sRNA
Load count data
Load in the sRNA count matrix generated using ShortStack 4.1.0. Keep in mind this data includes counts of all sRNAs, not just miRNAs.
# Read in sRNA counts data
Ptuh_counts_sRNA_data_OG <- read_delim("../output/05-Ptuh-sRNA-ShortStack_4.1.0/ShortStack_out/Counts.txt", delim="\t")
head(Ptuh_counts_sRNA_data_OG)
# A tibble: 6 × 8
Coords Name MIRNA sRNA-POC-47-S1-TP2-f…¹ sRNA-POC-48-S1-TP2-f…²
<chr> <chr> <chr> <dbl> <dbl>
1 Pocillopora_meandri… Clus… N 1606 1328
2 Pocillopora_meandri… Clus… N 24 51
3 Pocillopora_meandri… Clus… N 244 525
4 Pocillopora_meandri… Clus… N 166 167
5 Pocillopora_meandri… Clus… N 6 15
6 Pocillopora_meandri… Clus… N 35 37
# ℹ abbreviated names:
# ¹`sRNA-POC-47-S1-TP2-fastp-adapters-polyG-31bp-merged_condensed`,
# ²`sRNA-POC-48-S1-TP2-fastp-adapters-polyG-31bp-merged_condensed`
# ℹ 3 more variables:
# `sRNA-POC-50-S1-TP2-fastp-adapters-polyG-31bp-merged_condensed` <dbl>,
# `sRNA-POC-53-S1-TP2-fastp-adapters-polyG-31bp-merged_condensed` <dbl>,
# `sRNA-POC-57-S1-TP2-fastp-adapters-polyG-31bp-merged_condensed` <dbl>
Count data munging
Ptuh_counts_sRNA <- Ptuh_counts_sRNA_data_OG
# Remove excess portions of sample column names to just "sample###"
colnames(Ptuh_counts_sRNA) <- sub("-S1-TP2-fastp-adapters-polyG-31bp-merged_condensed", "", colnames(Ptuh_counts_sRNA))
colnames(Ptuh_counts_sRNA) <- sub("sRNA-POC-", "sample", colnames(Ptuh_counts_sRNA))
# Keep just the counts and cluster names
Ptuh_counts_sRNA <- Ptuh_counts_sRNA %>% select("sample47", "sample48", "sample50", "sample53", "sample57", "Name")
# I'm not going to be doing any removal of low-count sRNAs for now
# Make the cluster names our new row names
Ptuh_counts_sRNA <- Ptuh_counts_sRNA %>% column_to_rownames(var = "Name")
write.table(Ptuh_counts_sRNA, file = "../output/03.1-Ptuh-sRNA-summary/Ptuh_sRNA_ShortStack_counts_formatted.txt", sep = "\t", row.names = TRUE, col.names = TRUE, quote = FALSE)
head(Ptuh_counts_sRNA)
sample47 sample48 sample50 sample53 sample57
Cluster_1 1606 1328 1544 3021 3331
Cluster_2 24 51 67 52 91
Cluster_3 244 525 433 397 949
Cluster_4 166 167 273 318 333
Cluster_5 6 15 26 65 73
Cluster_6 35 37 33 58 123
Expression levels
Plot histograms of the expression levels in each sample
# Melt the count matrix into long format
Ptuh_counts_sRNA_melted <- melt(Ptuh_counts_sRNA, variable.name = "sample", value.name = "counts")
# Plot the expression level histograms for each sample
ggplot(Ptuh_counts_sRNA_melted, aes(x = counts)) +
geom_histogram(binwidth = 1, fill = "#7A2048", color = "black") +
scale_x_log10() + # Optional: Log-transform the x-axis for better visualization
facet_wrap(~sample, scales = "free_y") +
labs(title = "Gene Expression Level Histogram for Each Sample",
x = "Expression Level (Counts)",
y = "Frequency") +
theme_minimal()
Transcript counts
First let’s check the total number of transcripts in each sample – keep in mind this expression data has not been normalized yet, so there may be different totals for each sample
# Calculate the total number of transcripts for each sample
total_transcripts <- colSums(Ptuh_counts_sRNA)
# Create a data frame for plotting
total_transcripts_df <- data.frame(sample = names(total_transcripts),
totals = total_transcripts)
# Plot the total number of transcripts for each sample
ggplot(total_transcripts_df, aes(x = sample, y = totals)) +
geom_bar(stat = "identity", fill = "#7A2048", color = "black") +
geom_text(aes(label = totals), vjust = -0.3, size = 3.5) +
labs(title = "Total Number of Transcripts per Sample",
x = "Sample",
y = "Total Transcripts") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis labels for readability
Now let’s check the number of unique transcripts in each sample – that is, how many unique sRNAs are expressed in each sample? This should be pretty much the same across samples, even without normalization.
# Calculate the number of unique transcripts (non-zero counts) for each sample
unique_transcripts <- colSums(Ptuh_counts_sRNA > 0)
# Create a data frame for plotting
unique_transcripts_df <- data.frame(sample = names(unique_transcripts),
uniques = unique_transcripts)
# Plot the total number of unique transcripts for each sample
ggplot(unique_transcripts_df, aes(x = sample, y = uniques)) +
geom_bar(stat = "identity", fill = "#7A2048", color = "black") +
geom_text(aes(label = uniques), vjust = -0.3, size = 3.5) +
labs(title = "Total Number of Unique Expressed Transcripts per Sample",
x = "Sample",
y = "Unique Transcripts") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis labels for readability
miRNA
Expression levels
Plot histograms of the expression levels in each sample
# Melt the count matrix into long format
Ptuh_counts_miRNA_melted <- melt(Ptuh_counts_miRNA, variable.name = "sample", value.name = "counts")
# Plot the expression level histograms for each sample
ggplot(Ptuh_counts_miRNA_melted, aes(x = counts)) +
geom_histogram(binwidth = 1, fill = "#7A2048", color = "black") +
scale_x_log10() + # Optional: Log-transform the x-axis for better visualization
facet_wrap(~sample, scales = "free_y") +
labs(title = "miRNA Expression Level Histogram for Each Sample",
x = "Expression Level (Counts)",
y = "Frequency") +
theme_minimal()
miRNA counts
First let’s check the total number of miRNAs in each sample – keep in mind this expression data has not been normalized yet, so there may be different totals for each sample
# Calculate the total number of transcripts for each sample
total_miRNA <- colSums(Ptuh_counts_miRNA)
# Create a data frame for plotting
total_miRNA_df <- data.frame(sample = names(total_miRNA),
totals = total_miRNA)
# Plot the total number of transcripts for each sample
ggplot(total_miRNA_df, aes(x = sample, y = totals)) +
geom_bar(stat = "identity", fill = "#7A2048", color = "black") +
geom_text(aes(label = totals), vjust = -0.3, size = 3.5) +
labs(title = "Total Number of miRNAs per Sample",
x = "Sample",
y = "Total miRNAs") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis labels for readability
Now let’s check the number of unique miRNAs in each sample – This should be pretty much the same across samples, even without normalization.
# Calculate the number of unique transcripts (non-zero counts) for each sample
unique_miRNA <- colSums(Ptuh_counts_miRNA > 0)
# Create a data frame for plotting
unique_miRNA_df <- data.frame(sample = names(unique_miRNA),
uniques = unique_miRNA)
# Plot the total number of unique transcripts for each sample
ggplot(unique_miRNA_df, aes(x = sample, y = uniques)) +
geom_bar(stat = "identity", fill = "#7A2048", color = "black") +
geom_text(aes(label = uniques), vjust = -0.3, size = 3.5) +
labs(title = "Total Number of Unique Expressed miRNAs per Sample",
x = "Sample",
y = "Unique miRNA") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis labels for readability
Heatmap
pheatmap(Ptuh_counts_miRNA,
cluster_rows = TRUE,
cluster_cols = TRUE,
show_rownames = TRUE,
show_colnames = TRUE,
color = colorRampPalette(c("blue", "white", "red"))(50),
fontsize_row = 8,
fontsize_col = 8)
Well… there’s like 2 miRNAs with much higher expression than the others, which is making visualizing relative differences difficult. Let’s redo the heatmap, normalizing each row to view relative difference in expression between samples (scale='row'
)
pheatmap(Ptuh_counts_miRNA,
cluster_rows = TRUE,
cluster_cols = TRUE,
show_rownames = TRUE,
show_colnames = TRUE,
scale = 'row',
color = colorRampPalette(c("blue", "white", "red"))(50),
fontsize_row = 8,
fontsize_col = 8)
siRNA
ShortStack’s primary purpose is to identify miRNAs from sRNA-seq data, but it also automatically annotates siRNA loci! Since siRNA potentially play an important role in transposon silencing in invertebrates, we should generate count matrices for siRNAs as well.
We can see clusters annotated as siRNAs in the Results.gff3
output file of ShortStack (sRNA ID shown in the 3rd column)
Ptuh_Resultsgff <- read.table("../output/05-Ptuh-sRNA-ShortStack_4.1.0/ShortStack_out/Results.gff3")
# Separate last column info into multiple columns for filtering
Ptuh_Resultsgff <- Ptuh_Resultsgff %>%
separate(V9, into = c("Name", "DicerCall", "MIRNA"), sep = ";") %>%
mutate(Name = sub("ID=", "", Name),
DicerCall = sub("DicerCall=", "", DicerCall),
MIRNA = sub("MIRNA=", "", MIRNA))
head(Ptuh_Resultsgff)
V1 V2 V3 V4
1 Pocillopora_meandrina_HIv1___Sc0000000 ShortStack Unknown_sRNA_locus 9092
2 Pocillopora_meandrina_HIv1___Sc0000000 ShortStack Unknown_sRNA_locus 53578
3 Pocillopora_meandrina_HIv1___Sc0000000 ShortStack Unknown_sRNA_locus 150243
4 Pocillopora_meandrina_HIv1___Sc0000000 ShortStack siRNA22_locus 173728
5 Pocillopora_meandrina_HIv1___Sc0000000 ShortStack Unknown_sRNA_locus 187562
6 Pocillopora_meandrina_HIv1___Sc0000000 ShortStack Unknown_sRNA_locus 485730
V5 V6 V7 V8 Name DicerCall MIRNA
1 9521 10830 + . Cluster_1 N N
2 53997 285 + . Cluster_2 N N
3 150718 2548 - . Cluster_3 N N
4 174150 1257 + . Cluster_4 22 N
5 188076 185 . . Cluster_5 N N
6 486254 286 + . Cluster_6 N N
# keep just the sRNA category column (V3), and the cluster names (Name)
# filter to only keep clusters ID'd as siRNAs
Ptuh_siRNA_clusters <- Ptuh_Resultsgff %>%
select(V3, Name) %>%
filter(str_detect(V3, regex("siRNA")))
head(Ptuh_siRNA_clusters)
V3 Name
1 siRNA22_locus Cluster_4
2 siRNA24_locus Cluster_72
3 siRNA24_locus Cluster_100
4 siRNA24_locus Cluster_167
5 siRNA22_locus Cluster_280
6 siRNA22_locus Cluster_311
# Now use this list of clusters ID'd as siRNAs to filter our sRNA count matrix
# keep only the sample counts and cluster names
Ptuh_counts_sRNA <- rownames_to_column(Ptuh_counts_sRNA, var = "Name")
Ptuh_counts_siRNA <- left_join(Ptuh_siRNA_clusters, Ptuh_counts_sRNA, by = c("Name" = "Name")) %>%
select(-V3)
# convert the column of cluster names into the df row names
Ptuh_counts_sRNA <- Ptuh_counts_sRNA %>% column_to_rownames(var="Name")
Ptuh_counts_siRNA <- Ptuh_counts_siRNA %>% column_to_rownames(var="Name")
head(Ptuh_counts_siRNA)
sample47 sample48 sample50 sample53 sample57
Cluster_4 166 167 273 318 333
Cluster_72 76 11 25 0 7
Cluster_100 432 151 173 168 97
Cluster_167 0 113 0 0 1
Cluster_280 2 2 35 26 18
Cluster_311 3523 4898 4821 2509 1428
write.table(Ptuh_counts_siRNA, file = "../output/03.1-Ptuh-sRNA-summary/Ptuh_siRNA_ShortStack_counts_formatted.txt", sep = "\t", row.names = TRUE, col.names = TRUE, quote = FALSE)
Expression levels
Plot histograms of the expression levels in each sample
# Melt the count matrix into long format
Ptuh_counts_siRNA_melted <- melt(Ptuh_counts_siRNA, variable.name = "sample", value.name = "counts")
# Plot the expression level histograms for each sample
ggplot(Ptuh_counts_siRNA_melted, aes(x = counts)) +
geom_histogram(binwidth = 1, fill = "#7A2048", color = "black") +
scale_x_log10() + # Optional: Log-transform the x-axis for better visualization
facet_wrap(~sample, scales = "free_y") +
labs(title = "siRNA Expression Level Histogram for Each Sample",
x = "Expression Level (Counts)",
y = "Frequency") +
theme_minimal()
siRNA counts
First let’s check the total number of siRNAs in each sample – keep in mind this expression data has not been normalized yet, so there may be different totals for each sample
# Calculate the total number of transcripts for each sample
total_siRNA <- colSums(Ptuh_counts_siRNA)
# Create a data frame for plotting
total_siRNA_df <- data.frame(sample = names(total_siRNA),
totals = total_siRNA)
# Plot the total number of transcripts for each sample
ggplot(total_siRNA_df, aes(x = sample, y = totals)) +
geom_bar(stat = "identity", fill = "#7A2048", color = "black") +
geom_text(aes(label = totals), vjust = -0.3, size = 3.5) +
labs(title = "Total Number of siRNAs per Sample",
x = "Sample",
y = "Total siRNAs") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis labels for readability
Now let’s check the number of unique siRNAs in each sample – This should be pretty much the same across samples, even without normalization.
# Calculate the number of unique transcripts (non-zero counts) for each sample
unique_siRNA <- colSums(Ptuh_counts_siRNA > 0)
# Create a data frame for plotting
unique_siRNA_df <- data.frame(sample = names(unique_siRNA),
uniques = unique_siRNA)
# Plot the total number of unique transcripts for each sample
ggplot(unique_siRNA_df, aes(x = sample, y = uniques)) +
geom_bar(stat = "identity", fill = "#7A2048", color = "black") +
geom_text(aes(label = uniques), vjust = -0.3, size = 3.5) +
labs(title = "Total Number of Unique Expressed siRNAs per Sample",
x = "Sample",
y = "Unique siRNA") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis labels for readability
Heatmap
pheatmap(Ptuh_counts_siRNA,
cluster_rows = TRUE,
cluster_cols = TRUE,
show_rownames = TRUE,
show_colnames = TRUE,
color = colorRampPalette(c("blue", "white", "red"))(50),
fontsize_row = 8,
fontsize_col = 8)
pheatmap(Ptuh_counts_siRNA,
cluster_rows = TRUE,
cluster_cols = TRUE,
show_rownames = TRUE,
show_colnames = TRUE,
scale = 'row',
color = colorRampPalette(c("blue", "white", "red"))(50),
fontsize_row = 8,
fontsize_col = 8)
Normalized sRNA counts
Normalize counts with DESeq2
Plot unnormalized sRNA data
Ptuh_counts_sRNA %>%
# select(-Name) %>%
pivot_longer( cols = everything(), names_to = "sample", values_to = "count") %>%
ggplot(., aes(x = sample, y = count)) +
geom_violin() +
geom_point(alpha = 0.2) +
theme_minimal() +
labs(title = "Unnormalized sRNA counts",
x = "Sample",
y = "count")
DESeq object
# Calculate DESeq object
Ptuh_counts_sRNA_rowNames <- Ptuh_counts_sRNA
#%>% column_to_rownames(var = "Name")
dds_Ptuh_sRNA <- DESeqDataSetFromMatrix(countData = Ptuh_counts_sRNA_rowNames,
colData = Ptuh_metadata_sRNA,
design = ~ 1)
# Run differential expression analysis
# (Note that this DESeq() function runs all necessary steps, including data normalization,
# estimating size factors, estimating dispersions, gene-wise dispersion estimates, mean-dispersion
# relationship, final dispersion estimates, fitting model, and testing)
# Using design = ~1 because we don't have treatment groups
dds_Ptuh_sRNA <- DESeq(dds_Ptuh_sRNA)
It’s worth noting here that I’m actually going to be doing two different types of transformation on the counts data, which serve different purposes.
First is normalizing the transcript counts, which adjusts for differences in library size or sequencing depth, but retains count-like properties. Normalized counts are most useful for things like visualizing expression levels and differential expression analysis.
Second is variance stabilizing the counts data, which aims to make the variance of the transformed data approximately independent of the mean, reducing heteroscedasticity (the relationship between variance and mean) and “smoothing” out the variance at low counts. Notably, the transformed data is no longer on the original count scale. The transformation makes the variance roughly constant across the range of counts, which makes it easier to interpret patterns in the data visually. Variance stabilized data is most useful for exploratory data analysis, like PCA, clustering, and heatmaps, and is also the transformation we’ll want to use before WGCNA.
# extract normalized counts
# (normalization is automatically performed by deseq2)
Ptuh_counts_sRNA_norm <- counts(dds_Ptuh_sRNA, normalized=TRUE) %>% data.frame()
write.table(Ptuh_counts_sRNA_norm, file = "../output/03.1-Ptuh-sRNA-summary/Ptuh_counts_sRNA_normalized.txt", sep = "\t", row.names = TRUE, col.names = TRUE, quote = FALSE)
# variance stabilized data
vsd_Ptuh_sRNA <- varianceStabilizingTransformation(dds_Ptuh_sRNA, blind=TRUE)
wpn_vsd_Ptuh_sRNA <- getVarianceStabilizedData(dds_Ptuh_sRNA)
rv_wpn_Ptuh_sRNA <- rowVars(wpn_vsd_Ptuh_sRNA, useNames=TRUE)
Ptuh_counts_sRNA_vsd <- data.frame(wpn_vsd_Ptuh_sRNA)
write.table(Ptuh_counts_sRNA_vsd, file = "../output/03.1-Ptuh-sRNA-summary/Ptuh_counts_sRNA_variancestabilized.txt", sep = "\t", row.names = TRUE, col.names = TRUE,quote = FALSE)
q75_wpn_Ptuh_sRNA <- quantile(rowVars(wpn_vsd_Ptuh_sRNA, useNames=TRUE), .75) # 75th quantile variability
Ptuh_counts_sRNA_vsd_q75 <- wpn_vsd_Ptuh_sRNA[ rv_wpn_Ptuh_sRNA > q75_wpn_Ptuh_sRNA, ] %>% data.frame # filter to retain only the most variable genes
write.table(Ptuh_counts_sRNA_vsd_q75, file = "../output/03.1-Ptuh-sRNA-summary/Ptuh_counts_sRNA_variancestabilized_q75.txt", sep = "\t", row.names = TRUE, col.names = TRUE,quote = FALSE)
q95_wpn_Ptuh_sRNA <- quantile(rowVars(wpn_vsd_Ptuh_sRNA, useNames=TRUE), .95) # 95th quantile variability
Ptuh_counts_sRNA_vsd_q95 <- wpn_vsd_Ptuh_sRNA[ rv_wpn_Ptuh_sRNA > q95_wpn_Ptuh_sRNA, ] %>% data.frame # filter to retain only the most variable genes
write.table(Ptuh_counts_sRNA_vsd_q95, file = "../output/03.1-Ptuh-sRNA-summary/Ptuh_counts_sRNA_variancestabilized_q95.txt", sep = "\t", row.names = TRUE, col.names = TRUE,quote = FALSE)
Plot normalized data
Ptuh_counts_sRNA_norm_long <- Ptuh_counts_sRNA_norm %>%
mutate(
Gene_id = row.names(Ptuh_counts_sRNA_norm)
) %>%
pivot_longer(-Gene_id)
Ptuh_counts_sRNA_norm_long %>%
ggplot(., aes(x = name, y = value)) +
geom_violin() +
geom_point() +
theme_bw() +
theme(
axis.text.x = element_text( angle = 90)
) +
ylim(0, NA) +
labs(
title = "Normalized Expression",
x = "Sample",
y = "Normalized counts"
)
Plot variance stabilized data
Ptuh_counts_sRNA_vsd_long <- Ptuh_counts_sRNA_vsd %>%
mutate(
Gene_id = row.names(Ptuh_counts_sRNA_vsd)
) %>%
pivot_longer(-Gene_id)
Ptuh_counts_sRNA_vsd_long %>%
ggplot(., aes(x = name, y = value)) +
geom_violin() +
geom_point() +
theme_bw() +
theme(
axis.text.x = element_text( angle = 90)
) +
ylim(0, NA) +
labs(
title = "Variance Stabilized Expression",
x = "Sample",
y = "Variance stabilized data"
)
Normalized expression levels
Plot histograms of the normalized expression levels in each sample
# Melt the count matrix into long format
Ptuh_counts_norm_melted <- melt(Ptuh_counts_sRNA_norm, variable.name = "sample", value.name = "counts")
# Plot the expression level histograms for each sample
ggplot(Ptuh_counts_norm_melted, aes(x = counts)) +
geom_histogram(binwidth = 1, fill = "#7A2048", color = "black") +
scale_x_log10() + # Optional: Log-transform the x-axis for better visualization
facet_wrap(~sample, scales = "free_y") +
labs(title = "Gene Expression Level Histogram for Each Sample",
x = "Expression Level (Counts)",
y = "Frequency") +
theme_minimal()
Normalized transcript counts
Check the total number of transcripts in each sample – now that we’ve normalized the data these totals should be similar
# Calculate the total number of transcripts for each sample
total_transcripts_norm <- colSums(Ptuh_counts_sRNA_norm)
# Create a data frame for plotting
total_transcripts_norm_df <- data.frame(sample = names(total_transcripts_norm),
totals = total_transcripts_norm)
# Plot the total number of transcripts for each sample
ggplot(total_transcripts_norm_df, aes(x = sample, y = totals)) +
geom_bar(stat = "identity", fill = "#7A2048", color = "black") +
geom_text(aes(label = totals), vjust = -0.3, size = 3.5) +
labs(title = "Total Number of Transcripts per Sample",
x = "Sample",
y = "Total Transcripts") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis labels for readability
PCA of variance stabilized data
plotPCA(vsd_Ptuh_sRNA, intgroup="Sample")
Sample clustering
sample_dists <- dist(t(assay(vsd_Ptuh_sRNA)))
pheatmap(as.matrix(sample_dists), clustering_distance_rows = "euclidean",
clustering_distance_cols = "euclidean", main="Sample Clustering")
Heatmaps
Of most variable variance stabilized sRNA transcripts
# 75th quantile
heat_colors <- rev(brewer.pal(12, "RdYlBu"))
pheatmap(Ptuh_counts_sRNA_vsd_q75,
cluster_rows = TRUE,
cluster_cols = TRUE,
show_rownames = TRUE,
show_colnames = TRUE,
color = heat_colors,
scale="row")
# 95th quantile
pheatmap(Ptuh_counts_sRNA_vsd_q95,
cluster_rows = TRUE,
cluster_cols = TRUE,
show_rownames = TRUE,
show_colnames = TRUE,
color = heat_colors,
scale="row")
Normalized miRNA counts
Isolate normalized/vsd miRNA
## Also written to use given miRNA names ##
# Ptuh_counts_sRNA_norm$Name <- rownames(Ptuh_counts_sRNA_norm)
# Ptuh_counts_miRNA_norm <- left_join(Ptuh_metadata_miRNA, Ptuh_counts_sRNA_norm, by = c("Name" = "Name")) %>%
# column_to_rownames(var="given_miRNA_name") %>%
# select(starts_with("sample"))
# write.table(Ptuh_counts_miRNA_norm, file = "../output/03.1-Ptuh-sRNA-summary/Ptuh_counts_miRNA_normalized.txt", sep = "\t", row.names = TRUE, col.names = TRUE,quote = FALSE)
#
# Ptuh_counts_sRNA_vsd$Name <- rownames(Ptuh_counts_sRNA_vsd)
# Ptuh_counts_miRNA_vsd <- left_join(Ptuh_metadata_miRNA, Ptuh_counts_sRNA_vsd, by = c("Name" = "Name")) %>%
# column_to_rownames(var="given_miRNA_name") %>%
# select(starts_with("sample"))
# write.table(Ptuh_counts_miRNA_vsd, file = "../output/03.1-Ptuh-sRNA-summary/Ptuh_counts_miRNA_variancestabilized.txt", sep = "\t", row.names = TRUE, col.names = TRUE,quote = FALSE)
## Use below until you have miRNA names ##
Ptuh_counts_sRNA_norm$Name <- rownames(Ptuh_counts_sRNA_norm)
Ptuh_counts_sRNA_vsd$Name <- rownames(Ptuh_counts_sRNA_vsd)
Ptuh_counts_miRNA_namesdf <- data.frame(Name = rownames(Ptuh_counts_miRNA))
Ptuh_counts_miRNA_norm <- left_join(Ptuh_counts_miRNA_namesdf, Ptuh_counts_sRNA_norm, by = c("Name" = "Name")) %>%
column_to_rownames(var = "Name")
write.table(Ptuh_counts_miRNA_norm, file = "../output/03.1-Ptuh-sRNA-summary/Ptuh_counts_miRNA_normalized.txt", sep = "\t", row.names = TRUE, col.names = TRUE,quote = FALSE)
Ptuh_counts_miRNA_vsd <- left_join(Ptuh_counts_miRNA_namesdf, Ptuh_counts_sRNA_vsd, by = c("Name" = "Name")) %>%
column_to_rownames(var = "Name")
write.table(Ptuh_counts_miRNA_vsd, file = "../output/03.1-Ptuh-sRNA-summary/Ptuh_counts_miRNA_variancestabilized.txt", sep = "\t", row.names = TRUE, col.names = TRUE,quote = FALSE)
Normalized expression levels
Plot histograms of the normalized expression levels in each sample
# Melt the count matrix into long format
Ptuh_counts_miRNA_norm_melted <- melt(Ptuh_counts_miRNA_norm, variable.name = "sample", value.name = "counts")
# Plot the expression level histograms for each sample
ggplot(Ptuh_counts_miRNA_norm_melted, aes(x = counts)) +
geom_histogram(binwidth = 1, fill = "#7A2048", color = "black") +
scale_x_log10() + # Optional: Log-transform the x-axis for better visualization
facet_wrap(~sample, scales = "free_y") +
labs(title = "Gene Expression Level Histogram for Each Sample",
x = "Expression Level (Counts)",
y = "Frequency") +
theme_minimal()
Normalized transcript counts
Check the total number of transcripts in each sample – now that we’ve normalized the data these totals should be similar
# Calculate the total number of transcripts for each sample
total_transcripts_miRNA_norm <- colSums(Ptuh_counts_miRNA_norm)
# Create a data frame for plotting
total_transcripts_miRNA_norm_df <- data.frame(sample = names(total_transcripts_miRNA_norm),
totals = total_transcripts_miRNA_norm)
# Plot the total number of transcripts for each sample
ggplot(total_transcripts_miRNA_norm_df, aes(x = sample, y = totals)) +
geom_bar(stat = "identity", fill = "#7A2048", color = "black") +
geom_text(aes(label = totals), vjust = -0.3, size = 3.5) +
labs(title = "Total Number of miRNA Transcripts per Sample",
x = "Sample",
y = "Total Transcripts") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis labels for readability
Heatmap
Of all miRNAs
heat_colors <- rev(brewer.pal(12, "RdYlBu"))
pheatmap(as.matrix(Ptuh_counts_miRNA_vsd[apply(Ptuh_counts_miRNA_vsd, 1, var) > 0, ]),
cluster_rows = TRUE,
cluster_cols = TRUE,
show_rownames = TRUE,
show_colnames = TRUE,
color = heat_colors,
scale="row")
Normalized siRNA counts
Isolate normalized/vsd siRNA
Ptuh_counts_sRNA_norm$Name <- rownames(Ptuh_counts_sRNA_norm)
Ptuh_counts_sRNA_vsd$Name <- rownames(Ptuh_counts_sRNA_vsd)
Ptuh_counts_siRNA_namesdf <- data.frame(Name = rownames(Ptuh_counts_siRNA))
Ptuh_counts_siRNA_norm <- left_join(Ptuh_counts_siRNA_namesdf, Ptuh_counts_sRNA_norm, by = c("Name" = "Name")) %>%
column_to_rownames(var = "Name")
write.table(Ptuh_counts_siRNA_norm, file = "../output/03.1-Ptuh-sRNA-summary/Ptuh_counts_siRNA_normalized.txt", sep = "\t", row.names = TRUE, col.names = TRUE,quote = FALSE)
Ptuh_counts_siRNA_vsd <- left_join(Ptuh_counts_siRNA_namesdf, Ptuh_counts_sRNA_vsd, by = c("Name" = "Name")) %>%
column_to_rownames(var = "Name")
write.table(Ptuh_counts_siRNA_vsd, file = "../output/03.1-Ptuh-sRNA-summary/Ptuh_counts_siRNA_variancestabilized.txt", sep = "\t", row.names = TRUE, col.names = TRUE,quote = FALSE)
Normalized expression levels
Plot histograms of the normalized expression levels in each sample
# Melt the count matrix into long format
Ptuh_counts_siRNA_norm_melted <- melt(Ptuh_counts_siRNA_norm, variable.name = "sample", value.name = "counts")
# Plot the expression level histograms for each sample
ggplot(Ptuh_counts_siRNA_norm_melted, aes(x = counts)) +
geom_histogram(binwidth = 1, fill = "#7A2048", color = "black") +
scale_x_log10() + # Optional: Log-transform the x-axis for better visualization
facet_wrap(~sample, scales = "free_y") +
labs(title = "Gene Expression Level Histogram for Each Sample",
x = "Expression Level (Counts)",
y = "Frequency") +
theme_minimal()
Normalized transcript counts
Check the total number of transcripts in each sample – now that we’ve normalized the data these totals should be similar
# Calculate the total number of transcripts for each sample
total_transcripts_siRNA_norm <- colSums(Ptuh_counts_siRNA_norm)
# Create a data frame for plotting
total_transcripts_siRNA_norm_df <- data.frame(sample = names(total_transcripts_siRNA_norm),
totals = total_transcripts_siRNA_norm)
# Plot the total number of transcripts for each sample
ggplot(total_transcripts_siRNA_norm_df, aes(x = sample, y = totals)) +
geom_bar(stat = "identity", fill = "#7A2048", color = "black") +
geom_text(aes(label = totals), vjust = -0.3, size = 3.5) +
labs(title = "Total Number of siRNA Transcripts per Sample",
x = "Sample",
y = "Total Transcripts") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis labels for readability
Heatmap
Of all siRNAs
heat_colors <- rev(brewer.pal(12, "RdYlBu"))
pheatmap(as.matrix(Ptuh_counts_siRNA_vsd[apply(Ptuh_counts_siRNA_vsd, 1, var) > 0, ]),
cluster_rows = TRUE,
cluster_cols = TRUE,
show_rownames = TRUE,
show_colnames = TRUE,
color = heat_colors,
scale="row")
LS0tCnRpdGxlOiAiMDMuMS1QdHVoLXNSTkEtc3VtbWFyeSIKYXV0aG9yOiAiS2F0aGxlZW4gRHVya2luIgpkYXRlOiAiMjAyNC0wOS0wNiIKYWx3YXlzX2FsbG93X2h0bWw6IHRydWUKb3V0cHV0OiAKICBib29rZG93bjo6aHRtbF9kb2N1bWVudDI6CiAgICB0aGVtZTogY29zbW8KICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIGNvZGVfZm9sZGluZzogc2hvdwogICAgY29kZV9kb3dubG9hZDogdHJ1ZQogIGdpdGh1Yl9kb2N1bWVudDoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2RlcHRoOiAzCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIGh0bWxfcHJldmlldzogdHJ1ZSAKLS0tCgpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0KbGlicmFyeShrbml0cikKa25pdHI6Om9wdHNfY2h1bmskc2V0KAogIGVjaG8gPSBUUlVFLCAgICAgICAgICMgRGlzcGxheSBjb2RlIGNodW5rcwogIGV2YWwgPSBUUlVFLCAgICAgICAgICMgRXZhbHVhdGUgY29kZSBjaHVua3MKICB3YXJuaW5nID0gRkFMU0UsICAgICAjIEhpZGUgd2FybmluZ3MKICBtZXNzYWdlID0gRkFMU0UsICAgICAjIEhpZGUgbWVzc2FnZXMKICBjb21tZW50ID0gIiIgICAgICAgICAjIFByZXZlbnRzIGFwcGVuZGluZyAnIyMnIHRvIGJlZ2lubmluZyBvZiBsaW5lcyBpbiBjb2RlIG91dHB1dAopCmBgYAoKR2VuZSBleHByZXNzaW9uIHN1bW1hcnkgZm9yICpQb2NpbGxvcG9yYSB0dWFoaW5pZW5zaXMqIHNSTkEtc2VxIGRhdGEuCgotICAgdHJpbW1lZCByZWFkcyBnZW5lcmF0ZWQgaW4gYGRlZXAtZGl2ZWAgcHJvamVjdAoKLSAgIFJlYWRzIGFsaWduZWQgdG8gKlBvY2lsbG9wb3JhIG1lYW5kcmluYSogdHJhbnNjcmlwdG9tZSwgZGV0YWlscyBbaGVyZV0oaHR0cHM6Ly9naXRodWIuY29tL3Vyb2wtZTUvZGVlcC1kaXZlL2Jsb2IvbWFpbi9GLVB0dWgvY29kZS8xMi1QdHVoLVJOQXNlcS1rYWxsaXN0by5tZCkKCgojIyMgSW5zdGFsbCBhbmQgbG9hZCBwYWNrYWdlcwoKYGBge3IgbG9hZF9saWJyYXJpZXMsIGlubGN1ZGUgPSBUUlVFfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KHJlc2hhcGUyKQpsaWJyYXJ5KHBoZWF0bWFwKQpsaWJyYXJ5KFJDb2xvckJyZXdlcikKbGlicmFyeShERVNlcTIpCmBgYAoKCiMgc1JOQQoKIyMgTG9hZCBjb3VudCBkYXRhCgpMb2FkIGluIHRoZSBzUk5BIGNvdW50IG1hdHJpeCBnZW5lcmF0ZWQgdXNpbmcgU2hvcnRTdGFjayA0LjEuMC4gS2VlcCBpbiBtaW5kIHRoaXMgZGF0YSBpbmNsdWRlcyBjb3VudHMgb2YgYWxsIHNSTkFzLCBub3QganVzdCBtaVJOQXMuIAoKYGBge3IgbG9hZC1zUk5BLWNvdW50c30KIyBSZWFkIGluIHNSTkEgY291bnRzIGRhdGEKUHR1aF9jb3VudHNfc1JOQV9kYXRhX09HIDwtIHJlYWRfZGVsaW0oIi4uL291dHB1dC8wNS1QdHVoLXNSTkEtU2hvcnRTdGFja180LjEuMC9TaG9ydFN0YWNrX291dC9Db3VudHMudHh0IiwgZGVsaW09Ilx0IikgCmhlYWQoUHR1aF9jb3VudHNfc1JOQV9kYXRhX09HKQpgYGAKCiMjIENvdW50IGRhdGEgbXVuZ2luZwoKYGBge3Igc1JOQS1jb3VudC1kYXRhLW11bmdpbmd9ClB0dWhfY291bnRzX3NSTkEgPC0gUHR1aF9jb3VudHNfc1JOQV9kYXRhX09HCgojIFJlbW92ZSBleGNlc3MgcG9ydGlvbnMgb2Ygc2FtcGxlIGNvbHVtbiBuYW1lcyB0byBqdXN0ICJzYW1wbGUjIyMiCmNvbG5hbWVzKFB0dWhfY291bnRzX3NSTkEpIDwtIHN1YigiLVMxLVRQMi1mYXN0cC1hZGFwdGVycy1wb2x5Ry0zMWJwLW1lcmdlZF9jb25kZW5zZWQiLCAiIiwgY29sbmFtZXMoUHR1aF9jb3VudHNfc1JOQSkpCmNvbG5hbWVzKFB0dWhfY291bnRzX3NSTkEpIDwtIHN1Yigic1JOQS1QT0MtIiwgInNhbXBsZSIsIGNvbG5hbWVzKFB0dWhfY291bnRzX3NSTkEpKQoKIyBLZWVwIGp1c3QgdGhlIGNvdW50cyBhbmQgY2x1c3RlciBuYW1lcwpQdHVoX2NvdW50c19zUk5BIDwtIFB0dWhfY291bnRzX3NSTkEgJT4lIHNlbGVjdCgic2FtcGxlNDciLCAic2FtcGxlNDgiLCAic2FtcGxlNTAiLCAic2FtcGxlNTMiLCAic2FtcGxlNTciLCAiTmFtZSIpCgojIEknbSBub3QgZ29pbmcgdG8gYmUgZG9pbmcgYW55IHJlbW92YWwgb2YgbG93LWNvdW50IHNSTkFzIGZvciBub3cKCiMgTWFrZSB0aGUgY2x1c3RlciBuYW1lcyBvdXIgbmV3IHJvdyBuYW1lcwpQdHVoX2NvdW50c19zUk5BIDwtIFB0dWhfY291bnRzX3NSTkEgJT4lIGNvbHVtbl90b19yb3duYW1lcyh2YXIgPSAiTmFtZSIpCgp3cml0ZS50YWJsZShQdHVoX2NvdW50c19zUk5BLCBmaWxlID0gIi4uL291dHB1dC8wMy4xLVB0dWgtc1JOQS1zdW1tYXJ5L1B0dWhfc1JOQV9TaG9ydFN0YWNrX2NvdW50c19mb3JtYXR0ZWQudHh0Iiwgc2VwID0gIlx0Iiwgcm93Lm5hbWVzID0gVFJVRSwgY29sLm5hbWVzID0gVFJVRSwgcXVvdGUgPSBGQUxTRSkKCmhlYWQoUHR1aF9jb3VudHNfc1JOQSkKYGBgCgoKIyMgRXhwcmVzc2lvbiBsZXZlbHMKClBsb3QgaGlzdG9ncmFtcyBvZiB0aGUgZXhwcmVzc2lvbiBsZXZlbHMgaW4gZWFjaCBzYW1wbGUKCmBgYHtyIGV4cHJlc3Npb24tbGV2ZWwtaGlzdG9ncmFtc30KIyBNZWx0IHRoZSBjb3VudCBtYXRyaXggaW50byBsb25nIGZvcm1hdApQdHVoX2NvdW50c19zUk5BX21lbHRlZCA8LSBtZWx0KFB0dWhfY291bnRzX3NSTkEsIHZhcmlhYmxlLm5hbWUgPSAic2FtcGxlIiwgdmFsdWUubmFtZSA9ICJjb3VudHMiKQoKIyBQbG90IHRoZSBleHByZXNzaW9uIGxldmVsIGhpc3RvZ3JhbXMgZm9yIGVhY2ggc2FtcGxlCmdncGxvdChQdHVoX2NvdW50c19zUk5BX21lbHRlZCwgYWVzKHggPSBjb3VudHMpKSArCiAgZ2VvbV9oaXN0b2dyYW0oYmlud2lkdGggPSAxLCBmaWxsID0gIiM3QTIwNDgiLCBjb2xvciA9ICJibGFjayIpICsKICBzY2FsZV94X2xvZzEwKCkgKyAgIyBPcHRpb25hbDogTG9nLXRyYW5zZm9ybSB0aGUgeC1heGlzIGZvciBiZXR0ZXIgdmlzdWFsaXphdGlvbgogIGZhY2V0X3dyYXAofnNhbXBsZSwgc2NhbGVzID0gImZyZWVfeSIpICsKICBsYWJzKHRpdGxlID0gIkdlbmUgRXhwcmVzc2lvbiBMZXZlbCBIaXN0b2dyYW0gZm9yIEVhY2ggU2FtcGxlIiwKICAgICAgIHggPSAiRXhwcmVzc2lvbiBMZXZlbCAoQ291bnRzKSIsCiAgICAgICB5ID0gIkZyZXF1ZW5jeSIpICsKICB0aGVtZV9taW5pbWFsKCkKYGBgCgojIyBUcmFuc2NyaXB0IGNvdW50cwoKRmlyc3QgbGV0J3MgY2hlY2sgdGhlIHRvdGFsIG51bWJlciBvZiB0cmFuc2NyaXB0cyBpbiBlYWNoIHNhbXBsZSAtLSBrZWVwIGluIG1pbmQgdGhpcyBleHByZXNzaW9uIGRhdGEgaGFzICpub3QqIGJlZW4gbm9ybWFsaXplZCB5ZXQsIHNvIHRoZXJlIG1heSBiZSBkaWZmZXJlbnQgdG90YWxzIGZvciBlYWNoIHNhbXBsZQpgYGB7ciB0cmFuc2NyaXB0LWNvdW50cy1wbG90fQojIENhbGN1bGF0ZSB0aGUgdG90YWwgbnVtYmVyIG9mIHRyYW5zY3JpcHRzIGZvciBlYWNoIHNhbXBsZQp0b3RhbF90cmFuc2NyaXB0cyA8LSBjb2xTdW1zKFB0dWhfY291bnRzX3NSTkEpCgojIENyZWF0ZSBhIGRhdGEgZnJhbWUgZm9yIHBsb3R0aW5nCnRvdGFsX3RyYW5zY3JpcHRzX2RmIDwtIGRhdGEuZnJhbWUoc2FtcGxlID0gbmFtZXModG90YWxfdHJhbnNjcmlwdHMpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRvdGFscyA9IHRvdGFsX3RyYW5zY3JpcHRzKQoKIyBQbG90IHRoZSB0b3RhbCBudW1iZXIgb2YgdHJhbnNjcmlwdHMgZm9yIGVhY2ggc2FtcGxlCmdncGxvdCh0b3RhbF90cmFuc2NyaXB0c19kZiwgYWVzKHggPSBzYW1wbGUsIHkgPSB0b3RhbHMpKSArCiAgZ2VvbV9iYXIoc3RhdCA9ICJpZGVudGl0eSIsIGZpbGwgPSAiIzdBMjA0OCIsIGNvbG9yID0gImJsYWNrIikgKwogIGdlb21fdGV4dChhZXMobGFiZWwgPSB0b3RhbHMpLCB2anVzdCA9IC0wLjMsIHNpemUgPSAzLjUpICsgCiAgbGFicyh0aXRsZSA9ICJUb3RhbCBOdW1iZXIgb2YgVHJhbnNjcmlwdHMgcGVyIFNhbXBsZSIsCiAgICAgICB4ID0gIlNhbXBsZSIsCiAgICAgICB5ID0gIlRvdGFsIFRyYW5zY3JpcHRzIikgKwogIHRoZW1lX21pbmltYWwoKSArCiAgdGhlbWUoYXhpcy50ZXh0LnggPSBlbGVtZW50X3RleHQoYW5nbGUgPSA0NSwgaGp1c3QgPSAxKSkgICMgUm90YXRlIHgtYXhpcyBsYWJlbHMgZm9yIHJlYWRhYmlsaXR5CmBgYAoKTm93IGxldCdzIGNoZWNrIHRoZSBudW1iZXIgb2YgdW5pcXVlIHRyYW5zY3JpcHRzIGluIGVhY2ggc2FtcGxlIC0tIHRoYXQgaXMsIGhvdyBtYW55IHVuaXF1ZSBzUk5BcyBhcmUgZXhwcmVzc2VkIGluIGVhY2ggc2FtcGxlPyBUaGlzIHNob3VsZCBiZSBwcmV0dHkgbXVjaCB0aGUgc2FtZSBhY3Jvc3Mgc2FtcGxlcywgZXZlbiB3aXRob3V0IG5vcm1hbGl6YXRpb24uCgpgYGB7ciB0b3RhbC11bmlxdWUtdHJhbnNjcmlwdHMtcGxvdH0KIyBDYWxjdWxhdGUgdGhlIG51bWJlciBvZiB1bmlxdWUgdHJhbnNjcmlwdHMgKG5vbi16ZXJvIGNvdW50cykgZm9yIGVhY2ggc2FtcGxlCnVuaXF1ZV90cmFuc2NyaXB0cyA8LSBjb2xTdW1zKFB0dWhfY291bnRzX3NSTkEgPiAwKQoKIyBDcmVhdGUgYSBkYXRhIGZyYW1lIGZvciBwbG90dGluZwp1bmlxdWVfdHJhbnNjcmlwdHNfZGYgPC0gZGF0YS5mcmFtZShzYW1wbGUgPSBuYW1lcyh1bmlxdWVfdHJhbnNjcmlwdHMpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB1bmlxdWVzID0gdW5pcXVlX3RyYW5zY3JpcHRzKQoKIyBQbG90IHRoZSB0b3RhbCBudW1iZXIgb2YgdW5pcXVlIHRyYW5zY3JpcHRzIGZvciBlYWNoIHNhbXBsZQpnZ3Bsb3QodW5pcXVlX3RyYW5zY3JpcHRzX2RmLCBhZXMoeCA9IHNhbXBsZSwgeSA9IHVuaXF1ZXMpKSArCiAgZ2VvbV9iYXIoc3RhdCA9ICJpZGVudGl0eSIsIGZpbGwgPSAiIzdBMjA0OCIsIGNvbG9yID0gImJsYWNrIikgKwogIGdlb21fdGV4dChhZXMobGFiZWwgPSB1bmlxdWVzKSwgdmp1c3QgPSAtMC4zLCBzaXplID0gMy41KSArIAogIGxhYnModGl0bGUgPSAiVG90YWwgTnVtYmVyIG9mIFVuaXF1ZSBFeHByZXNzZWQgVHJhbnNjcmlwdHMgcGVyIFNhbXBsZSIsCiAgICAgICB4ID0gIlNhbXBsZSIsCiAgICAgICB5ID0gIlVuaXF1ZSBUcmFuc2NyaXB0cyIpICsKICB0aGVtZV9taW5pbWFsKCkgKwogIHRoZW1lKGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gNDUsIGhqdXN0ID0gMSkpICAjIFJvdGF0ZSB4LWF4aXMgbGFiZWxzIGZvciByZWFkYWJpbGl0eQpgYGAKICAgCgojIG1pUk5BCgojIyBMb2FkIG1pUk5BIG1ldGFkYXRhCgpUaGUgU2hvcnRTdGFjayBvdXRwdXQgUmVzdWx0cy50eHQgaW5jbHVkZXMgYWxsIGNsdXN0ZXJzIG9mIHNSTkEgcmVhZHMsIGluY2x1ZGluZyB0aG9zZSBub3QgYW5ub3RhdGVkIGFzIHZhbGlkIG1pUk5Bcy4gTm93IHRoYXQgd2UndmUgbG9va2VkIGF0IGFsbCB0aGUgc1JOQXMgYSBiaXQsIGxldCdzIGZvY3VzIGluIG9uIHRob3NlIGNsYXNzaWZpZWQgYXMgbWlSTkFzLgoKYGBge3IgbWlSTkEtY291bnQtZGF0YS1tdW5naW5nfQojIyBUaGlzIGNvZGUgbmVlZHMgbWlSTkEgbmFtZXMgZmlyc3QgIyMKIyAjIEpvaW4gd2l0aCBmdWxsIG1ldGFkYXRhIHNoZWV0LCB3aGljaCBvbmx5IGNvbnRhaW5zIHZhbGlkIG1pUk5BcwojIFB0dWhfbWV0YWRhdGFfbWlSTkEgPC0gcmVhZF9jc3YoIi4uLy4uLy4uL2RlZXAtZGl2ZS9ERUYtY3Jvc3Mtc3BlY2llcy9vdXRwdXQvMTAtc2hvcnRSTkEtU2hvcnRTdGFjay1jb21wYXJpc29uL1B0dWhfcmVzdWx0c19tYXR1cmVfbmFtZWQuY3N2IikgCiMgCiMgUHR1aF9jb3VudHNfc1JOQSA8LSByb3duYW1lc190b19jb2x1bW4oUHR1aF9jb3VudHNfc1JOQSwgdmFyID0gIk5hbWUiKQojIAojIFB0dWhfY291bnRzX21pUk5BIDwtIGxlZnRfam9pbihQdHVoX21ldGFkYXRhX21pUk5BLCBQdHVoX2NvdW50c19zUk5BLCBieSA9IGMoIk5hbWUiID0gIk5hbWUiKSkKIyAKIyAjIEtlZXAganVzdCB0aGUgY291bnRzIGFuZCBnaXZlbiBtaVJOQSBuYW1lcyAoZS5nLiwgYmFzZWQgb24gbWF0Y2ggdG8gcHJldmlvdXNseSBkZXNjcmliZWQgbWlSTkEpCiMgUHR1aF9jb3VudHNfbWlSTkEgPC0gUHR1aF9jb3VudHNfbWlSTkEgJT4lIHNlbGVjdCgic2FtcGxlNDciLCAic2FtcGxlNDgiLCAic2FtcGxlNTAiLCAic2FtcGxlNTMiLCAic2FtcGxlNTciLCAiZ2l2ZW5fbWlSTkFfbmFtZSIpCiMgCiMgIyBNYWtlIHRoZSBtaVJOQSBuYW1lcyBvdXIgbmV3IHJvdyBuYW1lcwojIFB0dWhfY291bnRzX21pUk5BIDwtIFB0dWhfY291bnRzX21pUk5BICU+JSBjb2x1bW5fdG9fcm93bmFtZXModmFyID0gImdpdmVuX21pUk5BX25hbWUiKQojIAojIGhlYWQoUHR1aF9jb3VudHNfbWlSTkEpCgojIyBUaGlzIGNvZGUgY2FuIGJlIHVzZWQgdW50aWwgd2UgaGF2ZSBtaVJOQSBuYW1lcyAjIwpQdHVoX2NvdW50c19taVJOQSA8LSBQdHVoX2NvdW50c19zUk5BX2RhdGFfT0cKCiMgUmVtb3ZlIGV4Y2VzcyBwb3J0aW9ucyBvZiBzYW1wbGUgY29sdW1uIG5hbWVzIHRvIGp1c3QgInNhbXBsZSMjIyIKY29sbmFtZXMoUHR1aF9jb3VudHNfbWlSTkEpIDwtIHN1YigiLVMxLVRQMi1mYXN0cC1hZGFwdGVycy1wb2x5Ry0zMWJwLW1lcmdlZF9jb25kZW5zZWQiLCAiIiwgY29sbmFtZXMoUHR1aF9jb3VudHNfbWlSTkEpKQpjb2xuYW1lcyhQdHVoX2NvdW50c19taVJOQSkgPC0gc3ViKCJzUk5BLVBPQy0iLCAic2FtcGxlIiwgY29sbmFtZXMoUHR1aF9jb3VudHNfbWlSTkEpKQoKIyBLZWVwIG9ubHkgdGhlIHNSTkFzIElEJ2QgYXMgdmFsaWQgbWlSTkFzClB0dWhfY291bnRzX21pUk5BIDwtIFB0dWhfY291bnRzX21pUk5BICU+JSBmaWx0ZXIoTUlSTkEgPT0gIlkiKQoKIyBLZWVwIGp1c3QgdGhlIGNvdW50cyBhbmQgY2x1c3RlciBuYW1lcwpQdHVoX2NvdW50c19taVJOQSA8LSBQdHVoX2NvdW50c19taVJOQSAlPiUgc2VsZWN0KCJzYW1wbGU0NyIsICJzYW1wbGU0OCIsICJzYW1wbGU1MCIsICJzYW1wbGU1MyIsICJzYW1wbGU1NyIsICJOYW1lIikKCiMgTWFrZSB0aGUgY2x1c3RlciBuYW1lcyBvdXIgbmV3IHJvdyBuYW1lcwpQdHVoX2NvdW50c19taVJOQSA8LSBQdHVoX2NvdW50c19taVJOQSAlPiUgY29sdW1uX3RvX3Jvd25hbWVzKHZhciA9ICJOYW1lIikKCndyaXRlLnRhYmxlKFB0dWhfY291bnRzX21pUk5BLCBmaWxlID0gIi4uL291dHB1dC8wMy4xLVB0dWgtc1JOQS1zdW1tYXJ5L1B0dWhfbWlSTkFfU2hvcnRTdGFja19jb3VudHNfZm9ybWF0dGVkLnR4dCIsIHNlcCA9ICJcdCIsIHJvdy5uYW1lcyA9IFRSVUUsIGNvbC5uYW1lcyA9IFRSVUUsIHF1b3RlID0gRkFMU0UpCgpoZWFkKFB0dWhfY291bnRzX21pUk5BKQoKYGBgCgojIyBFeHByZXNzaW9uIGxldmVscwoKUGxvdCBoaXN0b2dyYW1zIG9mIHRoZSBleHByZXNzaW9uIGxldmVscyBpbiBlYWNoIHNhbXBsZQoKYGBge3IgbWlSTkEtZXhwcmVzc2lvbi1sZXZlbC1oaXN0b2dyYW1zfQojIE1lbHQgdGhlIGNvdW50IG1hdHJpeCBpbnRvIGxvbmcgZm9ybWF0ClB0dWhfY291bnRzX21pUk5BX21lbHRlZCA8LSBtZWx0KFB0dWhfY291bnRzX21pUk5BLCB2YXJpYWJsZS5uYW1lID0gInNhbXBsZSIsIHZhbHVlLm5hbWUgPSAiY291bnRzIikKCiMgUGxvdCB0aGUgZXhwcmVzc2lvbiBsZXZlbCBoaXN0b2dyYW1zIGZvciBlYWNoIHNhbXBsZQpnZ3Bsb3QoUHR1aF9jb3VudHNfbWlSTkFfbWVsdGVkLCBhZXMoeCA9IGNvdW50cykpICsKICBnZW9tX2hpc3RvZ3JhbShiaW53aWR0aCA9IDEsIGZpbGwgPSAiIzdBMjA0OCIsIGNvbG9yID0gImJsYWNrIikgKwogIHNjYWxlX3hfbG9nMTAoKSArICAjIE9wdGlvbmFsOiBMb2ctdHJhbnNmb3JtIHRoZSB4LWF4aXMgZm9yIGJldHRlciB2aXN1YWxpemF0aW9uCiAgZmFjZXRfd3JhcCh+c2FtcGxlLCBzY2FsZXMgPSAiZnJlZV95IikgKwogIGxhYnModGl0bGUgPSAibWlSTkEgRXhwcmVzc2lvbiBMZXZlbCBIaXN0b2dyYW0gZm9yIEVhY2ggU2FtcGxlIiwKICAgICAgIHggPSAiRXhwcmVzc2lvbiBMZXZlbCAoQ291bnRzKSIsCiAgICAgICB5ID0gIkZyZXF1ZW5jeSIpICsKICB0aGVtZV9taW5pbWFsKCkKYGBgCgojIyBtaVJOQSBjb3VudHMKCkZpcnN0IGxldCdzIGNoZWNrIHRoZSB0b3RhbCBudW1iZXIgb2YgbWlSTkFzIGluIGVhY2ggc2FtcGxlIC0tIGtlZXAgaW4gbWluZCB0aGlzIGV4cHJlc3Npb24gZGF0YSBoYXMgKm5vdCogYmVlbiBub3JtYWxpemVkIHlldCwgc28gdGhlcmUgbWF5IGJlIGRpZmZlcmVudCB0b3RhbHMgZm9yIGVhY2ggc2FtcGxlCmBgYHtyIG1pUk5BLWNvdW50cy1wbG90fQojIENhbGN1bGF0ZSB0aGUgdG90YWwgbnVtYmVyIG9mIHRyYW5zY3JpcHRzIGZvciBlYWNoIHNhbXBsZQp0b3RhbF9taVJOQSA8LSBjb2xTdW1zKFB0dWhfY291bnRzX21pUk5BKQoKIyBDcmVhdGUgYSBkYXRhIGZyYW1lIGZvciBwbG90dGluZwp0b3RhbF9taVJOQV9kZiA8LSBkYXRhLmZyYW1lKHNhbXBsZSA9IG5hbWVzKHRvdGFsX21pUk5BKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0b3RhbHMgPSB0b3RhbF9taVJOQSkKCiMgUGxvdCB0aGUgdG90YWwgbnVtYmVyIG9mIHRyYW5zY3JpcHRzIGZvciBlYWNoIHNhbXBsZQpnZ3Bsb3QodG90YWxfbWlSTkFfZGYsIGFlcyh4ID0gc2FtcGxlLCB5ID0gdG90YWxzKSkgKwogIGdlb21fYmFyKHN0YXQgPSAiaWRlbnRpdHkiLCBmaWxsID0gIiM3QTIwNDgiLCBjb2xvciA9ICJibGFjayIpICsKICBnZW9tX3RleHQoYWVzKGxhYmVsID0gdG90YWxzKSwgdmp1c3QgPSAtMC4zLCBzaXplID0gMy41KSArIAogIGxhYnModGl0bGUgPSAiVG90YWwgTnVtYmVyIG9mIG1pUk5BcyBwZXIgU2FtcGxlIiwKICAgICAgIHggPSAiU2FtcGxlIiwKICAgICAgIHkgPSAiVG90YWwgbWlSTkFzIikgKwogIHRoZW1lX21pbmltYWwoKSArCiAgdGhlbWUoYXhpcy50ZXh0LnggPSBlbGVtZW50X3RleHQoYW5nbGUgPSA0NSwgaGp1c3QgPSAxKSkgICMgUm90YXRlIHgtYXhpcyBsYWJlbHMgZm9yIHJlYWRhYmlsaXR5CmBgYAoKTm93IGxldCdzIGNoZWNrIHRoZSBudW1iZXIgb2YgdW5pcXVlIG1pUk5BcyBpbiBlYWNoIHNhbXBsZSAtLSBUaGlzIHNob3VsZCBiZSBwcmV0dHkgbXVjaCB0aGUgc2FtZSBhY3Jvc3Mgc2FtcGxlcywgZXZlbiB3aXRob3V0IG5vcm1hbGl6YXRpb24uCgpgYGB7ciB0b3RhbC11bmlxdWUtbWlSTkEtcGxvdH0KIyBDYWxjdWxhdGUgdGhlIG51bWJlciBvZiB1bmlxdWUgdHJhbnNjcmlwdHMgKG5vbi16ZXJvIGNvdW50cykgZm9yIGVhY2ggc2FtcGxlCnVuaXF1ZV9taVJOQSA8LSBjb2xTdW1zKFB0dWhfY291bnRzX21pUk5BID4gMCkKCiMgQ3JlYXRlIGEgZGF0YSBmcmFtZSBmb3IgcGxvdHRpbmcKdW5pcXVlX21pUk5BX2RmIDwtIGRhdGEuZnJhbWUoc2FtcGxlID0gbmFtZXModW5pcXVlX21pUk5BKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdW5pcXVlcyA9IHVuaXF1ZV9taVJOQSkKCiMgUGxvdCB0aGUgdG90YWwgbnVtYmVyIG9mIHVuaXF1ZSB0cmFuc2NyaXB0cyBmb3IgZWFjaCBzYW1wbGUKZ2dwbG90KHVuaXF1ZV9taVJOQV9kZiwgYWVzKHggPSBzYW1wbGUsIHkgPSB1bmlxdWVzKSkgKwogIGdlb21fYmFyKHN0YXQgPSAiaWRlbnRpdHkiLCBmaWxsID0gIiM3QTIwNDgiLCBjb2xvciA9ICJibGFjayIpICsKICBnZW9tX3RleHQoYWVzKGxhYmVsID0gdW5pcXVlcyksIHZqdXN0ID0gLTAuMywgc2l6ZSA9IDMuNSkgKyAKICBsYWJzKHRpdGxlID0gIlRvdGFsIE51bWJlciBvZiBVbmlxdWUgRXhwcmVzc2VkIG1pUk5BcyBwZXIgU2FtcGxlIiwKICAgICAgIHggPSAiU2FtcGxlIiwKICAgICAgIHkgPSAiVW5pcXVlIG1pUk5BIikgKwogIHRoZW1lX21pbmltYWwoKSArCiAgdGhlbWUoYXhpcy50ZXh0LnggPSBlbGVtZW50X3RleHQoYW5nbGUgPSA0NSwgaGp1c3QgPSAxKSkgICMgUm90YXRlIHgtYXhpcyBsYWJlbHMgZm9yIHJlYWRhYmlsaXR5CmBgYAoKIyMgSGVhdG1hcAoKYGBge3IgbWlSTkEtaGVhdG1hcH0KcGhlYXRtYXAoUHR1aF9jb3VudHNfbWlSTkEsCiAgICAgICAgIGNsdXN0ZXJfcm93cyA9IFRSVUUsCiAgICAgICAgIGNsdXN0ZXJfY29scyA9IFRSVUUsCiAgICAgICAgIHNob3dfcm93bmFtZXMgPSBUUlVFLAogICAgICAgICBzaG93X2NvbG5hbWVzID0gVFJVRSwKICAgICAgICAgY29sb3IgPSBjb2xvclJhbXBQYWxldHRlKGMoImJsdWUiLCAid2hpdGUiLCAicmVkIikpKDUwKSwKICAgICAgICAgZm9udHNpemVfcm93ID0gOCwKICAgICAgICAgZm9udHNpemVfY29sID0gOCkKYGBgCldlbGwuLi4gdGhlcmUncyBsaWtlIDIgbWlSTkFzIHdpdGggbXVjaCBoaWdoZXIgZXhwcmVzc2lvbiB0aGFuIHRoZSBvdGhlcnMsIHdoaWNoIGlzIG1ha2luZyB2aXN1YWxpemluZyByZWxhdGl2ZSBkaWZmZXJlbmNlcyBkaWZmaWN1bHQuIExldCdzIHJlZG8gdGhlIGhlYXRtYXAsIG5vcm1hbGl6aW5nIGVhY2ggcm93IHRvIHZpZXcgcmVsYXRpdmUgZGlmZmVyZW5jZSBpbiBleHByZXNzaW9uIGJldHdlZW4gc2FtcGxlcyAoYHNjYWxlPSdyb3cnYCkKCmBgYHtyIG1pUk5BLWhlYXRtYXAtcm93c2NhbGV9CnBoZWF0bWFwKFB0dWhfY291bnRzX21pUk5BLAogICAgICAgICBjbHVzdGVyX3Jvd3MgPSBUUlVFLAogICAgICAgICBjbHVzdGVyX2NvbHMgPSBUUlVFLAogICAgICAgICBzaG93X3Jvd25hbWVzID0gVFJVRSwKICAgICAgICAgc2hvd19jb2xuYW1lcyA9IFRSVUUsCiAgICAgICAgIHNjYWxlID0gJ3JvdycsCiAgICAgICAgIGNvbG9yID0gY29sb3JSYW1wUGFsZXR0ZShjKCJibHVlIiwgIndoaXRlIiwgInJlZCIpKSg1MCksCiAgICAgICAgIGZvbnRzaXplX3JvdyA9IDgsCiAgICAgICAgIGZvbnRzaXplX2NvbCA9IDgpCmBgYAoKIyBzaVJOQQoKU2hvcnRTdGFjaydzIHByaW1hcnkgcHVycG9zZSBpcyB0byBpZGVudGlmeSBtaVJOQXMgZnJvbSBzUk5BLXNlcSBkYXRhLCBidXQgaXQgYWxzbyBhdXRvbWF0aWNhbGx5IGFubm90YXRlcyBzaVJOQSBsb2NpISBTaW5jZSBzaVJOQSBwb3RlbnRpYWxseSBwbGF5IGFuIGltcG9ydGFudCByb2xlIGluIHRyYW5zcG9zb24gc2lsZW5jaW5nIGluIGludmVydGVicmF0ZXMsIHdlIHNob3VsZCBnZW5lcmF0ZSBjb3VudCBtYXRyaWNlcyBmb3Igc2lSTkFzIGFzIHdlbGwuIAoKV2UgY2FuIHNlZSBjbHVzdGVycyBhbm5vdGF0ZWQgYXMgc2lSTkFzIGluIHRoZSBgUmVzdWx0cy5nZmYzYCBvdXRwdXQgZmlsZSBvZiBTaG9ydFN0YWNrIChzUk5BIElEIHNob3duIGluIHRoZSAzcmQgY29sdW1uKQoKYGBge3Igc2lSTkEtY291bnQtZGF0YS1tdW5naW5nfQpQdHVoX1Jlc3VsdHNnZmYgPC0gcmVhZC50YWJsZSgiLi4vb3V0cHV0LzA1LVB0dWgtc1JOQS1TaG9ydFN0YWNrXzQuMS4wL1Nob3J0U3RhY2tfb3V0L1Jlc3VsdHMuZ2ZmMyIpCiMgU2VwYXJhdGUgbGFzdCBjb2x1bW4gaW5mbyBpbnRvIG11bHRpcGxlIGNvbHVtbnMgZm9yIGZpbHRlcmluZwpQdHVoX1Jlc3VsdHNnZmYgPC0gUHR1aF9SZXN1bHRzZ2ZmICU+JQogIHNlcGFyYXRlKFY5LCBpbnRvID0gYygiTmFtZSIsICJEaWNlckNhbGwiLCAiTUlSTkEiKSwgc2VwID0gIjsiKSAlPiUKICBtdXRhdGUoTmFtZSA9IHN1YigiSUQ9IiwgIiIsIE5hbWUpLAogICAgICAgICBEaWNlckNhbGwgPSBzdWIoIkRpY2VyQ2FsbD0iLCAiIiwgRGljZXJDYWxsKSwKICAgICAgICAgTUlSTkEgPSBzdWIoIk1JUk5BPSIsICIiLCBNSVJOQSkpCmhlYWQoUHR1aF9SZXN1bHRzZ2ZmKQoKIyBrZWVwIGp1c3QgdGhlIHNSTkEgY2F0ZWdvcnkgY29sdW1uIChWMyksIGFuZCB0aGUgY2x1c3RlciBuYW1lcyAoTmFtZSkKIyBmaWx0ZXIgdG8gb25seSBrZWVwIGNsdXN0ZXJzIElEJ2QgYXMgc2lSTkFzClB0dWhfc2lSTkFfY2x1c3RlcnMgPC0gUHR1aF9SZXN1bHRzZ2ZmICU+JQogIHNlbGVjdChWMywgTmFtZSkgJT4lCiAgZmlsdGVyKHN0cl9kZXRlY3QoVjMsIHJlZ2V4KCJzaVJOQSIpKSkKaGVhZChQdHVoX3NpUk5BX2NsdXN0ZXJzKQoKIyBOb3cgdXNlIHRoaXMgbGlzdCBvZiBjbHVzdGVycyBJRCdkIGFzIHNpUk5BcyB0byBmaWx0ZXIgb3VyIHNSTkEgY291bnQgbWF0cml4CiMga2VlcCBvbmx5IHRoZSBzYW1wbGUgY291bnRzIGFuZCBjbHVzdGVyIG5hbWVzClB0dWhfY291bnRzX3NSTkEgPC0gcm93bmFtZXNfdG9fY29sdW1uKFB0dWhfY291bnRzX3NSTkEsIHZhciA9ICJOYW1lIikKUHR1aF9jb3VudHNfc2lSTkEgPC0gbGVmdF9qb2luKFB0dWhfc2lSTkFfY2x1c3RlcnMsIFB0dWhfY291bnRzX3NSTkEsIGJ5ID0gYygiTmFtZSIgPSAiTmFtZSIpKSAlPiUKICBzZWxlY3QoLVYzKQoKIyBjb252ZXJ0IHRoZSBjb2x1bW4gb2YgY2x1c3RlciBuYW1lcyBpbnRvIHRoZSBkZiByb3cgbmFtZXMKUHR1aF9jb3VudHNfc1JOQSA8LSBQdHVoX2NvdW50c19zUk5BICU+JSBjb2x1bW5fdG9fcm93bmFtZXModmFyPSJOYW1lIikKUHR1aF9jb3VudHNfc2lSTkEgPC0gUHR1aF9jb3VudHNfc2lSTkEgJT4lIGNvbHVtbl90b19yb3duYW1lcyh2YXI9Ik5hbWUiKQoKaGVhZChQdHVoX2NvdW50c19zaVJOQSkKCndyaXRlLnRhYmxlKFB0dWhfY291bnRzX3NpUk5BLCBmaWxlID0gIi4uL291dHB1dC8wMy4xLVB0dWgtc1JOQS1zdW1tYXJ5L1B0dWhfc2lSTkFfU2hvcnRTdGFja19jb3VudHNfZm9ybWF0dGVkLnR4dCIsIHNlcCA9ICJcdCIsIHJvdy5uYW1lcyA9IFRSVUUsIGNvbC5uYW1lcyA9IFRSVUUsIHF1b3RlID0gRkFMU0UpCmBgYAoKIyMgRXhwcmVzc2lvbiBsZXZlbHMKClBsb3QgaGlzdG9ncmFtcyBvZiB0aGUgZXhwcmVzc2lvbiBsZXZlbHMgaW4gZWFjaCBzYW1wbGUKCmBgYHtyIHNpUk5BLWV4cHJlc3Npb24tbGV2ZWwtaGlzdG9ncmFtc30KIyBNZWx0IHRoZSBjb3VudCBtYXRyaXggaW50byBsb25nIGZvcm1hdApQdHVoX2NvdW50c19zaVJOQV9tZWx0ZWQgPC0gbWVsdChQdHVoX2NvdW50c19zaVJOQSwgdmFyaWFibGUubmFtZSA9ICJzYW1wbGUiLCB2YWx1ZS5uYW1lID0gImNvdW50cyIpCgojIFBsb3QgdGhlIGV4cHJlc3Npb24gbGV2ZWwgaGlzdG9ncmFtcyBmb3IgZWFjaCBzYW1wbGUKZ2dwbG90KFB0dWhfY291bnRzX3NpUk5BX21lbHRlZCwgYWVzKHggPSBjb3VudHMpKSArCiAgZ2VvbV9oaXN0b2dyYW0oYmlud2lkdGggPSAxLCBmaWxsID0gIiM3QTIwNDgiLCBjb2xvciA9ICJibGFjayIpICsKICBzY2FsZV94X2xvZzEwKCkgKyAgIyBPcHRpb25hbDogTG9nLXRyYW5zZm9ybSB0aGUgeC1heGlzIGZvciBiZXR0ZXIgdmlzdWFsaXphdGlvbgogIGZhY2V0X3dyYXAofnNhbXBsZSwgc2NhbGVzID0gImZyZWVfeSIpICsKICBsYWJzKHRpdGxlID0gInNpUk5BIEV4cHJlc3Npb24gTGV2ZWwgSGlzdG9ncmFtIGZvciBFYWNoIFNhbXBsZSIsCiAgICAgICB4ID0gIkV4cHJlc3Npb24gTGV2ZWwgKENvdW50cykiLAogICAgICAgeSA9ICJGcmVxdWVuY3kiKSArCiAgdGhlbWVfbWluaW1hbCgpCmBgYAoKIyMgc2lSTkEgY291bnRzCgpGaXJzdCBsZXQncyBjaGVjayB0aGUgdG90YWwgbnVtYmVyIG9mIHNpUk5BcyBpbiBlYWNoIHNhbXBsZSAtLSBrZWVwIGluIG1pbmQgdGhpcyBleHByZXNzaW9uIGRhdGEgaGFzICpub3QqIGJlZW4gbm9ybWFsaXplZCB5ZXQsIHNvIHRoZXJlIG1heSBiZSBkaWZmZXJlbnQgdG90YWxzIGZvciBlYWNoIHNhbXBsZQpgYGB7ciBzaVJOQS1jb3VudHMtcGxvdH0KIyBDYWxjdWxhdGUgdGhlIHRvdGFsIG51bWJlciBvZiB0cmFuc2NyaXB0cyBmb3IgZWFjaCBzYW1wbGUKdG90YWxfc2lSTkEgPC0gY29sU3VtcyhQdHVoX2NvdW50c19zaVJOQSkKCiMgQ3JlYXRlIGEgZGF0YSBmcmFtZSBmb3IgcGxvdHRpbmcKdG90YWxfc2lSTkFfZGYgPC0gZGF0YS5mcmFtZShzYW1wbGUgPSBuYW1lcyh0b3RhbF9zaVJOQSksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdG90YWxzID0gdG90YWxfc2lSTkEpCgojIFBsb3QgdGhlIHRvdGFsIG51bWJlciBvZiB0cmFuc2NyaXB0cyBmb3IgZWFjaCBzYW1wbGUKZ2dwbG90KHRvdGFsX3NpUk5BX2RmLCBhZXMoeCA9IHNhbXBsZSwgeSA9IHRvdGFscykpICsKICBnZW9tX2JhcihzdGF0ID0gImlkZW50aXR5IiwgZmlsbCA9ICIjN0EyMDQ4IiwgY29sb3IgPSAiYmxhY2siKSArCiAgZ2VvbV90ZXh0KGFlcyhsYWJlbCA9IHRvdGFscyksIHZqdXN0ID0gLTAuMywgc2l6ZSA9IDMuNSkgKyAKICBsYWJzKHRpdGxlID0gIlRvdGFsIE51bWJlciBvZiBzaVJOQXMgcGVyIFNhbXBsZSIsCiAgICAgICB4ID0gIlNhbXBsZSIsCiAgICAgICB5ID0gIlRvdGFsIHNpUk5BcyIpICsKICB0aGVtZV9taW5pbWFsKCkgKwogIHRoZW1lKGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gNDUsIGhqdXN0ID0gMSkpICAjIFJvdGF0ZSB4LWF4aXMgbGFiZWxzIGZvciByZWFkYWJpbGl0eQpgYGAKCk5vdyBsZXQncyBjaGVjayB0aGUgbnVtYmVyIG9mIHVuaXF1ZSBzaVJOQXMgaW4gZWFjaCBzYW1wbGUgLS0gVGhpcyBzaG91bGQgYmUgcHJldHR5IG11Y2ggdGhlIHNhbWUgYWNyb3NzIHNhbXBsZXMsIGV2ZW4gd2l0aG91dCBub3JtYWxpemF0aW9uLgoKYGBge3IgdG90YWwtdW5pcXVlLXNpUk5BLXBsb3R9CiMgQ2FsY3VsYXRlIHRoZSBudW1iZXIgb2YgdW5pcXVlIHRyYW5zY3JpcHRzIChub24temVybyBjb3VudHMpIGZvciBlYWNoIHNhbXBsZQp1bmlxdWVfc2lSTkEgPC0gY29sU3VtcyhQdHVoX2NvdW50c19zaVJOQSA+IDApCgojIENyZWF0ZSBhIGRhdGEgZnJhbWUgZm9yIHBsb3R0aW5nCnVuaXF1ZV9zaVJOQV9kZiA8LSBkYXRhLmZyYW1lKHNhbXBsZSA9IG5hbWVzKHVuaXF1ZV9zaVJOQSksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHVuaXF1ZXMgPSB1bmlxdWVfc2lSTkEpCgojIFBsb3QgdGhlIHRvdGFsIG51bWJlciBvZiB1bmlxdWUgdHJhbnNjcmlwdHMgZm9yIGVhY2ggc2FtcGxlCmdncGxvdCh1bmlxdWVfc2lSTkFfZGYsIGFlcyh4ID0gc2FtcGxlLCB5ID0gdW5pcXVlcykpICsKICBnZW9tX2JhcihzdGF0ID0gImlkZW50aXR5IiwgZmlsbCA9ICIjN0EyMDQ4IiwgY29sb3IgPSAiYmxhY2siKSArCiAgZ2VvbV90ZXh0KGFlcyhsYWJlbCA9IHVuaXF1ZXMpLCB2anVzdCA9IC0wLjMsIHNpemUgPSAzLjUpICsgCiAgbGFicyh0aXRsZSA9ICJUb3RhbCBOdW1iZXIgb2YgVW5pcXVlIEV4cHJlc3NlZCBzaVJOQXMgcGVyIFNhbXBsZSIsCiAgICAgICB4ID0gIlNhbXBsZSIsCiAgICAgICB5ID0gIlVuaXF1ZSBzaVJOQSIpICsKICB0aGVtZV9taW5pbWFsKCkgKwogIHRoZW1lKGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gNDUsIGhqdXN0ID0gMSkpICAjIFJvdGF0ZSB4LWF4aXMgbGFiZWxzIGZvciByZWFkYWJpbGl0eQpgYGAKCiMjIEhlYXRtYXAKCmBgYHtyIHNpUk5BLWhlYXRtYXB9CnBoZWF0bWFwKFB0dWhfY291bnRzX3NpUk5BLAogICAgICAgICBjbHVzdGVyX3Jvd3MgPSBUUlVFLAogICAgICAgICBjbHVzdGVyX2NvbHMgPSBUUlVFLAogICAgICAgICBzaG93X3Jvd25hbWVzID0gVFJVRSwKICAgICAgICAgc2hvd19jb2xuYW1lcyA9IFRSVUUsCiAgICAgICAgIGNvbG9yID0gY29sb3JSYW1wUGFsZXR0ZShjKCJibHVlIiwgIndoaXRlIiwgInJlZCIpKSg1MCksCiAgICAgICAgIGZvbnRzaXplX3JvdyA9IDgsCiAgICAgICAgIGZvbnRzaXplX2NvbCA9IDgpCmBgYAoKYGBge3Igc2lSTkEtaGVhdG1hcC1yb3dzY2FsZX0KcGhlYXRtYXAoUHR1aF9jb3VudHNfc2lSTkEsCiAgICAgICAgIGNsdXN0ZXJfcm93cyA9IFRSVUUsCiAgICAgICAgIGNsdXN0ZXJfY29scyA9IFRSVUUsCiAgICAgICAgIHNob3dfcm93bmFtZXMgPSBUUlVFLAogICAgICAgICBzaG93X2NvbG5hbWVzID0gVFJVRSwKICAgICAgICAgc2NhbGUgPSAncm93JywKICAgICAgICAgY29sb3IgPSBjb2xvclJhbXBQYWxldHRlKGMoImJsdWUiLCAid2hpdGUiLCAicmVkIikpKDUwKSwKICAgICAgICAgZm9udHNpemVfcm93ID0gOCwKICAgICAgICAgZm9udHNpemVfY29sID0gOCkKYGBgCgoKIyAuLi4uLi4uLi4uLgoKIyBOb3JtYWxpemVkIHNSTkEgY291bnRzCgojIyBOb3JtYWxpemUgY291bnRzIHdpdGggREVTZXEyCgojIyMgUGxvdCB1bm5vcm1hbGl6ZWQgc1JOQSBkYXRhCgpgYGB7ciBwbG90LXVubm9ybWFsaXplZC1zUk5BfQoKUHR1aF9jb3VudHNfc1JOQSAlPiUgCiMgIHNlbGVjdCgtTmFtZSkgJT4lCiAgcGl2b3RfbG9uZ2VyKCBjb2xzID0gZXZlcnl0aGluZygpLCBuYW1lc190byA9ICJzYW1wbGUiLCB2YWx1ZXNfdG8gPSAiY291bnQiKSAlPiUKICBnZ3Bsb3QoLiwgYWVzKHggPSBzYW1wbGUsIHkgPSBjb3VudCkpICsKICBnZW9tX3Zpb2xpbigpICsgCiAgZ2VvbV9wb2ludChhbHBoYSA9IDAuMikgKwogIHRoZW1lX21pbmltYWwoKSArCiAgbGFicyh0aXRsZSA9ICJVbm5vcm1hbGl6ZWQgc1JOQSBjb3VudHMiLAogICAgICAgeCA9ICJTYW1wbGUiLAogICAgICAgeSA9ICJjb3VudCIpCmBgYAoKIyMjIE1ldGFkYXRhCgpERVNlcTIgcmVxdWlyZXMgYSBtZXRhZGF0YSBkYXRhIGZyYW1lIGFzIGlucHV0LiBJIGRvbid0IGhhdmUgc2FtcGxlIG1ldGFkYXRhIHRob3VnaCBzbywgc2luY2Ugd2UncmUganVzdCBkb2luZyBERVNlcTIgZm9yIG5vcm1hbGl6YXRpb24gcHVycG9zZXMgKG5vdCBhbmFseXNpcyBwdXJwb3NlcyksIEknbSBqdXN0IGdvaW5nIHRvIGNyZWF0ZSBhIGR1bW15IHNoZWV0CgpgYGB7ciBtYWtlLXNSTkEtbWV0YWRhdGEtZGF0YWZyYW1lfQpQdHVoX3NhbXBsZV9uYW1lcyA8LSBQdHVoX2NvdW50c19zUk5BICU+JQojICBzZWxlY3QoLU5hbWUpICU+JQogIGNvbG5hbWVzKCkKClB0dWhfbWV0YWRhdGFfc1JOQSA8LSBkYXRhLmZyYW1lKFNhbXBsZSA9IFB0dWhfc2FtcGxlX25hbWVzLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgU3BlY2llcyA9IHJlcCgiUC50dWFoaW5pZW5zaXMiLCA1KSkKcm93bmFtZXMoUHR1aF9tZXRhZGF0YV9zUk5BKSA8LSBQdHVoX3NhbXBsZV9uYW1lcwoKaGVhZChQdHVoX21ldGFkYXRhX3NSTkEpCmBgYAoKIyMjIERFU2VxIG9iamVjdAoKYGBge3IgbWFrZS1zUk5BLWRlc2VxLW9iamVjdCwgY2FjaGU9VFJVRX0KIyBDYWxjdWxhdGUgREVTZXEgb2JqZWN0ClB0dWhfY291bnRzX3NSTkFfcm93TmFtZXMgPC0gUHR1aF9jb3VudHNfc1JOQSAKIyU+JSBjb2x1bW5fdG9fcm93bmFtZXModmFyID0gIk5hbWUiKQoKZGRzX1B0dWhfc1JOQSA8LSBERVNlcURhdGFTZXRGcm9tTWF0cml4KGNvdW50RGF0YSA9IFB0dWhfY291bnRzX3NSTkFfcm93TmFtZXMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbERhdGEgPSBQdHVoX21ldGFkYXRhX3NSTkEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRlc2lnbiA9IH4gMSkgCgojIFJ1biBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBhbmFseXNpcyAKIyAoTm90ZSB0aGF0IHRoaXMgREVTZXEoKSBmdW5jdGlvbiBydW5zIGFsbCBuZWNlc3Nhcnkgc3RlcHMsIGluY2x1ZGluZyBkYXRhIG5vcm1hbGl6YXRpb24sIAojIGVzdGltYXRpbmcgc2l6ZSBmYWN0b3JzLCBlc3RpbWF0aW5nIGRpc3BlcnNpb25zLCBnZW5lLXdpc2UgZGlzcGVyc2lvbiBlc3RpbWF0ZXMsIG1lYW4tZGlzcGVyc2lvbiAKIyByZWxhdGlvbnNoaXAsIGZpbmFsIGRpc3BlcnNpb24gZXN0aW1hdGVzLCBmaXR0aW5nIG1vZGVsLCBhbmQgdGVzdGluZykKIyBVc2luZyBkZXNpZ24gPSB+MSBiZWNhdXNlIHdlIGRvbid0IGhhdmUgdHJlYXRtZW50IGdyb3VwcwoKZGRzX1B0dWhfc1JOQSA8LSBERVNlcShkZHNfUHR1aF9zUk5BKQpgYGAKCkl0J3Mgd29ydGggbm90aW5nIGhlcmUgdGhhdCBJJ20gYWN0dWFsbHkgZ29pbmcgdG8gYmUgZG9pbmcgdHdvIGRpZmZlcmVudCB0eXBlcyBvZiB0cmFuc2Zvcm1hdGlvbiBvbiB0aGUgY291bnRzIGRhdGEsIHdoaWNoIHNlcnZlIGRpZmZlcmVudCBwdXJwb3Nlcy4gCgotIEZpcnN0IGlzICoqbm9ybWFsaXppbmcqKiB0aGUgdHJhbnNjcmlwdCBjb3VudHMsIHdoaWNoIGFkanVzdHMgZm9yIGRpZmZlcmVuY2VzIGluIGxpYnJhcnkgc2l6ZSBvciBzZXF1ZW5jaW5nIGRlcHRoLCBidXQgcmV0YWlucyBjb3VudC1saWtlIHByb3BlcnRpZXMuIE5vcm1hbGl6ZWQgY291bnRzIGFyZSBtb3N0IHVzZWZ1bCBmb3IgdGhpbmdzIGxpa2UgdmlzdWFsaXppbmcgZXhwcmVzc2lvbiBsZXZlbHMgYW5kIGRpZmZlcmVudGlhbCBleHByZXNzaW9uIGFuYWx5c2lzLgoKLSBTZWNvbmQgaXMgKip2YXJpYW5jZSBzdGFiaWxpemluZyoqIHRoZSBjb3VudHMgZGF0YSwgd2hpY2ggYWltcyB0byBtYWtlIHRoZSB2YXJpYW5jZSBvZiB0aGUgdHJhbnNmb3JtZWQgZGF0YSBhcHByb3hpbWF0ZWx5IGluZGVwZW5kZW50IG9mIHRoZSBtZWFuLCByZWR1Y2luZyBoZXRlcm9zY2VkYXN0aWNpdHkgKHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiB2YXJpYW5jZSBhbmQgbWVhbikgYW5kICJzbW9vdGhpbmciIG91dCB0aGUgdmFyaWFuY2UgYXQgbG93IGNvdW50cy4gTm90YWJseSwgdGhlIHRyYW5zZm9ybWVkIGRhdGEgaXMgKm5vIGxvbmdlciBvbiB0aGUgb3JpZ2luYWwgY291bnQgc2NhbGUqLiBUaGUgdHJhbnNmb3JtYXRpb24gbWFrZXMgdGhlIHZhcmlhbmNlIHJvdWdobHkgY29uc3RhbnQgYWNyb3NzIHRoZSByYW5nZSBvZiBjb3VudHMsIHdoaWNoIG1ha2VzIGl0IGVhc2llciB0byBpbnRlcnByZXQgcGF0dGVybnMgaW4gdGhlIGRhdGEgdmlzdWFsbHkuIFZhcmlhbmNlIHN0YWJpbGl6ZWQgZGF0YSBpcyBtb3N0IHVzZWZ1bCBmb3IgZXhwbG9yYXRvcnkgZGF0YSBhbmFseXNpcywgbGlrZSBQQ0EsIGNsdXN0ZXJpbmcsIGFuZCBoZWF0bWFwcywgYW5kIGlzIGFsc28gdGhlIHRyYW5zZm9ybWF0aW9uIHdlJ2xsIHdhbnQgdG8gdXNlIGJlZm9yZSBXR0NOQS4KCmBgYHtyIGdldC1ub3JtYWxpemVkLXNSTkEtY291bnRzLCBjYWNoZT1UUlVFfQojIGV4dHJhY3Qgbm9ybWFsaXplZCBjb3VudHMKIyAobm9ybWFsaXphdGlvbiBpcyBhdXRvbWF0aWNhbGx5IHBlcmZvcm1lZCBieSBkZXNlcTIpClB0dWhfY291bnRzX3NSTkFfbm9ybSA8LSBjb3VudHMoZGRzX1B0dWhfc1JOQSwgbm9ybWFsaXplZD1UUlVFKSAlPiUgZGF0YS5mcmFtZSgpCgp3cml0ZS50YWJsZShQdHVoX2NvdW50c19zUk5BX25vcm0sIGZpbGUgPSAiLi4vb3V0cHV0LzAzLjEtUHR1aC1zUk5BLXN1bW1hcnkvUHR1aF9jb3VudHNfc1JOQV9ub3JtYWxpemVkLnR4dCIsIHNlcCA9ICJcdCIsIHJvdy5uYW1lcyA9IFRSVUUsIGNvbC5uYW1lcyA9IFRSVUUsIHF1b3RlID0gRkFMU0UpCgoKIyB2YXJpYW5jZSBzdGFiaWxpemVkIGRhdGEKdnNkX1B0dWhfc1JOQSA8LSB2YXJpYW5jZVN0YWJpbGl6aW5nVHJhbnNmb3JtYXRpb24oZGRzX1B0dWhfc1JOQSwgYmxpbmQ9VFJVRSkKd3BuX3ZzZF9QdHVoX3NSTkEgPC0gZ2V0VmFyaWFuY2VTdGFiaWxpemVkRGF0YShkZHNfUHR1aF9zUk5BKQpydl93cG5fUHR1aF9zUk5BIDwtIHJvd1ZhcnMod3BuX3ZzZF9QdHVoX3NSTkEsIHVzZU5hbWVzPVRSVUUpCgpQdHVoX2NvdW50c19zUk5BX3ZzZCA8LSBkYXRhLmZyYW1lKHdwbl92c2RfUHR1aF9zUk5BKQp3cml0ZS50YWJsZShQdHVoX2NvdW50c19zUk5BX3ZzZCwgZmlsZSA9ICIuLi9vdXRwdXQvMDMuMS1QdHVoLXNSTkEtc3VtbWFyeS9QdHVoX2NvdW50c19zUk5BX3ZhcmlhbmNlc3RhYmlsaXplZC50eHQiLCBzZXAgPSAiXHQiLCByb3cubmFtZXMgPSBUUlVFLCBjb2wubmFtZXMgPSBUUlVFLHF1b3RlID0gRkFMU0UpCgpxNzVfd3BuX1B0dWhfc1JOQSA8LSBxdWFudGlsZShyb3dWYXJzKHdwbl92c2RfUHR1aF9zUk5BLCB1c2VOYW1lcz1UUlVFKSwgLjc1KSAgIyA3NXRoIHF1YW50aWxlIHZhcmlhYmlsaXR5ClB0dWhfY291bnRzX3NSTkFfdnNkX3E3NSA8LSB3cG5fdnNkX1B0dWhfc1JOQVsgcnZfd3BuX1B0dWhfc1JOQSA+IHE3NV93cG5fUHR1aF9zUk5BLCBdICU+JSBkYXRhLmZyYW1lICMgZmlsdGVyIHRvIHJldGFpbiBvbmx5IHRoZSBtb3N0IHZhcmlhYmxlIGdlbmVzCndyaXRlLnRhYmxlKFB0dWhfY291bnRzX3NSTkFfdnNkX3E3NSwgZmlsZSA9ICIuLi9vdXRwdXQvMDMuMS1QdHVoLXNSTkEtc3VtbWFyeS9QdHVoX2NvdW50c19zUk5BX3ZhcmlhbmNlc3RhYmlsaXplZF9xNzUudHh0Iiwgc2VwID0gIlx0Iiwgcm93Lm5hbWVzID0gVFJVRSwgY29sLm5hbWVzID0gVFJVRSxxdW90ZSA9IEZBTFNFKQoKcTk1X3dwbl9QdHVoX3NSTkEgPC0gcXVhbnRpbGUocm93VmFycyh3cG5fdnNkX1B0dWhfc1JOQSwgdXNlTmFtZXM9VFJVRSksIC45NSkgICMgOTV0aCBxdWFudGlsZSB2YXJpYWJpbGl0eQpQdHVoX2NvdW50c19zUk5BX3ZzZF9xOTUgPC0gd3BuX3ZzZF9QdHVoX3NSTkFbIHJ2X3dwbl9QdHVoX3NSTkEgPiBxOTVfd3BuX1B0dWhfc1JOQSwgXSAlPiUgZGF0YS5mcmFtZSAjIGZpbHRlciB0byByZXRhaW4gb25seSB0aGUgbW9zdCB2YXJpYWJsZSBnZW5lcwp3cml0ZS50YWJsZShQdHVoX2NvdW50c19zUk5BX3ZzZF9xOTUsIGZpbGUgPSAiLi4vb3V0cHV0LzAzLjEtUHR1aC1zUk5BLXN1bW1hcnkvUHR1aF9jb3VudHNfc1JOQV92YXJpYW5jZXN0YWJpbGl6ZWRfcTk1LnR4dCIsIHNlcCA9ICJcdCIsIHJvdy5uYW1lcyA9IFRSVUUsIGNvbC5uYW1lcyA9IFRSVUUscXVvdGUgPSBGQUxTRSkKYGBgCgojIyBQbG90IG5vcm1hbGl6ZWQgZGF0YQoKYGBge3IgcGxvdC1ub3JtYWxpemVkLXNSTkF9ClB0dWhfY291bnRzX3NSTkFfbm9ybV9sb25nIDwtIFB0dWhfY291bnRzX3NSTkFfbm9ybSAlPiUKICBtdXRhdGUoCiAgICBHZW5lX2lkID0gcm93Lm5hbWVzKFB0dWhfY291bnRzX3NSTkFfbm9ybSkKICApICU+JQogIHBpdm90X2xvbmdlcigtR2VuZV9pZCkKClB0dWhfY291bnRzX3NSTkFfbm9ybV9sb25nICU+JQogIGdncGxvdCguLCBhZXMoeCA9IG5hbWUsIHkgPSB2YWx1ZSkpICsKICBnZW9tX3Zpb2xpbigpICsKICBnZW9tX3BvaW50KCkgKwogIHRoZW1lX2J3KCkgKwogIHRoZW1lKAogICAgYXhpcy50ZXh0LnggPSBlbGVtZW50X3RleHQoIGFuZ2xlID0gOTApCiAgKSArCiAgeWxpbSgwLCBOQSkgKwogIGxhYnMoCiAgICB0aXRsZSA9ICJOb3JtYWxpemVkIEV4cHJlc3Npb24iLAogICAgeCA9ICJTYW1wbGUiLAogICAgeSA9ICJOb3JtYWxpemVkIGNvdW50cyIKICApCmBgYAoKCiMjIFBsb3QgdmFyaWFuY2Ugc3RhYmlsaXplZCBkYXRhCgpgYGB7ciBwbG90LXZzZC1zUk5BfQpQdHVoX2NvdW50c19zUk5BX3ZzZF9sb25nIDwtIFB0dWhfY291bnRzX3NSTkFfdnNkICU+JQogIG11dGF0ZSgKICAgIEdlbmVfaWQgPSByb3cubmFtZXMoUHR1aF9jb3VudHNfc1JOQV92c2QpCiAgKSAlPiUKICBwaXZvdF9sb25nZXIoLUdlbmVfaWQpCgpQdHVoX2NvdW50c19zUk5BX3ZzZF9sb25nICU+JQogIGdncGxvdCguLCBhZXMoeCA9IG5hbWUsIHkgPSB2YWx1ZSkpICsKICBnZW9tX3Zpb2xpbigpICsKICBnZW9tX3BvaW50KCkgKwogIHRoZW1lX2J3KCkgKwogIHRoZW1lKAogICAgYXhpcy50ZXh0LnggPSBlbGVtZW50X3RleHQoIGFuZ2xlID0gOTApCiAgKSArCiAgeWxpbSgwLCBOQSkgKwogIGxhYnMoCiAgICB0aXRsZSA9ICJWYXJpYW5jZSBTdGFiaWxpemVkIEV4cHJlc3Npb24iLAogICAgeCA9ICJTYW1wbGUiLAogICAgeSA9ICJWYXJpYW5jZSBzdGFiaWxpemVkIGRhdGEiCiAgKQpgYGAKCiMjIE5vcm1hbGl6ZWQgZXhwcmVzc2lvbiBsZXZlbHMKClBsb3QgaGlzdG9ncmFtcyBvZiB0aGUgbm9ybWFsaXplZCBleHByZXNzaW9uIGxldmVscyBpbiBlYWNoIHNhbXBsZQoKYGBge3Igbm9ybS1leHByZXNzaW9uLWxldmVsLWhpc3RvZ3JhbXN9CiMgTWVsdCB0aGUgY291bnQgbWF0cml4IGludG8gbG9uZyBmb3JtYXQKUHR1aF9jb3VudHNfbm9ybV9tZWx0ZWQgPC0gbWVsdChQdHVoX2NvdW50c19zUk5BX25vcm0sIHZhcmlhYmxlLm5hbWUgPSAic2FtcGxlIiwgdmFsdWUubmFtZSA9ICJjb3VudHMiKQoKIyBQbG90IHRoZSBleHByZXNzaW9uIGxldmVsIGhpc3RvZ3JhbXMgZm9yIGVhY2ggc2FtcGxlCmdncGxvdChQdHVoX2NvdW50c19ub3JtX21lbHRlZCwgYWVzKHggPSBjb3VudHMpKSArCiAgZ2VvbV9oaXN0b2dyYW0oYmlud2lkdGggPSAxLCBmaWxsID0gIiM3QTIwNDgiLCBjb2xvciA9ICJibGFjayIpICsKICBzY2FsZV94X2xvZzEwKCkgKyAgIyBPcHRpb25hbDogTG9nLXRyYW5zZm9ybSB0aGUgeC1heGlzIGZvciBiZXR0ZXIgdmlzdWFsaXphdGlvbgogIGZhY2V0X3dyYXAofnNhbXBsZSwgc2NhbGVzID0gImZyZWVfeSIpICsKICBsYWJzKHRpdGxlID0gIkdlbmUgRXhwcmVzc2lvbiBMZXZlbCBIaXN0b2dyYW0gZm9yIEVhY2ggU2FtcGxlIiwKICAgICAgIHggPSAiRXhwcmVzc2lvbiBMZXZlbCAoQ291bnRzKSIsCiAgICAgICB5ID0gIkZyZXF1ZW5jeSIpICsKICB0aGVtZV9taW5pbWFsKCkKYGBgCgojIyBOb3JtYWxpemVkIHRyYW5zY3JpcHQgY291bnRzCgpDaGVjayB0aGUgdG90YWwgbnVtYmVyIG9mIHRyYW5zY3JpcHRzIGluIGVhY2ggc2FtcGxlIC0tIG5vdyB0aGF0IHdlJ3ZlIG5vcm1hbGl6ZWQgdGhlIGRhdGEgdGhlc2UgdG90YWxzIHNob3VsZCBiZSBzaW1pbGFyCmBgYHtyIG5vcm0tdHJhbnNjcmlwdC1jb3VudHMtcGxvdH0KIyBDYWxjdWxhdGUgdGhlIHRvdGFsIG51bWJlciBvZiB0cmFuc2NyaXB0cyBmb3IgZWFjaCBzYW1wbGUKdG90YWxfdHJhbnNjcmlwdHNfbm9ybSA8LSBjb2xTdW1zKFB0dWhfY291bnRzX3NSTkFfbm9ybSkKCiMgQ3JlYXRlIGEgZGF0YSBmcmFtZSBmb3IgcGxvdHRpbmcKdG90YWxfdHJhbnNjcmlwdHNfbm9ybV9kZiA8LSBkYXRhLmZyYW1lKHNhbXBsZSA9IG5hbWVzKHRvdGFsX3RyYW5zY3JpcHRzX25vcm0pLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRvdGFscyA9IHRvdGFsX3RyYW5zY3JpcHRzX25vcm0pCgojIFBsb3QgdGhlIHRvdGFsIG51bWJlciBvZiB0cmFuc2NyaXB0cyBmb3IgZWFjaCBzYW1wbGUKZ2dwbG90KHRvdGFsX3RyYW5zY3JpcHRzX25vcm1fZGYsIGFlcyh4ID0gc2FtcGxlLCB5ID0gdG90YWxzKSkgKwogIGdlb21fYmFyKHN0YXQgPSAiaWRlbnRpdHkiLCBmaWxsID0gIiM3QTIwNDgiLCBjb2xvciA9ICJibGFjayIpICsKICBnZW9tX3RleHQoYWVzKGxhYmVsID0gdG90YWxzKSwgdmp1c3QgPSAtMC4zLCBzaXplID0gMy41KSArCiAgbGFicyh0aXRsZSA9ICJUb3RhbCBOdW1iZXIgb2YgVHJhbnNjcmlwdHMgcGVyIFNhbXBsZSIsCiAgICAgICB4ID0gIlNhbXBsZSIsCiAgICAgICB5ID0gIlRvdGFsIFRyYW5zY3JpcHRzIikgKwogIHRoZW1lX21pbmltYWwoKSArCiAgdGhlbWUoYXhpcy50ZXh0LnggPSBlbGVtZW50X3RleHQoYW5nbGUgPSA0NSwgaGp1c3QgPSAxKSkgICMgUm90YXRlIHgtYXhpcyBsYWJlbHMgZm9yIHJlYWRhYmlsaXR5CmBgYAoKIyMgUENBIG9mIHZhcmlhbmNlIHN0YWJpbGl6ZWQgZGF0YQoKYGBge3IgUENBfQpwbG90UENBKHZzZF9QdHVoX3NSTkEsIGludGdyb3VwPSJTYW1wbGUiKQpgYGAKCiMjIFNhbXBsZSBjbHVzdGVyaW5nCgpgYGB7ciBzYW1wbGUtY2x1c3RlcmluZ30Kc2FtcGxlX2Rpc3RzIDwtIGRpc3QodChhc3NheSh2c2RfUHR1aF9zUk5BKSkpCnBoZWF0bWFwKGFzLm1hdHJpeChzYW1wbGVfZGlzdHMpLCBjbHVzdGVyaW5nX2Rpc3RhbmNlX3Jvd3MgPSAiZXVjbGlkZWFuIiwgCiAgICAgICAgIGNsdXN0ZXJpbmdfZGlzdGFuY2VfY29scyA9ICJldWNsaWRlYW4iLCBtYWluPSJTYW1wbGUgQ2x1c3RlcmluZyIpCmBgYAoKIyMgSGVhdG1hcHMKCk9mIG1vc3QgdmFyaWFibGUgdmFyaWFuY2Ugc3RhYmlsaXplZCBzUk5BIHRyYW5zY3JpcHRzCgpgYGB7ciBoZWF0bXBhc30KIyA3NXRoIHF1YW50aWxlCmhlYXRfY29sb3JzIDwtIHJldihicmV3ZXIucGFsKDEyLCAiUmRZbEJ1IikpCnBoZWF0bWFwKFB0dWhfY291bnRzX3NSTkFfdnNkX3E3NSwgCiAgICAgICAgIGNsdXN0ZXJfcm93cyA9IFRSVUUsCiAgICAgICAgIGNsdXN0ZXJfY29scyA9IFRSVUUsCiAgICAgICAgIHNob3dfcm93bmFtZXMgPSBUUlVFLAogICAgICAgICBzaG93X2NvbG5hbWVzID0gVFJVRSwKICAgICAgICAgY29sb3IgPSBoZWF0X2NvbG9ycywKICAgICAgICAgc2NhbGU9InJvdyIpCgojIDk1dGggcXVhbnRpbGUKcGhlYXRtYXAoUHR1aF9jb3VudHNfc1JOQV92c2RfcTk1LCAKICAgICAgICAgY2x1c3Rlcl9yb3dzID0gVFJVRSwKICAgICAgICAgY2x1c3Rlcl9jb2xzID0gVFJVRSwKICAgICAgICAgc2hvd19yb3duYW1lcyA9IFRSVUUsCiAgICAgICAgIHNob3dfY29sbmFtZXMgPSBUUlVFLAogICAgICAgICBjb2xvciA9IGhlYXRfY29sb3JzLAogICAgICAgICBzY2FsZT0icm93IikKYGBgCgojIE5vcm1hbGl6ZWQgbWlSTkEgY291bnRzCgojIyBJc29sYXRlIG5vcm1hbGl6ZWQvdnNkIG1pUk5BCmBgYHtyIG1pUk5BLW5vcm1hbGl6ZWQtbWlSTkF9CiMjIEFsc28gd3JpdHRlbiB0byB1c2UgZ2l2ZW4gbWlSTkEgbmFtZXMgIyMKIyBQdHVoX2NvdW50c19zUk5BX25vcm0kTmFtZSA8LSByb3duYW1lcyhQdHVoX2NvdW50c19zUk5BX25vcm0pCiMgUHR1aF9jb3VudHNfbWlSTkFfbm9ybSA8LSBsZWZ0X2pvaW4oUHR1aF9tZXRhZGF0YV9taVJOQSwgUHR1aF9jb3VudHNfc1JOQV9ub3JtLCBieSA9IGMoIk5hbWUiID0gIk5hbWUiKSkgJT4lCiMgICBjb2x1bW5fdG9fcm93bmFtZXModmFyPSJnaXZlbl9taVJOQV9uYW1lIikgJT4lCiMgICBzZWxlY3Qoc3RhcnRzX3dpdGgoInNhbXBsZSIpKQojIHdyaXRlLnRhYmxlKFB0dWhfY291bnRzX21pUk5BX25vcm0sIGZpbGUgPSAiLi4vb3V0cHV0LzAzLjEtUHR1aC1zUk5BLXN1bW1hcnkvUHR1aF9jb3VudHNfbWlSTkFfbm9ybWFsaXplZC50eHQiLCBzZXAgPSAiXHQiLCByb3cubmFtZXMgPSBUUlVFLCBjb2wubmFtZXMgPSBUUlVFLHF1b3RlID0gRkFMU0UpCiMgCiMgUHR1aF9jb3VudHNfc1JOQV92c2QkTmFtZSA8LSByb3duYW1lcyhQdHVoX2NvdW50c19zUk5BX3ZzZCkKIyBQdHVoX2NvdW50c19taVJOQV92c2QgPC0gbGVmdF9qb2luKFB0dWhfbWV0YWRhdGFfbWlSTkEsIFB0dWhfY291bnRzX3NSTkFfdnNkLCBieSA9IGMoIk5hbWUiID0gIk5hbWUiKSkgJT4lCiMgICBjb2x1bW5fdG9fcm93bmFtZXModmFyPSJnaXZlbl9taVJOQV9uYW1lIikgJT4lCiMgICBzZWxlY3Qoc3RhcnRzX3dpdGgoInNhbXBsZSIpKQojIHdyaXRlLnRhYmxlKFB0dWhfY291bnRzX21pUk5BX3ZzZCwgZmlsZSA9ICIuLi9vdXRwdXQvMDMuMS1QdHVoLXNSTkEtc3VtbWFyeS9QdHVoX2NvdW50c19taVJOQV92YXJpYW5jZXN0YWJpbGl6ZWQudHh0Iiwgc2VwID0gIlx0Iiwgcm93Lm5hbWVzID0gVFJVRSwgY29sLm5hbWVzID0gVFJVRSxxdW90ZSA9IEZBTFNFKQoKIyMgVXNlIGJlbG93IHVudGlsIHlvdSBoYXZlIG1pUk5BIG5hbWVzICMjClB0dWhfY291bnRzX3NSTkFfbm9ybSROYW1lIDwtIHJvd25hbWVzKFB0dWhfY291bnRzX3NSTkFfbm9ybSkKUHR1aF9jb3VudHNfc1JOQV92c2QkTmFtZSA8LSByb3duYW1lcyhQdHVoX2NvdW50c19zUk5BX3ZzZCkKClB0dWhfY291bnRzX21pUk5BX25hbWVzZGYgPC0gZGF0YS5mcmFtZShOYW1lID0gcm93bmFtZXMoUHR1aF9jb3VudHNfbWlSTkEpKSAKClB0dWhfY291bnRzX21pUk5BX25vcm0gPC0gbGVmdF9qb2luKFB0dWhfY291bnRzX21pUk5BX25hbWVzZGYsIFB0dWhfY291bnRzX3NSTkFfbm9ybSwgYnkgPSBjKCJOYW1lIiA9ICJOYW1lIikpICU+JQogIGNvbHVtbl90b19yb3duYW1lcyh2YXIgPSAiTmFtZSIpCndyaXRlLnRhYmxlKFB0dWhfY291bnRzX21pUk5BX25vcm0sIGZpbGUgPSAiLi4vb3V0cHV0LzAzLjEtUHR1aC1zUk5BLXN1bW1hcnkvUHR1aF9jb3VudHNfbWlSTkFfbm9ybWFsaXplZC50eHQiLCBzZXAgPSAiXHQiLCByb3cubmFtZXMgPSBUUlVFLCBjb2wubmFtZXMgPSBUUlVFLHF1b3RlID0gRkFMU0UpCgpQdHVoX2NvdW50c19taVJOQV92c2QgPC0gbGVmdF9qb2luKFB0dWhfY291bnRzX21pUk5BX25hbWVzZGYsIFB0dWhfY291bnRzX3NSTkFfdnNkLCBieSA9IGMoIk5hbWUiID0gIk5hbWUiKSkgJT4lCiAgY29sdW1uX3RvX3Jvd25hbWVzKHZhciA9ICJOYW1lIikKd3JpdGUudGFibGUoUHR1aF9jb3VudHNfbWlSTkFfdnNkLCBmaWxlID0gIi4uL291dHB1dC8wMy4xLVB0dWgtc1JOQS1zdW1tYXJ5L1B0dWhfY291bnRzX21pUk5BX3ZhcmlhbmNlc3RhYmlsaXplZC50eHQiLCBzZXAgPSAiXHQiLCByb3cubmFtZXMgPSBUUlVFLCBjb2wubmFtZXMgPSBUUlVFLHF1b3RlID0gRkFMU0UpCmBgYAoKIyMgTm9ybWFsaXplZCBleHByZXNzaW9uIGxldmVscwoKUGxvdCBoaXN0b2dyYW1zIG9mIHRoZSBub3JtYWxpemVkIGV4cHJlc3Npb24gbGV2ZWxzIGluIGVhY2ggc2FtcGxlCgpgYGB7ciBtaVJOQS1ub3JtLWV4cHJlc3Npb24tbGV2ZWwtaGlzdG9ncmFtc30KIyBNZWx0IHRoZSBjb3VudCBtYXRyaXggaW50byBsb25nIGZvcm1hdApQdHVoX2NvdW50c19taVJOQV9ub3JtX21lbHRlZCA8LSBtZWx0KFB0dWhfY291bnRzX21pUk5BX25vcm0sIHZhcmlhYmxlLm5hbWUgPSAic2FtcGxlIiwgdmFsdWUubmFtZSA9ICJjb3VudHMiKQoKIyBQbG90IHRoZSBleHByZXNzaW9uIGxldmVsIGhpc3RvZ3JhbXMgZm9yIGVhY2ggc2FtcGxlCmdncGxvdChQdHVoX2NvdW50c19taVJOQV9ub3JtX21lbHRlZCwgYWVzKHggPSBjb3VudHMpKSArCiAgZ2VvbV9oaXN0b2dyYW0oYmlud2lkdGggPSAxLCBmaWxsID0gIiM3QTIwNDgiLCBjb2xvciA9ICJibGFjayIpICsKICBzY2FsZV94X2xvZzEwKCkgKyAgIyBPcHRpb25hbDogTG9nLXRyYW5zZm9ybSB0aGUgeC1heGlzIGZvciBiZXR0ZXIgdmlzdWFsaXphdGlvbgogIGZhY2V0X3dyYXAofnNhbXBsZSwgc2NhbGVzID0gImZyZWVfeSIpICsKICBsYWJzKHRpdGxlID0gIkdlbmUgRXhwcmVzc2lvbiBMZXZlbCBIaXN0b2dyYW0gZm9yIEVhY2ggU2FtcGxlIiwKICAgICAgIHggPSAiRXhwcmVzc2lvbiBMZXZlbCAoQ291bnRzKSIsCiAgICAgICB5ID0gIkZyZXF1ZW5jeSIpICsKICB0aGVtZV9taW5pbWFsKCkKYGBgCgojIyBOb3JtYWxpemVkIHRyYW5zY3JpcHQgY291bnRzCgpDaGVjayB0aGUgdG90YWwgbnVtYmVyIG9mIHRyYW5zY3JpcHRzIGluIGVhY2ggc2FtcGxlIC0tIG5vdyB0aGF0IHdlJ3ZlIG5vcm1hbGl6ZWQgdGhlIGRhdGEgdGhlc2UgdG90YWxzIHNob3VsZCBiZSBzaW1pbGFyCmBgYHtyIG1pUk5BLW5vcm0tdHJhbnNjcmlwdC1jb3VudHMtcGxvdH0KIyBDYWxjdWxhdGUgdGhlIHRvdGFsIG51bWJlciBvZiB0cmFuc2NyaXB0cyBmb3IgZWFjaCBzYW1wbGUKdG90YWxfdHJhbnNjcmlwdHNfbWlSTkFfbm9ybSA8LSBjb2xTdW1zKFB0dWhfY291bnRzX21pUk5BX25vcm0pCgojIENyZWF0ZSBhIGRhdGEgZnJhbWUgZm9yIHBsb3R0aW5nCnRvdGFsX3RyYW5zY3JpcHRzX21pUk5BX25vcm1fZGYgPC0gZGF0YS5mcmFtZShzYW1wbGUgPSBuYW1lcyh0b3RhbF90cmFuc2NyaXB0c19taVJOQV9ub3JtKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0b3RhbHMgPSB0b3RhbF90cmFuc2NyaXB0c19taVJOQV9ub3JtKQoKIyBQbG90IHRoZSB0b3RhbCBudW1iZXIgb2YgdHJhbnNjcmlwdHMgZm9yIGVhY2ggc2FtcGxlCmdncGxvdCh0b3RhbF90cmFuc2NyaXB0c19taVJOQV9ub3JtX2RmLCBhZXMoeCA9IHNhbXBsZSwgeSA9IHRvdGFscykpICsKICBnZW9tX2JhcihzdGF0ID0gImlkZW50aXR5IiwgZmlsbCA9ICIjN0EyMDQ4IiwgY29sb3IgPSAiYmxhY2siKSArCiAgZ2VvbV90ZXh0KGFlcyhsYWJlbCA9IHRvdGFscyksIHZqdXN0ID0gLTAuMywgc2l6ZSA9IDMuNSkgKwogIGxhYnModGl0bGUgPSAiVG90YWwgTnVtYmVyIG9mIG1pUk5BIFRyYW5zY3JpcHRzIHBlciBTYW1wbGUiLAogICAgICAgeCA9ICJTYW1wbGUiLAogICAgICAgeSA9ICJUb3RhbCBUcmFuc2NyaXB0cyIpICsKICB0aGVtZV9taW5pbWFsKCkgKwogIHRoZW1lKGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gNDUsIGhqdXN0ID0gMSkpICAjIFJvdGF0ZSB4LWF4aXMgbGFiZWxzIGZvciByZWFkYWJpbGl0eQpgYGAKCiMjIEhlYXRtYXAKCk9mIGFsbCBtaVJOQXMKCmBgYHtyIG1pUk5BLWhlYXRtYXBzLXZzZH0KaGVhdF9jb2xvcnMgPC0gcmV2KGJyZXdlci5wYWwoMTIsICJSZFlsQnUiKSkKcGhlYXRtYXAoYXMubWF0cml4KFB0dWhfY291bnRzX21pUk5BX3ZzZFthcHBseShQdHVoX2NvdW50c19taVJOQV92c2QsIDEsIHZhcikgPiAwLCBdKSwgCiAgICAgICAgIGNsdXN0ZXJfcm93cyA9IFRSVUUsCiAgICAgICAgIGNsdXN0ZXJfY29scyA9IFRSVUUsCiAgICAgICAgIHNob3dfcm93bmFtZXMgPSBUUlVFLAogICAgICAgICBzaG93X2NvbG5hbWVzID0gVFJVRSwKICAgICAgICAgY29sb3IgPSBoZWF0X2NvbG9ycywKICAgICAgICAgc2NhbGU9InJvdyIpCgpgYGAKCgojIE5vcm1hbGl6ZWQgc2lSTkEgY291bnRzCgojIyBJc29sYXRlIG5vcm1hbGl6ZWQvdnNkIHNpUk5BCmBgYHtyIHNpUk5BLW5vcm1hbGl6ZWQtc2lSTkF9CgpQdHVoX2NvdW50c19zUk5BX25vcm0kTmFtZSA8LSByb3duYW1lcyhQdHVoX2NvdW50c19zUk5BX25vcm0pClB0dWhfY291bnRzX3NSTkFfdnNkJE5hbWUgPC0gcm93bmFtZXMoUHR1aF9jb3VudHNfc1JOQV92c2QpCgpQdHVoX2NvdW50c19zaVJOQV9uYW1lc2RmIDwtIGRhdGEuZnJhbWUoTmFtZSA9IHJvd25hbWVzKFB0dWhfY291bnRzX3NpUk5BKSkgCgpQdHVoX2NvdW50c19zaVJOQV9ub3JtIDwtIGxlZnRfam9pbihQdHVoX2NvdW50c19zaVJOQV9uYW1lc2RmLCBQdHVoX2NvdW50c19zUk5BX25vcm0sIGJ5ID0gYygiTmFtZSIgPSAiTmFtZSIpKSAlPiUKICBjb2x1bW5fdG9fcm93bmFtZXModmFyID0gIk5hbWUiKQp3cml0ZS50YWJsZShQdHVoX2NvdW50c19zaVJOQV9ub3JtLCBmaWxlID0gIi4uL291dHB1dC8wMy4xLVB0dWgtc1JOQS1zdW1tYXJ5L1B0dWhfY291bnRzX3NpUk5BX25vcm1hbGl6ZWQudHh0Iiwgc2VwID0gIlx0Iiwgcm93Lm5hbWVzID0gVFJVRSwgY29sLm5hbWVzID0gVFJVRSxxdW90ZSA9IEZBTFNFKQoKUHR1aF9jb3VudHNfc2lSTkFfdnNkIDwtIGxlZnRfam9pbihQdHVoX2NvdW50c19zaVJOQV9uYW1lc2RmLCBQdHVoX2NvdW50c19zUk5BX3ZzZCwgYnkgPSBjKCJOYW1lIiA9ICJOYW1lIikpICU+JQogIGNvbHVtbl90b19yb3duYW1lcyh2YXIgPSAiTmFtZSIpCndyaXRlLnRhYmxlKFB0dWhfY291bnRzX3NpUk5BX3ZzZCwgZmlsZSA9ICIuLi9vdXRwdXQvMDMuMS1QdHVoLXNSTkEtc3VtbWFyeS9QdHVoX2NvdW50c19zaVJOQV92YXJpYW5jZXN0YWJpbGl6ZWQudHh0Iiwgc2VwID0gIlx0Iiwgcm93Lm5hbWVzID0gVFJVRSwgY29sLm5hbWVzID0gVFJVRSxxdW90ZSA9IEZBTFNFKQpgYGAKCiMjIE5vcm1hbGl6ZWQgZXhwcmVzc2lvbiBsZXZlbHMKClBsb3QgaGlzdG9ncmFtcyBvZiB0aGUgbm9ybWFsaXplZCBleHByZXNzaW9uIGxldmVscyBpbiBlYWNoIHNhbXBsZQoKYGBge3Igc2lSTkEtbm9ybS1leHByZXNzaW9uLWxldmVsLWhpc3RvZ3JhbXN9CiMgTWVsdCB0aGUgY291bnQgbWF0cml4IGludG8gbG9uZyBmb3JtYXQKUHR1aF9jb3VudHNfc2lSTkFfbm9ybV9tZWx0ZWQgPC0gbWVsdChQdHVoX2NvdW50c19zaVJOQV9ub3JtLCB2YXJpYWJsZS5uYW1lID0gInNhbXBsZSIsIHZhbHVlLm5hbWUgPSAiY291bnRzIikKCiMgUGxvdCB0aGUgZXhwcmVzc2lvbiBsZXZlbCBoaXN0b2dyYW1zIGZvciBlYWNoIHNhbXBsZQpnZ3Bsb3QoUHR1aF9jb3VudHNfc2lSTkFfbm9ybV9tZWx0ZWQsIGFlcyh4ID0gY291bnRzKSkgKwogIGdlb21faGlzdG9ncmFtKGJpbndpZHRoID0gMSwgZmlsbCA9ICIjN0EyMDQ4IiwgY29sb3IgPSAiYmxhY2siKSArCiAgc2NhbGVfeF9sb2cxMCgpICsgICMgT3B0aW9uYWw6IExvZy10cmFuc2Zvcm0gdGhlIHgtYXhpcyBmb3IgYmV0dGVyIHZpc3VhbGl6YXRpb24KICBmYWNldF93cmFwKH5zYW1wbGUsIHNjYWxlcyA9ICJmcmVlX3kiKSArCiAgbGFicyh0aXRsZSA9ICJHZW5lIEV4cHJlc3Npb24gTGV2ZWwgSGlzdG9ncmFtIGZvciBFYWNoIFNhbXBsZSIsCiAgICAgICB4ID0gIkV4cHJlc3Npb24gTGV2ZWwgKENvdW50cykiLAogICAgICAgeSA9ICJGcmVxdWVuY3kiKSArCiAgdGhlbWVfbWluaW1hbCgpCmBgYAoKIyMgTm9ybWFsaXplZCB0cmFuc2NyaXB0IGNvdW50cwoKQ2hlY2sgdGhlIHRvdGFsIG51bWJlciBvZiB0cmFuc2NyaXB0cyBpbiBlYWNoIHNhbXBsZSAtLSBub3cgdGhhdCB3ZSd2ZSBub3JtYWxpemVkIHRoZSBkYXRhIHRoZXNlIHRvdGFscyBzaG91bGQgYmUgc2ltaWxhcgpgYGB7ciBzaVJOQS1ub3JtLXRyYW5zY3JpcHQtY291bnRzLXBsb3R9CiMgQ2FsY3VsYXRlIHRoZSB0b3RhbCBudW1iZXIgb2YgdHJhbnNjcmlwdHMgZm9yIGVhY2ggc2FtcGxlCnRvdGFsX3RyYW5zY3JpcHRzX3NpUk5BX25vcm0gPC0gY29sU3VtcyhQdHVoX2NvdW50c19zaVJOQV9ub3JtKQoKIyBDcmVhdGUgYSBkYXRhIGZyYW1lIGZvciBwbG90dGluZwp0b3RhbF90cmFuc2NyaXB0c19zaVJOQV9ub3JtX2RmIDwtIGRhdGEuZnJhbWUoc2FtcGxlID0gbmFtZXModG90YWxfdHJhbnNjcmlwdHNfc2lSTkFfbm9ybSksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdG90YWxzID0gdG90YWxfdHJhbnNjcmlwdHNfc2lSTkFfbm9ybSkKCiMgUGxvdCB0aGUgdG90YWwgbnVtYmVyIG9mIHRyYW5zY3JpcHRzIGZvciBlYWNoIHNhbXBsZQpnZ3Bsb3QodG90YWxfdHJhbnNjcmlwdHNfc2lSTkFfbm9ybV9kZiwgYWVzKHggPSBzYW1wbGUsIHkgPSB0b3RhbHMpKSArCiAgZ2VvbV9iYXIoc3RhdCA9ICJpZGVudGl0eSIsIGZpbGwgPSAiIzdBMjA0OCIsIGNvbG9yID0gImJsYWNrIikgKwogIGdlb21fdGV4dChhZXMobGFiZWwgPSB0b3RhbHMpLCB2anVzdCA9IC0wLjMsIHNpemUgPSAzLjUpICsKICBsYWJzKHRpdGxlID0gIlRvdGFsIE51bWJlciBvZiBzaVJOQSBUcmFuc2NyaXB0cyBwZXIgU2FtcGxlIiwKICAgICAgIHggPSAiU2FtcGxlIiwKICAgICAgIHkgPSAiVG90YWwgVHJhbnNjcmlwdHMiKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICB0aGVtZShheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDQ1LCBoanVzdCA9IDEpKSAgIyBSb3RhdGUgeC1heGlzIGxhYmVscyBmb3IgcmVhZGFiaWxpdHkKYGBgCgojIyBIZWF0bWFwCgpPZiBhbGwgc2lSTkFzCgpgYGB7ciBzaVJOQS1oZWF0bWFwcy12c2R9CmhlYXRfY29sb3JzIDwtIHJldihicmV3ZXIucGFsKDEyLCAiUmRZbEJ1IikpCnBoZWF0bWFwKGFzLm1hdHJpeChQdHVoX2NvdW50c19zaVJOQV92c2RbYXBwbHkoUHR1aF9jb3VudHNfc2lSTkFfdnNkLCAxLCB2YXIpID4gMCwgXSksIAogICAgICAgICBjbHVzdGVyX3Jvd3MgPSBUUlVFLAogICAgICAgICBjbHVzdGVyX2NvbHMgPSBUUlVFLAogICAgICAgICBzaG93X3Jvd25hbWVzID0gVFJVRSwKICAgICAgICAgc2hvd19jb2xuYW1lcyA9IFRSVUUsCiAgICAgICAgIGNvbG9yID0gaGVhdF9jb2xvcnMsCiAgICAgICAgIHNjYWxlPSJyb3ciKQoKYGBgCgo=