--- title: "Testing Method" author: "Chris" date: "2023-07-27" output: html_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` ```{r} # Step 1: Create a data frame with the provided data data <- read.csv("presence.csv") ``` ```{r} #different data pivot; using the full sheet library(dplyr) library(tidyr) data_long <- data %>% gather(key = "Seaweed", value = "Presence", FL_ROCKWEED:FL_OTHER) ``` ```{r} seaweed_counts <- data_long %>% group_by(SECTION, Seaweed, Presence) %>% tally() ``` ```{r} library(ggplot2) ggplot(seaweed_counts, aes(x = Seaweed, y = n, fill = Presence)) + geom_bar(stat = "identity") + labs(title = "Presence/Absence of Seaweeds", x = "Seaweed Species", y = "Count", fill = "Presence") + theme_minimal() + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + facet_wrap(~SECTION, ncol = 2) ``` ```{r} # Assuming your original data frame is named "data" library(tidyr) data_long <- data %>% pivot_longer(cols = c(BARNACLE, ROCK, ALGAE), names_to = "substrate", values_to = "percent") # Printing the first few rows of the resulting data frame print(data_long) ``` ```{r} # Step 2: Load the required packages and create the stacked bar plot using ggplot2 #library(ggplot2) ggplot(data_long, aes(x = zonation, y = percent, fill = substrate)) + geom_bar(stat = "identity") + labs(title = "Section 1- Stacked Bar Plot of Substrate Type by Zonation", x = "Zonation", y = "Percent", fill = "Substrate") + theme_minimal() + theme(axis.text.x = element_text(angle = 45, hjust = 1)) ``` # Species richness by section and plot ```{r} # Calculate species richness and standard deviation by section without typing out all column names species_richness <- data %>% rowwise(SECTION) %>% summarise(species_count = sum(c_across(FL_ROCKWEED:FL_TAR) == "P"), sd = sd(c_across(FL_ROCKWEED:FL_TAR) == "P")) # Create a bar plot for species richness by section with error bars ggplot(species_richness, aes(x = factor(SECTION), y = species_count)) + geom_bar(stat = "identity", fill = "steelblue") + labs(title = "Species Richness by Section", x = "Section", y = "Species Richness") + geom_errorbar(aes(ymin = species_count - sd, ymax = species_count + sd), width = 0.2, color = "black", size = 0.7) + theme_minimal() ``` ```{r} # Create a bar plot with error bars for species richness by section ggplot(species_richness, aes(x = factor(SECTION), y = species_count)) + geom_bar(stat = "identity", fill = "steelblue") + geom_errorbar(aes(ymin = species_count - sd, ymax = species_count + sd), width = 0.2, color = "black", size = 0.7) + labs(title = "Species Richness by Section", x = "Section", y = "Species Richness") + theme_minimal() ``` ## Including Plots You can also embed plots, for example: ```{r pressure, echo=FALSE} ``` Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot.