AND CHANGING?

Parasite Transcriptome While no major changes were observed in the host, Hematodinium expression
did shift substantially over the same time period. Generally, those changes were associated with TK and
TK. This indicates that as Hematodinium multiplies within the host, TK DISCUSSION OF POSSIBLE
CHANGES IN MORPHOLOGY AND EXPRESSION AS DENSITY INCREASES
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Figure 10: GO term enrichment for ambient—tempe]réture libraries, Days 0-17 (unfiltered transcriptome)
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Immune Genes
Host

Numerous genes (n = TK) within the C. bairdi transcriptome were associated with immune function (GO:
0006955). Many were members of the Cathepsin family, with Cathepsins C, J, L, S, U, V, and W all
present. Cathepsin L was particularly broadly expressed, with seven distinct genes coding for Cathepsin and
Procathepsin L [TK: does this make sense to say?]. Furthermore, Procathepsin L was differentially-expressed
in the experimental group. Several types of MAPKSs (mitogen-activated protein kinases) were also present
within the transcriptome, including two p38 MAPKs and one one MAP4K. MAPKSs are part of the IMD
(immune deficiency) pathway, a notable component of the crustacean immune system. Several other genes
associated with the IMD pathway were observed, including the transcription factor Relish and the kinase
inhibitor IxK [TK: change 1st K to a kappa |. NFIL3, a nuclear factor which has been found to regulate
Relish expression in similar systems, was also present.

Other notable immune-linked genes observed were Transcription Activator Protein-1 (TF AP-1) and
Granzyme A. TF AP-1 acts as an immune system regulator within other crab species, along with a potential
role as an osmoregulator. Little research on the role of Granzyme A in invertebrates has been performed,
but in vertebrates it has a cytotoxic role against intracellular pathogens.

Parasite

Within the Hematodinium sp. transcriptome, 4 genes were linked to immune function. All four of these were
cysteine proteases, which TK CP DESCRIPTION. Three of the four were cathepsins, including both Pro-
cathepsin and Cathepsin L. TK: PROBBALY TALK ABOUT ROLE OF CAT L IN PARASITES WITHIN
DISCUSSION, BUT NEED A BIT MORE TO ROUND THIS SECTION OUT

TK: SOME SORT OF TABLE FOR DESCRIBING IMMUNE GENES?

Characterizing Overall Expression Patterns

Prior to filtering by taxa, samples from the lowered-temperature treatment group saw an average overall
decrease in expression in 42% of transcripts, while the control group averaged a 33% decrease

Table TK: Overall expression in samples unfiltered by taxa

Ambient Lowered

Increase  30.8% 27.4%
Decrease  33.9% 42.9%
Neither 35.5% 29.6%

However, this same pattern was not observed when examining expression within the host or parasite specif-
ically. Within the host, overall expression patterns were remarkably similar regardless of temperature. And
within the parasite, expression increased within the lowered-temperature treatment group (TK STATISTI-
CAL TESTS ON THESE RESULTS - CHI-SQUARE?) TK: MENTION CAVEAT OF 2 UNINFECTED IN
LOWERED-TEMP GROUP, OR DO IN DISCUSSION?

Table TK: Overall host transcript expression

Ambient Lowered

Increase  28.9% 28.6%
Decrease 31.8% 32.2%
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Ambient Lowered

Neither  39.3% 39.2%

Table TK: Overall parasite transcript expression

Ambient Lowered

Increase  32.3% 43.4%
Decrease  29.5% 29.1%
Neither 42.3% 30.1%

Characterizing Immune Gene Expression Patterns

NOTE: I really don’t think our sample size of immune genes is large enough to make overall judgments on
expression patterns, so this section is probably ripe for cutting. Still, T'll wait till I run a chi-square (or
similar) test on this to see.

T’ll also avoid writing up a more detailed analysis until I run those tests

Table TK: Immune gene expression in samples unfiltered by taxa

Ambient Lowered

Increase  37.1% 8.1%
Decrease 28.5% 67.2%
Neither  34.4% 24.7%

Table TK: Immune gene host transcript expression

Ambient Lowered

Increase  31.4% 9.7%
Decrease  28.5% 57.6%
Neither 40.0% 32.7%

Parasite expression: not available, only 5 genes total

WGCNA

A signed weighted correlation network analysis (WGCNA) was run on all libraries aligned to each transcrip-
tome (TK citation). This clustered genes into modules according to expression pattern, and then correlated
them with our variables. We took all modules that were significantly correlated, and discarded those in
which the correlation to the variable appeared to be due to extremely strong correlation to a single crab.
This produced the following modules (Table TK).

Transcriptome  Module Trait and p-values

Unfiltered black Day (0.04)

Unfiltered tan Low vs. Ambient (0.05)

Unfiltered cyan Low vs. Ambient (0.02), Elevated vs. All (0.04)
Unfiltered brown Low vs. Elevated (0.02), Elevated vs. All (0.03)
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Transcriptome  Module Trait and p-values

Host black Low vs. Ambient (6x10"-4), Elevated (0.05)

Host red Low vs. Ambient (0.01), Infection Level (0.01), Carapace Width (0.04)
Host blue Low vs. Elevated (0.02), Elevated (0.03)

Parasite black Day (0.04)

Parasite turquoise Low vs. Ambient (0.02), Infection Level (0.01)

Parasite blue Infection Level (0.01)

Each of these modules was then analyzed using GO-MWU. No groups of GO terms were differentially
enriched for any unfiltered or host module. However, all three modules within the parasite transcriptome
saw differential enrichment. TK: Discussion of differential enrichment comes here

TK: Consider running DESeq2 on Hemat_ Level H vs L

TK: Also consider running DESeq with contrasts to run three-way comparison on Amb 0 vs 2 vs 17 all in
one

TK: Check whether, for the All Crabs PCAs, I should put multiple legends into the plot
TK: When we decide when/if to use WGCNA heatmaps, expand em to make em prettier
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Figure 12: WGCNA Cluster Dendrogram for traits in parasite libraries
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Figure 13: WGCNA Cluster Dendrogram of original and merged eigengenes for parasite libraries
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Figure 14: GO term enrichment for %}arasite black module (linked to day)



Figure 15:
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Figure 16: GO term enrichment for para%i)’te blue module (linked to infection level)
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