02-Apul-reference-annotation ================ Kathleen Durkin 2024-08-20 - 1 Transcriptome - 1.1 Retrieve transcriptome fasta file - 1.2 Database Creation - 1.2.1 Obtain Fasta (UniProt/Swiss-Prot) - 1.2.2 Making the database - 1.3 Running Blastx - 1.4 Joining Blast table with annoations. - 1.4.1 Prepping Blast table for easy join - 1.4.2 Could do some cool stuff in R here reading in table Code to annotate our *A. pulchra* reference files (the *A. millipora* transcriptome and genome) with GO information # 1 Transcriptome ## 1.1 Retrieve transcriptome fasta file We’ll be using the *A. millipora* [NCBI](https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_013753865.1/) rna.fna file, stored [here](https://gannet.fish.washington.edu/acropora/E5-deep-dive/Transcripts/Apul_GCF_013753865.1_rna.fna) and accessible on the `deep-dive` [genomic resources page](https://github.com/urol-e5/deep-dive/wiki/Species-Characteristics-and-Genomic-Resources#genomic-resources) ``` bash curl https://gannet.fish.washington.edu/acropora/E5-deep-dive/Transcripts/Apul_GCF_013753865.1_rna.fna \ -k \ > ../../data/Apul_GCF_013753865.1_rna.fna ``` Let’s check the file ``` bash echo "First few lines:" head -3 ../../data/Apul_GCF_013753865.1_rna.fna echo "" echo "How many sequences are there?" grep -c ">" ../../data/Apul_GCF_013753865.1_rna.fna ``` ## First few lines: ## >XM_029323402.2 PREDICTED: Acropora millepora lipase ZK262.3-like (LOC114977611), mRNA ## GAAAGACCCTGGGAACGAGGTTGCAGGTTTTCCTAATGTTAATCTCGGTAATTGAAAAGGTTGGACTTTTGGAAGCGAGA ## ATTCAACGAAAAATTCATAATAAAATTAAGTGGGGCGGATCGACCTTGATGATGTGGGGCGGAACGATTGTAATTCCGTC ## ## How many sequences are there? ## 50570 ``` r # Read FASTA file fasta_file <- "../../data/Apul_GCF_013753865.1_rna.fna" # Replace with the name of your FASTA file sequences <- readDNAStringSet(fasta_file) # Calculate sequence lengths sequence_lengths <- width(sequences) # Create a data frame sequence_lengths_df <- data.frame(Length = sequence_lengths) # Plot histogram using ggplot2 ggplot(sequence_lengths_df, aes(x = Length)) + geom_histogram(binwidth = 1, color = "black", fill = "blue", alpha = 0.75) + labs(title = "Histogram of Sequence Lengths", x = "Sequence Length", y = "Frequency") + theme_minimal() ``` ``` r summary(sequence_lengths_df) ``` ## Length ## Min. : 66 ## 1st Qu.: 1077 ## Median : 1778 ## Mean : 2218 ## 3rd Qu.: 2811 ## Max. :65009 ``` r # Calculate base composition base_composition <- alphabetFrequency(sequences, baseOnly = TRUE) # Convert to data frame and reshape for ggplot2 base_composition_df <- as.data.frame(base_composition) base_composition_df$ID <- rownames(base_composition_df) base_composition_melted <- reshape2::melt(base_composition_df, id.vars = "ID", variable.name = "Base", value.name = "Count") # Plot base composition bar chart using ggplot2 ggplot(base_composition_melted, aes(x = Base, y = Count, fill = Base)) + geom_bar(stat = "identity", position = "dodge", color = "black") + labs(title = "Base Composition", x = "Base", y = "Count") + theme_minimal() + scale_fill_manual(values = c("A" = "green", "C" = "blue", "G" = "yellow", "T" = "red")) ``` ``` r # Count CG motifs in each sequence count_cg_motifs <- function(sequence) { cg_motif <- "CG" return(length(gregexpr(cg_motif, sequence, fixed = TRUE)[[1]])) } cg_motifs_counts <- sapply(sequences, count_cg_motifs) # Create a data frame cg_motifs_counts_df <- data.frame(CG_Count = cg_motifs_counts) # Plot CG motifs distribution using ggplot2 ggplot(cg_motifs_counts_df, aes(x = CG_Count)) + geom_histogram(binwidth = 1, color = "black", fill = "blue", alpha = 0.75) + labs(title = "Distribution of CG Motifs", x = "Number of CG Motifs", y = "Frequency") + theme_minimal() ``` ## 1.2 Database Creation ### 1.2.1 Obtain Fasta (UniProt/Swiss-Prot) ``` bash cd ../../data curl -O https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.fasta.gz mv uniprot_sprot.fasta.gz uniprot_sprot_r2023_04.fasta.gz gunzip -k uniprot_sprot_r2023_04.fasta.gz ``` ### 1.2.2 Making the database ``` bash /home/shared/ncbi-blast-2.11.0+/bin/makeblastdb \ -in ../../data/uniprot_sprot_r2023_04.fasta \ -dbtype prot \ -out ../../blastdb/uniprot_sprot_r2023_04 ``` ## 1.3 Running Blastx ``` bash /home/shared/ncbi-blast-2.11.0+/bin/blastx \ -query ../../data/Apul_GCF_013753865.1_rna.fna \ -db ../../blastdb/uniprot_sprot_r2023_04 \ -out ../output/02-Apul-reference-annotation/Apul_GCF_013753865.1_rna-uniprot_blastx.tab \ -evalue 1E-20 \ -num_threads 20 \ -max_target_seqs 1 \ -outfmt 6 ``` ``` bash echo "First few lines:" head -2 ../output/02-Apul-reference-annotation/Apul_GCF_013753865.1_rna-uniprot_blastx.tab echo "Number of lines in output:" wc -l ../output/02-Apul-reference-annotation/Apul_GCF_013753865.1_rna-uniprot_blastx.tab ``` ## First few lines: ## XM_029323402.2 sp|Q9XTR8|LIP1_CAEEL 31.321 265 157 5 578 1306 61 322 3.59e-25 111 ## XM_029323410.2 sp|Q9NUQ6|SPS2L_HUMAN 32.447 376 201 8 280 1284 9 372 7.10e-39 157 ## Number of lines in output: ## 31701 ../output/02-Apul-reference-annotation/Apul_GCF_013753865.1_rna-uniprot_blastx.tab ## 1.4 Joining Blast table with annoations. ### 1.4.1 Prepping Blast table for easy join ``` bash tr '|' '\t' < ../output/02-Apul-reference-annotation/Apul_GCF_013753865.1_rna-uniprot_blastx.tab \ > ../output/02-Apul-reference-annotation/Apul_GCF_013753865.1_rna-uniprot_blastx_sep.tab head -1 ../output/02-Apul-reference-annotation/Apul_GCF_013753865.1_rna-uniprot_blastx_sep.tab ``` ## XM_029323402.2 sp Q9XTR8 LIP1_CAEEL 31.321 265 157 5 578 1306 61 322 3.59e-25 111 ### 1.4.2 Could do some cool stuff in R here reading in table ``` r bltabl <- read.csv("../output/02-Apul-reference-annotation/Apul_GCF_013753865.1_rna-uniprot_blastx_sep.tab", sep = '\t', header = FALSE) spgo <- read.csv("https://gannet.fish.washington.edu/seashell/snaps/uniprot_table_r2023_01.tab", sep = '\t', header = TRUE) datatable(head(bltabl), options = list(scrollX = TRUE, scrollY = "400px", scrollCollapse = TRUE, paging = FALSE)) ```
``` r datatable(head(spgo), options = list(scrollX = TRUE, scrollY = "400px", scrollCollapse = TRUE, paging = FALSE)) ```
``` r datatable( left_join(bltabl, spgo, by = c("V3" = "Entry")) %>% select(V1, V3, V13, Protein.names, Organism, Gene.Ontology..biological.process., Gene.Ontology.IDs) # %>% mutate(V1 = str_replace_all(V1,pattern = "solid0078_20110412_FRAG_BC_WHITE_WHITE_F3_QV_SE_trimmed", replacement = "Ab")) ) ```
``` r annot_tab <- left_join(bltabl, spgo, by = c("V3" = "Entry")) %>% select(V1, V3, V13, Protein.names, Organism, Gene.Ontology..biological.process., Gene.Ontology.IDs) write.table(annot_tab, file = "../output/02-Apul-reference-annotation/Apul_GCF_013753865.1_rna-IDmapping-2024_08_21.tab", sep = "\t", row.names = TRUE, col.names = NA) ``` ``` bash head -n 3 ../output/02-Apul-reference-annotation/Apul_GCF_013753865.1_rna-IDmapping-2024_08_21.tab ``` ``` r # Read dataset #dataset <- read.csv("../output/blast_annot_go.tab", sep = '\t') # Replace with the path to your dataset # Select the column of interest column_name <- "Organism" # Replace with the name of the column of interest column_data <- annot_tab[[column_name]] # Count the occurrences of the strings in the column string_counts <- table(column_data) # Convert to a data frame, sort by count, and select the top 10 string_counts_df <- as.data.frame(string_counts) colnames(string_counts_df) <- c("String", "Count") string_counts_df <- string_counts_df[order(string_counts_df$Count, decreasing = TRUE), ] top_10_strings <- head(string_counts_df, n = 10) # Plot the top 10 most common strings using ggplot2 ggplot(top_10_strings, aes(x = reorder(String, -Count), y = Count, fill = String)) + geom_bar(stat = "identity", position = "dodge", color = "black") + labs(title = "Top 10 Species hits", x = column_name, y = "Count") + theme_minimal() + theme(legend.position = "none") + coord_flip() ``` ``` r #data <- read.csv("../output/blast_annot_go.tab", sep = '\t') # Rename the `Gene.Ontology..biological.process.` column to `Biological_Process` colnames(annot_tab)[colnames(annot_tab) == "Gene.Ontology..biological.process."] <- "Biological_Process" # Separate the `Biological_Process` column into individual biological processes data_separated <- unlist(strsplit(annot_tab$Biological_Process, split = ";")) # Trim whitespace from the biological processes data_separated <- gsub("^\\s+|\\s+$", "", data_separated) # Count the occurrences of each biological process process_counts <- table(data_separated) process_counts <- data.frame(Biological_Process = names(process_counts), Count = as.integer(process_counts)) process_counts <- process_counts[order(-process_counts$Count), ] # Select the 20 most predominant biological processes top_20_processes <- process_counts[1:20, ] # Create a color palette for the bars bar_colors <- rainbow(nrow(top_20_processes)) # Create a staggered vertical bar plot with different colors for each bar barplot(top_20_processes$Count, names.arg = rep("", nrow(top_20_processes)), col = bar_colors, ylim = c(0, max(top_20_processes$Count) * 1.25), main = "Occurrences of the 20 Most Predominant Biological Processes", xlab = "Biological Process", ylab = "Count") ``` ``` r # Create a separate plot for the legend png("../output/02-Apul-reference-annotation/GOlegend.png", width = 800, height = 600) par(mar = c(0, 0, 0, 0)) plot.new() legend("center", legend = top_20_processes$Biological_Process, fill = bar_colors, cex = 1, title = "Biological Processes") dev.off() ``` ## png ## 2 ``` r knitr::include_graphics("../output/02-Apul-reference-annotation/GOlegend.png") ``` ``` bash rm ../output/02-Apul-reference-annotation/GOlegend.png ```