--- title: Calculating transcript counts per gene per sample in P.verrucosa enriched to elevated nutrients using Ballgown author: "Sam White" date: "2/28/2023" output: html_document --- # Uses all transcripts expression table, generated using [Ballgown](https://github.com/alyssafrazee/ballgown), for calculating transcript counts per gene per sample in _P.verrucosa_ enriched to elevated nutrients. REQUIRES the following R libraries: - `tidyverse` # Load `R` libraries ```{r} library("tidyverse") ``` # Set variables ```{r set-variables} # Vectors for subsetting samples by different groups all <- c("C17", "C18", "C19", "C20", "C21", "C22", "C23", "C24", "C25", "C26", "C27", "C28", "C29", "C30", "C31", "C32", "E1", "E10", "E11", "E12", "E13", "E14", "E15", "E16", "E2", "E3", "E4", "E5", "E6", "E7", "E8", "E9") controls <- c("C17", "C18", "C19", "C20", "C21", "C22", "C23", "C24", "C25", "C26", "C27", "C28", "C29", "C30", "C31", "C32") enriched <- c("E1", "E10", "E11", "E12", "E13", "E14", "E15", "E16", "E2", "E3", "E4", "E5", "E6", "E7", "E8", "E9") # Vector of comparisons comparisons <- c("c_vs_e") # Vector of count calculations column names count_calcs <- c("sum_transcript_counts", "median_transcript_counts", "mean_transcript_counts", "max_transcript_counts", "min_transcript_counts", "std_dev_transcript_counts", "controls_sum_transcript_counts", "controls_median_transcript_counts", "controls_mean_transcript_counts", "controls_max_transcript_counts", "controls_min_transcript_counts", "controls_std_dev_transcript_counts", "enriched_sum_transcript_counts", "enriched_median_transcript_counts", "enriched_mean_transcript_counts", "enriched_max_transcript_counts", "enriched_min_transcript_counts", "enriched_std_dev_transcript_counts" ) # Initialize lists of data frames list_transcript_counts_dfs <- list() list_transcript_max_diffs_dfs <- list() ``` # Define functions ```{r define-function(s)} #### Function for determining maximum transcripts per gene##### # Function accepts two data frames (df1 and df2), and a string (comparison) # Returns data frame containing: # - gene_name # - df1_max_transcript_counts # - df2_max_transcript_counts # - difference between max transcript counts diff_max_transcripts <- function(df1, df2, comparison) { # Select columns from first data frame df1.max <- df1 %>% select(gene_name, contains("max_transcript_counts")) # Get name of max transcript counts column df1.max.name <- df1.max %>% select(contains("max_transcript_counts")) %>% colnames() # Select columns from second data frame df2.max <- df2 %>% select(gene_name, contains("max_transcript_counts")) # Get name of max transcript counts column df2.max.name <- df2.max %>% select(contains("max_transcript_counts")) %>% colnames() # Join the two max transcripts data frames on gene_name df1max.df2max.joined <- left_join(df1.max, df2.max, by = "gene_name") # Calculate difference between df1.max and df2.max # Filter for only samples with different max transcript counts. # The get() function is required to use the string of the corresponding variable. df1max.df2max.joined %>% select(everything()) %>% mutate(difference = (get(df1.max.name) - get(df2.max.name))) %>% filter(difference != 0) } ######################################################################## ``` # Load all transcript expression data ```{r load-transcript-data} # Expression data whole_tx_table <- read.csv("../output/02-ballgown-differential_gene_expression/whole_tx_table.csv") head(whole_tx_table) # Rename gene_names listed as a "." to the associated transcript name whole_tx_table <- whole_tx_table %>% mutate(gene_name = ifelse(gene_name == ".", t_name, gene_name)) head(whole_tx_table) ``` # Count transcripts for each gene for each sample. A transcript is counted if it has an FPKM value > 0. ```{r count-transcripts-per-gene-per-sample} # Create table of transcript counts per gene per sample transcript_counts <- whole_tx_table %>% select(starts_with(c("gene_name", "FPKM"))) %>% group_by(gene_name) %>% summarise((across(everything(), ~sum(. > 0)))) head(transcript_counts) # Rename columns names(transcript_counts) <- gsub(x = names(transcript_counts), pattern = "FPKM", replacement = "transcript_counts") head(transcript_counts) ``` # Calculate max transcripts per gene across all samples ```{r max-transcripts-per-gene} max_transcripts_per_gene <- transcript_counts %>% rowwise() %>% mutate(transcripts.max = max(across(contains(all, ignore.case = FALSE)))) %>% select(ends_with(c("name", "max"))) head(max_transcripts_per_gene) ``` ## Write max transcripts to tab-delimited file ```{r write-max-transcripts-to-file} write.table(max_transcripts_per_gene, file ="../output/03-transcript-counts/transcripts-counts-max_per_gene.tab", quote = FALSE, row.names = FALSE, col.names = FALSE, sep = "\t") ``` # Perform transcript count calcs ```{r perform-transcript-count-calcs} # Perform calculations transcript_counts_per_gene_per_sample <- transcript_counts %>% rowwise() %>% mutate( sum_transcript_counts = sum(c_across(where(is.numeric) & -any_of(count_calcs))), median_transcript_counts = median(c_across(where(is.numeric) & -any_of(count_calcs))), mean_transcript_counts = mean(c_across(where(is.numeric) & -any_of(count_calcs))), max_transcript_counts = max(c_across(where(is.numeric) & -any_of(count_calcs))), min_transcript_counts = min(c_across(where(is.numeric) & -any_of(count_calcs))), std_dev_transcript_counts = sd(c_across(where(is.numeric) & -any_of(count_calcs))) ) # Male stats transcript_counts_per_gene_per_sample_males <- transcript_counts %>% rowwise() %>% select("gene_name", ends_with('M')) %>% mutate( male_sum_transcript_counts = sum(c_across(where(is.numeric) & -any_of(count_calcs))), male_median_transcript_counts = median(c_across(where(is.numeric) & -any_of(count_calcs))), male_mean_transcript_counts = mean(c_across(where(is.numeric) & -any_of(count_calcs))), male_max_transcript_counts = max(c_across(where(is.numeric) & -any_of(count_calcs))), male_min_transcript_counts = min(c_across(where(is.numeric) & -any_of(count_calcs))), male_std_dev_transcript_counts = sd(c_across(where(is.numeric) & -any_of(count_calcs))) ) # Female stats transcript_counts_per_gene_per_sample_females <- transcript_counts %>% rowwise() %>% select("gene_name", ends_with('F')) %>% mutate( female_sum_transcript_counts = sum(c_across(where(is.numeric) & -any_of(count_calcs))), female_median_transcript_counts = median(c_across(where(is.numeric) & -any_of(count_calcs))), female_mean_transcript_counts = mean(c_across(where(is.numeric) & -any_of(count_calcs))), female_max_transcript_counts = max(c_across(where(is.numeric) & -any_of(count_calcs))), female_min_transcript_counts = min(c_across(where(is.numeric) & -any_of(count_calcs))), female_std_dev_transcript_counts = sd(c_across(where(is.numeric) & -any_of(count_calcs))) ) # Controls stats transcript_counts_per_gene_per_sample_controls <- transcript_counts %>% rowwise() %>% select("gene_name", ends_with(controls)) %>% mutate( controls_sum_transcript_counts = sum(c_across(where(is.numeric) & -any_of(count_calcs))), controls_median_transcript_counts = median(c_across(where(is.numeric) & -any_of(count_calcs))), controls_mean_transcript_counts = mean(c_across(where(is.numeric) & -any_of(count_calcs))), controls_max_transcript_counts = max(c_across(where(is.numeric) & -any_of(count_calcs))), controls_min_transcript_counts = min(c_across(where(is.numeric) & -any_of(count_calcs))), controls_std_dev_transcript_counts = sd(c_across(where(is.numeric) & -any_of(count_calcs))) ) # enriched stats transcript_counts_per_gene_per_sample_enriched <- transcript_counts %>% rowwise() %>% select("gene_name", ends_with(enriched)) %>% mutate( enriched_sum_transcript_counts = sum(c_across(where(is.numeric) & -any_of(count_calcs))), enriched_median_transcript_counts = median(c_across(where(is.numeric) & -any_of(count_calcs))), enriched_mean_transcript_counts = mean(c_across(where(is.numeric) & -any_of(count_calcs))), enriched_max_transcript_counts = max(c_across(where(is.numeric) & -any_of(count_calcs))), enriched_min_transcript_counts = min(c_across(where(is.numeric) & -any_of(count_calcs))), enriched_std_dev_transcript_counts = sd(c_across(where(is.numeric) & -any_of(count_calcs))) ) # Controls females stats transcript_counts_per_gene_per_sample_controls_females <- transcript_counts %>% rowwise() %>% select("gene_name", ends_with(controls_females)) %>% mutate( control_females_sum_transcript_counts = sum(c_across(where(is.numeric) & -any_of(count_calcs))), control_females_median_transcript_counts = median(c_across(where(is.numeric) & -any_of(count_calcs))), control_females_mean_transcript_counts = mean(c_across(where(is.numeric) & -any_of(count_calcs))), control_females_max_transcript_counts = max(c_across(where(is.numeric) & -any_of(count_calcs))), control_females_min_transcript_counts = min(c_across(where(is.numeric) & -any_of(count_calcs))), control_females_std_dev_transcript_counts = sd(c_across(where(is.numeric) & -any_of(count_calcs))) ) # enriched females stats transcript_counts_per_gene_per_sample_enriched_females <- transcript_counts %>% rowwise() %>% select("gene_name", ends_with(enriched_females)) %>% mutate( enriched_females_sum_transcript_counts = sum(c_across(where(is.numeric) & -any_of(count_calcs))), enriched_females_median_transcript_counts = median(c_across(where(is.numeric) & -any_of(count_calcs))), enriched_females_mean_transcript_counts = mean(c_across(where(is.numeric) & -any_of(count_calcs))), enriched_females_max_transcript_counts = max(c_across(where(is.numeric) & -any_of(count_calcs))), enriched_females_min_transcript_counts = min(c_across(where(is.numeric) & -any_of(count_calcs))), enriched_females_std_dev_transcript_counts = sd(c_across(where(is.numeric) & -any_of(count_calcs))) ) # Controls males stats transcript_counts_per_gene_per_sample_controls_males <- transcript_counts %>% rowwise() %>% select("gene_name", ends_with(controls_males)) %>% mutate( control_males_sum_transcript_counts = sum(c_across(where(is.numeric) & -any_of(count_calcs))), control_males_median_transcript_counts = median(c_across(where(is.numeric) & -any_of(count_calcs))), control_males_mean_transcript_counts = mean(c_across(where(is.numeric) & -any_of(count_calcs))), control_males_max_transcript_counts = max(c_across(where(is.numeric) & -any_of(count_calcs))), control_males_min_transcript_counts = min(c_across(where(is.numeric) & -any_of(count_calcs))), control_males_std_dev_transcript_counts = sd(c_across(where(is.numeric) & -any_of(count_calcs))) ) # enriched males stats transcript_counts_per_gene_per_sample_enriched_males <- transcript_counts %>% rowwise() %>% select("gene_name", ends_with(enriched_males)) %>% mutate( enriched_males_sum_transcript_counts = sum(c_across(where(is.numeric) & -any_of(count_calcs))), enriched_males_median_transcript_counts = median(c_across(where(is.numeric) & -any_of(count_calcs))), enriched_males_mean_transcript_counts = mean(c_across(where(is.numeric) & -any_of(count_calcs))), enriched_males_max_transcript_counts = max(c_across(where(is.numeric) & -any_of(count_calcs))), enriched_males_min_transcript_counts = min(c_across(where(is.numeric) & -any_of(count_calcs))), enriched_males_std_dev_transcript_counts = sd(c_across(where(is.numeric) & -any_of(count_calcs))) ) # Add data frames to list # Wraps ls() with grep to allow for needed Perl regex (the "^(?!list).*" aspect) because # ls() doesn't support Perl regex # Regex excludes any results beginning with the word "list" list_transcript_counts_dfs <- mget(grep("^(?!list).*", ls(pattern = "transcript_counts_per_gene_per_sample"), value = TRUE, perl = TRUE)) head(transcript_counts) ``` ## Write transcript per gene counts to files. ```{r write-transcript-per-gene-counts-to-files} # Write data frames to CSVs in ../output/34-transcript-counts/ dir # Uses names of data frames as names of output files. sapply(names(list_transcript_counts_dfs), function(x) write.csv(list_transcript_counts_dfs[[x]], file = file.path("../output/34-transcript-counts/", paste(x, "csv", sep=".")), quote = FALSE, row.names = FALSE) ) ``` # Determine differences in max number of transcripts between comparisons ```{r calculate-difference-max-transcripts} for (comparison in comparisons) { if (comparison == "f_vs_m") { diffs.max.transcripts_per_gene.females.vs.males <- diff_max_transcripts(transcript_counts_per_gene_per_sample_females, transcript_counts_per_gene_per_sample_males, comparison) } else if (comparison == "c_vs_e") { diffs.max.transcripts_per_gene.controls.vs.enriched <- diff_max_transcripts(transcript_counts_per_gene_per_sample_controls, transcript_counts_per_gene_per_sample_enriched, comparison) } else if (comparison == "c.f_vs_e.f") { diffs.max.transcripts_per_gene.controls_females.vs.enriched_females <- diff_max_transcripts(transcript_counts_per_gene_per_sample_controls_females, transcript_counts_per_gene_per_sample_enriched_females, comparison) } else if (comparison == "c.m_vs_e.m") { diffs.max.transcripts_per_gene.controls_males.vs.enriched_males <- diff_max_transcripts(transcript_counts_per_gene_per_sample_controls_males, transcript_counts_per_gene_per_sample_enriched_males, comparison) } else if (comparison == "c.f_vs_c.m") { diffs.max.transcripts_per_gene.controls_females.vs.controls_males <- diff_max_transcripts(transcript_counts_per_gene_per_sample_controls_females, transcript_counts_per_gene_per_sample_controls_males, comparison) } else if (comparison == "e.f_vs_e.m") { diffs.max.transcripts_per_gene.enriched_females.vs.enriched_males <- diff_max_transcripts(transcript_counts_per_gene_per_sample_enriched_females, transcript_counts_per_gene_per_sample_enriched_males, comparison) } } # Add data frames to list # Wraps ls() with grep to allow for needed perl regex (the "^(?!list).*" aspect) because # ls() doesn't support perl regex # Regex excludes any results beginning with the word "list" list_transcript_max_diffs_dfs <- mget(grep("^(?!list).*", ls(pattern = "max.transcripts_per_gene"), value = TRUE, perl = TRUE) ) ``` ## Write max transcript diffs to files. ```{r write-transcript-per-gene-counts-to-files} # Write data frames to CSVs in ../output/34-transcript-counts/ dir # Uses names of data frames as names of output files. sapply(names(list_transcript_max_diffs_dfs), function(x) write.csv(list_transcript_max_diffs_dfs[[x]], file = file.path("../output/34-transcript-counts/", paste(x, "csv", sep=".")), quote = FALSE, row.names = FALSE) ) ```