--- title: "32-transcript-viz" output: html_document: default pdf_document: default --- ```{r} library(tidyverse) ``` Here I want to explore the best way to visualize the transcript presence data.... eventually this will be integrated with DNA methylation data. **A comparison of males and females irrespective of treatment** ```{bash} cd ../data curl -O https://raw.githubusercontent.com/epigeneticstoocean/2018_L18-adult-methylation/main/analyses/transcript_counts_per_gene_per_sample_males.csv curl -O https://raw.githubusercontent.com/epigeneticstoocean/2018_L18-adult-methylation/main/analyses/transcript_counts_per_gene_per_sample_females.csv ``` ```{r} male.all <- read.csv("../data/transcript_counts_per_gene_per_sample_males.csv") ``` ```{r} female.all <- read.csv("../data/transcript_counts_per_gene_per_sample_females.csv") ``` ```{r} all <- inner_join(male.all, female.all, by = "gene_name") ``` ```{r} ggplot() + geom_histogram(data = male.all, aes(x = male_max_transcript_counts), fill = "blue", alpha = 0.2) + geom_histogram(data = female.all, aes(x = female_max_transcript_counts), fill = "green", alpha = 0.2) + scale_y_log10() ``` ```{r} all.wstats <- all %>% mutate(diffmean = abs(male_mean_transcript_counts - female_mean_transcript_counts)) %>% mutate(m.covar = male_std_dev_transcript_counts / male_mean_transcript_counts) %>% mutate(f.covar = female_std_dev_transcript_counts / female_mean_transcript_counts) ``` ```{r} library("RColorBrewer") ``` ```{r} myPalette <- colorRampPalette(rev(brewer.pal(11, "Spectral"))) sc <- scale_colour_gradientn(colours = myPalette(100), limits=c(0, 16)) ggplot(all.wstats, aes(x = male_mean_transcript_counts, y = female_mean_transcript_counts, color = diffmean)) + geom_point(alpha = 0.6, size = 3) + geom_smooth(method = "lm") + geom_abline(size=1.0,colour="red") + sc #ylim(0,20) + #xlim(0,20) ``` ```{r} model <- lm(female_mean_transcript_counts ~ male_mean_transcript_counts, data = all.wstats) summary(model) ``` ```{r} myPalette <- colorRampPalette(rev(brewer.pal(11, "Spectral"))) sc <- scale_colour_gradientn(colours = myPalette(100), limits=c(0, 16)) ggplot(all.wstats, aes(x = male_median_transcript_counts, y = female_median_transcript_counts, color = diffmean)) + geom_point(alpha = 0.6, size = 3) + geom_smooth(method = "lm") + geom_abline(size=1.0,colour="red") + sc #ylim(0,20) + #xlim(0,20) ``` ```{r} myPalette <- colorRampPalette(rev(brewer.pal(11, "Spectral"))) sc <- scale_colour_gradientn(colours = myPalette(100), limits=c(0, 16)) ggplot(all.wstats, aes(x = m.covar, y = f.covar, color = diffmean)) + geom_point(alpha = 0.1, size = 2) + geom_smooth(method = "lm") + geom_abline(size=1.0,colour="red") + sc ```