// (C) Copyright Nick Thompson 2018. // (C) Copyright Matt Borland 2020. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_STATISTICS_UNIVARIATE_STATISTICS_HPP #define BOOST_MATH_STATISTICS_UNIVARIATE_STATISTICS_HPP #include #include #include #include #include #include #include #include #include #include #include #include #ifdef BOOST_MATH_EXEC_COMPATIBLE #include namespace boost::math::statistics { template inline auto mean(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last) { using Real = typename std::iterator_traits::value_type; BOOST_MATH_ASSERT_MSG(first != last, "At least one sample is required to compute the mean."); if constexpr (std::is_integral_v) { if constexpr (std::is_same_v, decltype(std::execution::seq)>) { return detail::mean_sequential_impl(first, last); } else { return std::reduce(exec, first, last, 0.0) / std::distance(first, last); } } else { if constexpr (std::is_same_v, decltype(std::execution::seq)>) { return detail::mean_sequential_impl(first, last); } else { return std::reduce(exec, first, last, Real(0.0)) / Real(std::distance(first, last)); } } } template inline auto mean(ExecutionPolicy&& exec, Container const & v) { return mean(exec, std::cbegin(v), std::cend(v)); } template inline auto mean(ForwardIterator first, ForwardIterator last) { return mean(std::execution::seq, first, last); } template inline auto mean(Container const & v) { return mean(std::execution::seq, std::cbegin(v), std::cend(v)); } template inline auto variance(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last) { using Real = typename std::iterator_traits::value_type; if constexpr (std::is_integral_v) { if constexpr (std::is_same_v, decltype(std::execution::seq)>) { return std::get<2>(detail::variance_sequential_impl>(first, last)); } else { const auto results = detail::first_four_moments_parallel_impl>(first, last); return std::get<1>(results) / std::get<4>(results); } } else { if constexpr (std::is_same_v, decltype(std::execution::seq)>) { return std::get<2>(detail::variance_sequential_impl>(first, last)); } else { const auto results = detail::first_four_moments_parallel_impl>(first, last); return std::get<1>(results) / std::get<4>(results); } } } template inline auto variance(ExecutionPolicy&& exec, Container const & v) { return variance(exec, std::cbegin(v), std::cend(v)); } template inline auto variance(ForwardIterator first, ForwardIterator last) { return variance(std::execution::seq, first, last); } template inline auto variance(Container const & v) { return variance(std::execution::seq, std::cbegin(v), std::cend(v)); } template inline auto sample_variance(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last) { const auto n = std::distance(first, last); BOOST_MATH_ASSERT_MSG(n > 1, "At least two samples are required to compute the sample variance."); return n*variance(exec, first, last)/(n-1); } template inline auto sample_variance(ExecutionPolicy&& exec, Container const & v) { return sample_variance(exec, std::cbegin(v), std::cend(v)); } template inline auto sample_variance(ForwardIterator first, ForwardIterator last) { return sample_variance(std::execution::seq, first, last); } template inline auto sample_variance(Container const & v) { return sample_variance(std::execution::seq, std::cbegin(v), std::cend(v)); } template inline auto mean_and_sample_variance(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last) { using Real = typename std::iterator_traits::value_type; if constexpr (std::is_integral_v) { if constexpr (std::is_same_v, decltype(std::execution::seq)>) { const auto results = detail::variance_sequential_impl>(first, last); return std::make_pair(std::get<0>(results), std::get<2>(results)*std::get<3>(results)/(std::get<3>(results)-1.0)); } else { const auto results = detail::first_four_moments_parallel_impl>(first, last); return std::make_pair(std::get<0>(results), std::get<1>(results) / (std::get<4>(results)-1.0)); } } else { if constexpr (std::is_same_v, decltype(std::execution::seq)>) { const auto results = detail::variance_sequential_impl>(first, last); return std::make_pair(std::get<0>(results), std::get<2>(results)*std::get<3>(results)/(std::get<3>(results)-Real(1))); } else { const auto results = detail::first_four_moments_parallel_impl>(first, last); return std::make_pair(std::get<0>(results), std::get<1>(results) / (std::get<4>(results)-Real(1))); } } } template inline auto mean_and_sample_variance(ExecutionPolicy&& exec, Container const & v) { return mean_and_sample_variance(exec, std::cbegin(v), std::cend(v)); } template inline auto mean_and_sample_variance(ForwardIterator first, ForwardIterator last) { return mean_and_sample_variance(std::execution::seq, first, last); } template inline auto mean_and_sample_variance(Container const & v) { return mean_and_sample_variance(std::execution::seq, std::cbegin(v), std::cend(v)); } template inline auto first_four_moments(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last) { using Real = typename std::iterator_traits::value_type; if constexpr (std::is_integral_v) { if constexpr (std::is_same_v, decltype(std::execution::seq)>) { const auto results = detail::first_four_moments_sequential_impl>(first, last); return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results), std::get<3>(results) / std::get<4>(results)); } else { const auto results = detail::first_four_moments_parallel_impl>(first, last); return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results), std::get<3>(results) / std::get<4>(results)); } } else { if constexpr (std::is_same_v, decltype(std::execution::seq)>) { const auto results = detail::first_four_moments_sequential_impl>(first, last); return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results), std::get<3>(results) / std::get<4>(results)); } else { const auto results = detail::first_four_moments_parallel_impl>(first, last); return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results), std::get<3>(results) / std::get<4>(results)); } } } template inline auto first_four_moments(ExecutionPolicy&& exec, Container const & v) { return first_four_moments(exec, std::cbegin(v), std::cend(v)); } template inline auto first_four_moments(ForwardIterator first, ForwardIterator last) { return first_four_moments(std::execution::seq, first, last); } template inline auto first_four_moments(Container const & v) { return first_four_moments(std::execution::seq, std::cbegin(v), std::cend(v)); } // https://prod.sandia.gov/techlib-noauth/access-control.cgi/2008/086212.pdf template inline auto skewness(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last) { using Real = typename std::iterator_traits::value_type; using std::sqrt; if constexpr (std::is_same_v, decltype(std::execution::seq)>) { if constexpr (std::is_integral_v) { return detail::skewness_sequential_impl(first, last); } else { return detail::skewness_sequential_impl(first, last); } } else { const auto [M1, M2, M3, M4] = first_four_moments(exec, first, last); const auto n = std::distance(first, last); const auto var = M2/(n-1); if (M2 == 0) { // The limit is technically undefined, but the interpretation here is clear: // A constant dataset has no skewness. if constexpr (std::is_integral_v) { return static_cast(0); } else { return Real(0); } } else { return M3/(M2*sqrt(var)) / Real(2); } } } template inline auto skewness(ExecutionPolicy&& exec, Container & v) { return skewness(exec, std::cbegin(v), std::cend(v)); } template inline auto skewness(ForwardIterator first, ForwardIterator last) { return skewness(std::execution::seq, first, last); } template inline auto skewness(Container const & v) { return skewness(std::execution::seq, std::cbegin(v), std::cend(v)); } // Follows equation 1.6 of: // https://prod.sandia.gov/techlib-noauth/access-control.cgi/2008/086212.pdf template inline auto kurtosis(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last) { const auto [M1, M2, M3, M4] = first_four_moments(exec, first, last); if (M2 == 0) { return M2; } return M4/(M2*M2); } template inline auto kurtosis(ExecutionPolicy&& exec, Container const & v) { return kurtosis(exec, std::cbegin(v), std::cend(v)); } template inline auto kurtosis(ForwardIterator first, ForwardIterator last) { return kurtosis(std::execution::seq, first, last); } template inline auto kurtosis(Container const & v) { return kurtosis(std::execution::seq, std::cbegin(v), std::cend(v)); } template inline auto excess_kurtosis(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last) { return kurtosis(exec, first, last) - 3; } template inline auto excess_kurtosis(ExecutionPolicy&& exec, Container const & v) { return excess_kurtosis(exec, std::cbegin(v), std::cend(v)); } template inline auto excess_kurtosis(ForwardIterator first, ForwardIterator last) { return excess_kurtosis(std::execution::seq, first, last); } template inline auto excess_kurtosis(Container const & v) { return excess_kurtosis(std::execution::seq, std::cbegin(v), std::cend(v)); } template auto median(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last) { const auto num_elems = std::distance(first, last); BOOST_MATH_ASSERT_MSG(num_elems > 0, "The median of a zero length vector is undefined."); if (num_elems & 1) { auto middle = first + (num_elems - 1)/2; std::nth_element(exec, first, middle, last); return *middle; } else { auto middle = first + num_elems/2 - 1; std::nth_element(exec, first, middle, last); std::nth_element(exec, middle, middle+1, last); return (*middle + *(middle+1))/2; } } template inline auto median(ExecutionPolicy&& exec, RandomAccessContainer & v) { return median(exec, std::begin(v), std::end(v)); } template inline auto median(RandomAccessIterator first, RandomAccessIterator last) { return median(std::execution::seq, first, last); } template inline auto median(RandomAccessContainer & v) { return median(std::execution::seq, std::begin(v), std::end(v)); } #if 0 // // Parallel gini calculation is curently broken, see: // https://github.com/boostorg/math/issues/585 // We will fix this at a later date, for now just use a serial implementation: // template inline auto gini_coefficient(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last) { using Real = typename std::iterator_traits::value_type; if(!std::is_sorted(exec, first, last)) { std::sort(exec, first, last); } if constexpr (std::is_same_v, decltype(std::execution::seq)>) { if constexpr (std::is_integral_v) { return detail::gini_coefficient_sequential_impl(first, last); } else { return detail::gini_coefficient_sequential_impl(first, last); } } else if constexpr (std::is_integral_v) { return detail::gini_coefficient_parallel_impl(exec, first, last); } else { return detail::gini_coefficient_parallel_impl(exec, first, last); } } #else template inline auto gini_coefficient(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last) { using Real = typename std::iterator_traits::value_type; if (!std::is_sorted(exec, first, last)) { std::sort(exec, first, last); } if constexpr (std::is_integral_v) { return detail::gini_coefficient_sequential_impl(first, last); } else { return detail::gini_coefficient_sequential_impl(first, last); } } #endif template inline auto gini_coefficient(ExecutionPolicy&& exec, RandomAccessContainer & v) { return gini_coefficient(exec, std::begin(v), std::end(v)); } template inline auto gini_coefficient(RandomAccessIterator first, RandomAccessIterator last) { return gini_coefficient(std::execution::seq, first, last); } template inline auto gini_coefficient(RandomAccessContainer & v) { return gini_coefficient(std::execution::seq, std::begin(v), std::end(v)); } template inline auto sample_gini_coefficient(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last) { const auto n = std::distance(first, last); return n*gini_coefficient(exec, first, last)/(n-1); } template inline auto sample_gini_coefficient(ExecutionPolicy&& exec, RandomAccessContainer & v) { return sample_gini_coefficient(exec, std::begin(v), std::end(v)); } template inline auto sample_gini_coefficient(RandomAccessIterator first, RandomAccessIterator last) { return sample_gini_coefficient(std::execution::seq, first, last); } template inline auto sample_gini_coefficient(RandomAccessContainer & v) { return sample_gini_coefficient(std::execution::seq, std::begin(v), std::end(v)); } template auto median_absolute_deviation(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last, typename std::iterator_traits::value_type center=std::numeric_limits::value_type>::quiet_NaN()) { using std::abs; using Real = typename std::iterator_traits::value_type; using std::isnan; if (isnan(center)) { center = boost::math::statistics::median(exec, first, last); } const auto num_elems = std::distance(first, last); BOOST_MATH_ASSERT_MSG(num_elems > 0, "The median of a zero-length vector is undefined."); auto comparator = [¢er](Real a, Real b) { return abs(a-center) < abs(b-center);}; if (num_elems & 1) { auto middle = first + (num_elems - 1)/2; std::nth_element(exec, first, middle, last, comparator); return abs(*middle); } else { auto middle = first + num_elems/2 - 1; std::nth_element(exec, first, middle, last, comparator); std::nth_element(exec, middle, middle+1, last, comparator); return (abs(*middle) + abs(*(middle+1)))/abs(static_cast(2)); } } template inline auto median_absolute_deviation(ExecutionPolicy&& exec, RandomAccessContainer & v, typename RandomAccessContainer::value_type center=std::numeric_limits::quiet_NaN()) { return median_absolute_deviation(exec, std::begin(v), std::end(v), center); } template inline auto median_absolute_deviation(RandomAccessIterator first, RandomAccessIterator last, typename RandomAccessIterator::value_type center=std::numeric_limits::quiet_NaN()) { return median_absolute_deviation(std::execution::seq, first, last, center); } template inline auto median_absolute_deviation(RandomAccessContainer & v, typename RandomAccessContainer::value_type center=std::numeric_limits::quiet_NaN()) { return median_absolute_deviation(std::execution::seq, std::begin(v), std::end(v), center); } template auto interquartile_range(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last) { using Real = typename std::iterator_traits::value_type; static_assert(!std::is_integral_v, "Integer values have not yet been implemented."); auto m = std::distance(first,last); BOOST_MATH_ASSERT_MSG(m >= 3, "At least 3 samples are required to compute the interquartile range."); auto k = m/4; auto j = m - (4*k); // m = 4k+j. // If j = 0 or j = 1, then there are an even number of samples below the median, and an even number above the median. // Then we must average adjacent elements to get the quartiles. // If j = 2 or j = 3, there are an odd number of samples above and below the median, these elements may be directly extracted to get the quartiles. if (j==2 || j==3) { auto q1 = first + k; auto q3 = first + 3*k + j - 1; std::nth_element(exec, first, q1, last); Real Q1 = *q1; std::nth_element(exec, q1, q3, last); Real Q3 = *q3; return Q3 - Q1; } else { // j == 0 or j==1: auto q1 = first + k - 1; auto q3 = first + 3*k - 1 + j; std::nth_element(exec, first, q1, last); Real a = *q1; std::nth_element(exec, q1, q1 + 1, last); Real b = *(q1 + 1); Real Q1 = (a+b)/2; std::nth_element(exec, q1, q3, last); a = *q3; std::nth_element(exec, q3, q3 + 1, last); b = *(q3 + 1); Real Q3 = (a+b)/2; return Q3 - Q1; } } template inline auto interquartile_range(ExecutionPolicy&& exec, RandomAccessContainer & v) { return interquartile_range(exec, std::begin(v), std::end(v)); } template inline auto interquartile_range(RandomAccessIterator first, RandomAccessIterator last) { return interquartile_range(std::execution::seq, first, last); } template inline auto interquartile_range(RandomAccessContainer & v) { return interquartile_range(std::execution::seq, std::begin(v), std::end(v)); } template inline OutputIterator mode(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, OutputIterator output) { if(!std::is_sorted(exec, first, last)) { if constexpr (std::is_same_v::iterator_category(), std::random_access_iterator_tag>) { std::sort(exec, first, last); } else { BOOST_MATH_ASSERT("Data must be sorted for sequential mode calculation"); } } return detail::mode_impl(first, last, output); } template inline OutputIterator mode(ExecutionPolicy&& exec, Container & v, OutputIterator output) { return mode(exec, std::begin(v), std::end(v), output); } template inline OutputIterator mode(ForwardIterator first, ForwardIterator last, OutputIterator output) { return mode(std::execution::seq, first, last, output); } // Requires enable_if_t to not clash with impl that returns std::list // Very ugly. std::is_execution_policy_v returns false for the std::execution objects and decltype of the objects (e.g. std::execution::seq) template && !std::is_convertible_v && !std::is_convertible_v #if __cpp_lib_execution > 201900 && !std::is_convertible_v #endif , bool> = true> inline OutputIterator mode(Container & v, OutputIterator output) { return mode(std::execution::seq, std::begin(v), std::end(v), output); } // std::list is the return type for the proposed STL stats library template::value_type> inline auto mode(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last) { std::list modes; mode(exec, first, last, std::inserter(modes, modes.begin())); return modes; } template inline auto mode(ExecutionPolicy&& exec, Container & v) { return mode(exec, std::begin(v), std::end(v)); } template inline auto mode(ForwardIterator first, ForwardIterator last) { return mode(std::execution::seq, first, last); } template inline auto mode(Container & v) { return mode(std::execution::seq, std::begin(v), std::end(v)); } } // Namespace boost::math::statistics #else // Backwards compatible bindings for C++11 or execution is not implemented namespace boost { namespace math { namespace statistics { template using enable_if_t = typename std::enable_if::type; template::value_type, enable_if_t::value, bool> = true> inline double mean(const ForwardIterator first, const ForwardIterator last) { BOOST_MATH_ASSERT_MSG(first != last, "At least one sample is required to compute the mean."); return detail::mean_sequential_impl(first, last); } template::value, bool> = true> inline double mean(const Container& c) { return mean(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline Real mean(const ForwardIterator first, const ForwardIterator last) { BOOST_MATH_ASSERT_MSG(first != last, "At least one sample is required to compute the mean."); return detail::mean_sequential_impl(first, last); } template::value, bool> = true> inline Real mean(const Container& c) { return mean(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline double variance(const ForwardIterator first, const ForwardIterator last) { return std::get<2>(detail::variance_sequential_impl>(first, last)); } template::value, bool> = true> inline double variance(const Container& c) { return variance(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline Real variance(const ForwardIterator first, const ForwardIterator last) { return std::get<2>(detail::variance_sequential_impl>(first, last)); } template::value, bool> = true> inline Real variance(const Container& c) { return variance(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline double sample_variance(const ForwardIterator first, const ForwardIterator last) { const auto n = std::distance(first, last); BOOST_MATH_ASSERT_MSG(n > 1, "At least two samples are required to compute the sample variance."); return n*variance(first, last)/(n-1); } template::value, bool> = true> inline double sample_variance(const Container& c) { return sample_variance(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline Real sample_variance(const ForwardIterator first, const ForwardIterator last) { const auto n = std::distance(first, last); BOOST_MATH_ASSERT_MSG(n > 1, "At least two samples are required to compute the sample variance."); return n*variance(first, last)/(n-1); } template::value, bool> = true> inline Real sample_variance(const Container& c) { return sample_variance(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline std::pair mean_and_sample_variance(const ForwardIterator first, const ForwardIterator last) { const auto results = detail::variance_sequential_impl>(first, last); return std::make_pair(std::get<0>(results), std::get<3>(results)*std::get<2>(results)/(std::get<3>(results)-1.0)); } template::value, bool> = true> inline std::pair mean_and_sample_variance(const Container& c) { return mean_and_sample_variance(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline std::pair mean_and_sample_variance(const ForwardIterator first, const ForwardIterator last) { const auto results = detail::variance_sequential_impl>(first, last); return std::make_pair(std::get<0>(results), std::get<3>(results)*std::get<2>(results)/(std::get<3>(results)-Real(1))); } template::value, bool> = true> inline std::pair mean_and_sample_variance(const Container& c) { return mean_and_sample_variance(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline std::tuple first_four_moments(const ForwardIterator first, const ForwardIterator last) { const auto results = detail::first_four_moments_sequential_impl>(first, last); return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results), std::get<3>(results) / std::get<4>(results)); } template::value, bool> = true> inline std::tuple first_four_moments(const Container& c) { return first_four_moments(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline std::tuple first_four_moments(const ForwardIterator first, const ForwardIterator last) { const auto results = detail::first_four_moments_sequential_impl>(first, last); return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results), std::get<3>(results) / std::get<4>(results)); } template::value, bool> = true> inline std::tuple first_four_moments(const Container& c) { return first_four_moments(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline double skewness(const ForwardIterator first, const ForwardIterator last) { return detail::skewness_sequential_impl(first, last); } template::value, bool> = true> inline double skewness(const Container& c) { return skewness(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline Real skewness(const ForwardIterator first, const ForwardIterator last) { return detail::skewness_sequential_impl(first, last); } template::value, bool> = true> inline Real skewness(const Container& c) { return skewness(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline double kurtosis(const ForwardIterator first, const ForwardIterator last) { std::tuple M = first_four_moments(first, last); if(std::get<1>(M) == 0) { return std::get<1>(M); } else { return std::get<3>(M)/(std::get<1>(M)*std::get<1>(M)); } } template::value, bool> = true> inline double kurtosis(const Container& c) { return kurtosis(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline Real kurtosis(const ForwardIterator first, const ForwardIterator last) { std::tuple M = first_four_moments(first, last); if(std::get<1>(M) == 0) { return std::get<1>(M); } else { return std::get<3>(M)/(std::get<1>(M)*std::get<1>(M)); } } template::value, bool> = true> inline Real kurtosis(const Container& c) { return kurtosis(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline double excess_kurtosis(const ForwardIterator first, const ForwardIterator last) { return kurtosis(first, last) - 3; } template::value, bool> = true> inline double excess_kurtosis(const Container& c) { return excess_kurtosis(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline Real excess_kurtosis(const ForwardIterator first, const ForwardIterator last) { return kurtosis(first, last) - 3; } template::value, bool> = true> inline Real excess_kurtosis(const Container& c) { return excess_kurtosis(std::begin(c), std::end(c)); } template::value_type> Real median(RandomAccessIterator first, RandomAccessIterator last) { const auto num_elems = std::distance(first, last); BOOST_MATH_ASSERT_MSG(num_elems > 0, "The median of a zero length vector is undefined."); if (num_elems & 1) { auto middle = first + (num_elems - 1)/2; std::nth_element(first, middle, last); return *middle; } else { auto middle = first + num_elems/2 - 1; std::nth_element(first, middle, last); std::nth_element(middle, middle+1, last); return (*middle + *(middle+1))/2; } } template inline Real median(RandomAccessContainer& c) { return median(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline double gini_coefficient(RandomAccessIterator first, RandomAccessIterator last) { if(!std::is_sorted(first, last)) { std::sort(first, last); } return detail::gini_coefficient_sequential_impl(first, last); } template::value, bool> = true> inline double gini_coefficient(RandomAccessContainer& c) { return gini_coefficient(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline Real gini_coefficient(RandomAccessIterator first, RandomAccessIterator last) { if(!std::is_sorted(first, last)) { std::sort(first, last); } return detail::gini_coefficient_sequential_impl(first, last); } template::value, bool> = true> inline Real gini_coefficient(RandomAccessContainer& c) { return gini_coefficient(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline double sample_gini_coefficient(RandomAccessIterator first, RandomAccessIterator last) { const auto n = std::distance(first, last); return n*gini_coefficient(first, last)/(n-1); } template::value, bool> = true> inline double sample_gini_coefficient(RandomAccessContainer& c) { return sample_gini_coefficient(std::begin(c), std::end(c)); } template::value_type, enable_if_t::value, bool> = true> inline Real sample_gini_coefficient(RandomAccessIterator first, RandomAccessIterator last) { const auto n = std::distance(first, last); return n*gini_coefficient(first, last)/(n-1); } template::value, bool> = true> inline Real sample_gini_coefficient(RandomAccessContainer& c) { return sample_gini_coefficient(std::begin(c), std::end(c)); } template::value_type> Real median_absolute_deviation(RandomAccessIterator first, RandomAccessIterator last, typename std::iterator_traits::value_type center=std::numeric_limits::value_type>::quiet_NaN()) { using std::abs; using std::isnan; if (isnan(center)) { center = boost::math::statistics::median(first, last); } const auto num_elems = std::distance(first, last); BOOST_MATH_ASSERT_MSG(num_elems > 0, "The median of a zero-length vector is undefined."); auto comparator = [¢er](Real a, Real b) { return abs(a-center) < abs(b-center);}; if (num_elems & 1) { auto middle = first + (num_elems - 1)/2; std::nth_element(first, middle, last, comparator); return abs(*middle); } else { auto middle = first + num_elems/2 - 1; std::nth_element(first, middle, last, comparator); std::nth_element(middle, middle+1, last, comparator); return (abs(*middle) + abs(*(middle+1)))/abs(static_cast(2)); } } template inline Real median_absolute_deviation(RandomAccessContainer& c, typename RandomAccessContainer::value_type center=std::numeric_limits::quiet_NaN()) { return median_absolute_deviation(std::begin(c), std::end(c), center); } template::value_type> Real interquartile_range(ForwardIterator first, ForwardIterator last) { static_assert(!std::is_integral::value, "Integer values have not yet been implemented."); auto m = std::distance(first,last); BOOST_MATH_ASSERT_MSG(m >= 3, "At least 3 samples are required to compute the interquartile range."); auto k = m/4; auto j = m - (4*k); // m = 4k+j. // If j = 0 or j = 1, then there are an even number of samples below the median, and an even number above the median. // Then we must average adjacent elements to get the quartiles. // If j = 2 or j = 3, there are an odd number of samples above and below the median, these elements may be directly extracted to get the quartiles. if (j==2 || j==3) { auto q1 = first + k; auto q3 = first + 3*k + j - 1; std::nth_element(first, q1, last); Real Q1 = *q1; std::nth_element(q1, q3, last); Real Q3 = *q3; return Q3 - Q1; } else { // j == 0 or j==1: auto q1 = first + k - 1; auto q3 = first + 3*k - 1 + j; std::nth_element(first, q1, last); Real a = *q1; std::nth_element(q1, q1 + 1, last); Real b = *(q1 + 1); Real Q1 = (a+b)/2; std::nth_element(q1, q3, last); a = *q3; std::nth_element(q3, q3 + 1, last); b = *(q3 + 1); Real Q3 = (a+b)/2; return Q3 - Q1; } } template Real interquartile_range(Container& c) { return interquartile_range(std::begin(c), std::end(c)); } template::iterator_category(), std::random_access_iterator_tag>::value, bool> = true> inline OutputIterator mode(ForwardIterator first, ForwardIterator last, OutputIterator output) { if(!std::is_sorted(first, last)) { std::sort(first, last); } return detail::mode_impl(first, last, output); } template::iterator_category(), std::random_access_iterator_tag>::value, bool> = true> inline OutputIterator mode(ForwardIterator first, ForwardIterator last, OutputIterator output) { if(!std::is_sorted(first, last)) { BOOST_MATH_ASSERT("Data must be sorted for mode calculation"); } return detail::mode_impl(first, last, output); } template inline OutputIterator mode(Container& c, OutputIterator output) { return mode(std::begin(c), std::end(c), output); } template::value_type> inline std::list mode(ForwardIterator first, ForwardIterator last) { std::list modes; mode(first, last, std::inserter(modes, modes.begin())); return modes; } template inline std::list mode(Container& c) { return mode(std::begin(c), std::end(c)); } }}} #endif #endif // BOOST_MATH_STATISTICS_UNIVARIATE_STATISTICS_HPP