--- title: "31-transcript-viz" output: html_document --- ```{r} library(tidyverse) ``` Here I want to explore the best way to visualize the transcript presence data.... eventually this will be integrated with DNA methylation data. Will start out looking out males only. ```{bash} cd ../data curl -O https://raw.githubusercontent.com/epigeneticstoocean/2018_L18-adult-methylation/main/analyses/transcript_counts_per_gene_per_sample_controls_males.csv curl -O https://raw.githubusercontent.com/epigeneticstoocean/2018_L18-adult-methylation/main/analyses/transcript_counts_per_gene_per_sample_exposed_males.csv ``` ```{r} m_con <- read.csv("../data/transcript_counts_per_gene_per_sample_controls_males.csv") ``` ```{r} head(m_con) ``` ```{r} m_exp <- read.csv("../data/transcript_counts_per_gene_per_sample_exposed_males.csv") ``` ```{r} head(m_exp) ``` ```{r} males <- inner_join(m_con, m_exp, by = "gene_name") ``` ```{r} ggplot(m_con, aes(x = control_males_max_transcript_counts)) + geom_histogram(bins = 80) + xlim(0,50) + scale_y_log10() ggplot(m_exp, aes(x = exposed_males_max_transcript_counts)) + geom_histogram(bins = 80) + xlim(0,50) + scale_y_log10() ``` ```{r} #max <- males %>% #pivot_longer(c(`control_males_max_transcript_counts`, `exposed_males_max_transcript_counts`), names_to = "max", values_to = "counts") ``` ```{r} ggplot() + geom_histogram(data = m_con, aes(x = control_males_max_transcript_counts), fill = "blue", alpha = 0.2) + geom_histogram(data = m_exp, aes(x = exposed_males_max_transcript_counts), fill = "green", alpha = 0.2) + scale_y_log10() ``` ```{r} m2 <- males %>% mutate(diffmean = abs(control_males_mean_transcript_counts - exposed_males_mean_transcript_counts)) %>% mutate(diffmed = abs(control_males_median_transcript_counts - exposed_males_median_transcript_counts)) %>% mutate(covar_exp = exposed_males_std_dev_transcript_counts / exposed_males_mean_transcript_counts) %>% mutate(covar_con = control_males_std_dev_transcript_counts / control_males_mean_transcript_counts) ``` ```{r} library("RColorBrewer") ``` ```{r} myPalette <- colorRampPalette(rev(brewer.pal(11, "Spectral"))) sc <- scale_colour_gradientn(colours = myPalette(100), limits=c(1, 4)) ggplot(m2, aes(x = control_males_mean_transcript_counts, y = exposed_males_mean_transcript_counts, color = diffmean)) + geom_point(alpha = 0.6, size = 3) + geom_smooth(method = "lm") + geom_abline(size=1.0,colour="red") + sc # ylim(0,20) + #xlim(0,20) ``` ```{r} myPalette <- colorRampPalette(rev(brewer.pal(11, "Spectral"))) sc <- scale_colour_gradientn(colours = myPalette(100), limits=c(0, 3)) ggplot(m2, aes(x = control_males_median_transcript_counts, y = exposed_males_median_transcript_counts, color = diffmean)) + #geom_point(alpha = 0.1, size = 1) + geom_smooth(method = "lm") + geom_abline(size=1.0,colour="red") + geom_jitter(alpha = 0.3, size =0.5) + sc ``` ```{r} myPalette <- colorRampPalette(rev(brewer.pal(11, "Spectral"))) sc <- scale_colour_gradientn(colours = myPalette(100), limits=c(0, 4)) ggplot(m2, aes(x = covar_con, y = covar_exp, color = diffmean)) + geom_point(alpha = 0.2, size = 2) + geom_smooth(method = "lm") + geom_abline(size=1.0,colour="red") + sc ``` ```{r} model2 <- lm(covar_exp ~ covar_con, data = m2) summary(model2) ``` ```{r} mean_meth <- read.csv("../RAnalysis/data/meanmethgene_10x_allsampssex.csv") ``` ```{r} length(unique(as.factor(mean_meth$gene))) ``` ```{r} myPalette <- colorRampPalette(rev(brewer.pal(11, "Spectral"))) sc <- scale_colour_gradientn(colours = myPalette(100), limits=c(1, 4)) ggplot(m2, aes(x = control_males_mean_transcript_counts, y = exposed_males_mean_transcript_counts, color = diffmean)) + geom_point(alpha = 0.6, size = 3) + geom_smooth(method = "lm") + geom_abline(size=1.0,colour="red") + sc # ylim(0,20) + #xlim(0,20) ```