--- title: "MARINe Data Visualization " author: Chris date: "`r format(Sys.time(), '%d %B, %Y')`"\ output: html_document: theme: readable highlight: zenburn toc: true toc_float: true number_sections: true code_folding: show code_download: true editor: markdown: wrap: 72 --- ###READ ME We will use the following files to explore our data post.csv - post point raw data manchester.csv - manchester raw data Note: Add parameters block/ explanation of choices on render What I did - will chronicle as things work OLD csv: presence.csv - Presence/ Absence data of seaweeds (may collapse this further, but it is here as a relic) OLD csv: data.csv - Full data set without manipulation # Package Install and call ```{r} # Installation is commented out, remove hashtag if you need to install #install.packages("kableExtra") #install.packages('gridExtra') ``` ```{r} #Use library to call your installed packages for use library(data.table) library(dplyr) library('ggplot2') library("indicspecies") library(kableExtra) library(knitr) library(RColorBrewer) library(tidyr) library(tidyverse) library(vegan) ``` # Read in data ```{r} post<- read.csv("post.csv") manchester<- read.csv("manchester.csv") ``` ```{r} #shows the dimensions of your data frame, a quick check to make sure everything imported the way you like dim(post) #quick view of data frame structure str(post) #look at the summary of your data summary(post) ``` ```{r} #shows the dimensions of your data frame, a quick check to make sure everything imported the way you like dim(manchester) #quick view of data frame structure str(manchester) #look at the summary of your data summary(manchester) ```