// (C) Copyright Nick Thompson 2019. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_SPECIAL_GEGENBAUER_HPP #define BOOST_MATH_SPECIAL_GEGENBAUER_HPP #include #include #include namespace boost { namespace math { template Real gegenbauer(unsigned n, Real lambda, Real x) { static_assert(!std::is_integral::value, "Gegenbauer polynomials required floating point arguments."); if (lambda <= -1/Real(2)) { throw std::domain_error("lambda > -1/2 is required."); } // The only reason to do this is because of some instability that could be present for x < 0 that is not present for x > 0. // I haven't observed this, but then again, I haven't managed to test an exhaustive number of parameters. // In any case, the routine is distinctly faster without this test: //if (x < 0) { // if (n&1) { // return -gegenbauer(n, lambda, -x); // } // return gegenbauer(n, lambda, -x); //} if (n == 0) { return Real(1); } Real y0 = 1; Real y1 = 2*lambda*x; Real yk = y1; Real k = 2; Real k_max = n*(1+std::numeric_limits::epsilon()); Real gamma = 2*(lambda - 1); while(k < k_max) { yk = ( (2 + gamma/k)*x*y1 - (1+gamma/k)*y0); y0 = y1; y1 = yk; k += 1; } return yk; } template Real gegenbauer_derivative(unsigned n, Real lambda, Real x, unsigned k) { if (k > n) { return Real(0); } Real gegen = gegenbauer(n-k, lambda + k, x); Real scale = 1; for (unsigned j = 0; j < k; ++j) { scale *= 2*lambda; lambda += 1; } return scale*gegen; } template Real gegenbauer_prime(unsigned n, Real lambda, Real x) { return gegenbauer_derivative(n, lambda, x, 1); } }} #endif