// (C) Copyright Nick Thompson 2019. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_DIFFERENTIATION_LANCZOS_SMOOTHING_HPP #define BOOST_MATH_DIFFERENTIATION_LANCZOS_SMOOTHING_HPP #include // for std::abs #include #include // to nan initialize #include #include #include #include #include namespace boost::math::differentiation { namespace detail { template class discrete_legendre { public: explicit discrete_legendre(std::size_t n, Real x) : m_n{n}, m_r{2}, m_x{x}, m_qrm2{1}, m_qrm1{x}, m_qrm2p{0}, m_qrm1p{1}, m_qrm2pp{0}, m_qrm1pp{0} { using std::abs; BOOST_MATH_ASSERT_MSG(abs(m_x) <= 1, "Three term recurrence is stable only for |x| <=1."); // The integer n indexes a family of discrete Legendre polynomials indexed by k <= 2*n } Real norm_sq(int r) const { Real prod = Real(2) / Real(2 * r + 1); for (int k = -r; k <= r; ++k) { prod *= Real(2 * m_n + 1 + k) / Real(2 * m_n); } return prod; } Real next() { Real N = 2 * m_n + 1; Real num = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) * m_qrm2; Real tmp = (2 * m_r - 1) * m_x * m_qrm1 - num / Real(4 * m_n * m_n); m_qrm2 = m_qrm1; m_qrm1 = tmp / m_r; ++m_r; return m_qrm1; } Real next_prime() { Real N = 2 * m_n + 1; Real s = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) / Real(4 * m_n * m_n); Real tmp1 = ((2 * m_r - 1) * m_x * m_qrm1 - s * m_qrm2) / m_r; Real tmp2 = ((2 * m_r - 1) * (m_qrm1 + m_x * m_qrm1p) - s * m_qrm2p) / m_r; m_qrm2 = m_qrm1; m_qrm1 = tmp1; m_qrm2p = m_qrm1p; m_qrm1p = tmp2; ++m_r; return m_qrm1p; } Real next_dbl_prime() { Real N = 2*m_n + 1; Real trm1 = 2*m_r - 1; Real s = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) / Real(4 * m_n * m_n); Real rqrpp = 2*trm1*m_qrm1p + trm1*m_x*m_qrm1pp - s*m_qrm2pp; Real tmp1 = ((2 * m_r - 1) * m_x * m_qrm1 - s * m_qrm2) / m_r; Real tmp2 = ((2 * m_r - 1) * (m_qrm1 + m_x * m_qrm1p) - s * m_qrm2p) / m_r; m_qrm2 = m_qrm1; m_qrm1 = tmp1; m_qrm2p = m_qrm1p; m_qrm1p = tmp2; m_qrm2pp = m_qrm1pp; m_qrm1pp = rqrpp/m_r; ++m_r; return m_qrm1pp; } Real operator()(Real x, std::size_t k) { BOOST_MATH_ASSERT_MSG(k <= 2 * m_n, "r <= 2n is required."); if (k == 0) { return 1; } if (k == 1) { return x; } Real qrm2 = 1; Real qrm1 = x; Real N = 2 * m_n + 1; for (std::size_t r = 2; r <= k; ++r) { Real num = (r - 1) * (N * N - (r - 1) * (r - 1)) * qrm2; Real tmp = (2 * r - 1) * x * qrm1 - num / Real(4 * m_n * m_n); qrm2 = qrm1; qrm1 = tmp / r; } return qrm1; } Real prime(Real x, std::size_t k) { BOOST_MATH_ASSERT_MSG(k <= 2 * m_n, "r <= 2n is required."); if (k == 0) { return 0; } if (k == 1) { return 1; } Real qrm2 = 1; Real qrm1 = x; Real qrm2p = 0; Real qrm1p = 1; Real N = 2 * m_n + 1; for (std::size_t r = 2; r <= k; ++r) { Real s = (r - 1) * (N * N - (r - 1) * (r - 1)) / Real(4 * m_n * m_n); Real tmp1 = ((2 * r - 1) * x * qrm1 - s * qrm2) / r; Real tmp2 = ((2 * r - 1) * (qrm1 + x * qrm1p) - s * qrm2p) / r; qrm2 = qrm1; qrm1 = tmp1; qrm2p = qrm1p; qrm1p = tmp2; } return qrm1p; } private: std::size_t m_n; std::size_t m_r; Real m_x; Real m_qrm2; Real m_qrm1; Real m_qrm2p; Real m_qrm1p; Real m_qrm2pp; Real m_qrm1pp; }; template std::vector interior_velocity_filter(std::size_t n, std::size_t p) { auto dlp = discrete_legendre(n, 0); std::vector coeffs(p+1); coeffs[1] = 1/dlp.norm_sq(1); for (std::size_t l = 3; l < p + 1; l += 2) { dlp.next_prime(); coeffs[l] = dlp.next_prime()/ dlp.norm_sq(l); } // We could make the filter length n, as f[0] = 0, // but that'd make the indexing awkward when applying the filter. std::vector f(n + 1); // This value should never be read, but this is the correct value *if it is read*. // Hmm, should it be a nan then? I'm not gonna agonize. f[0] = 0; for (std::size_t j = 1; j < f.size(); ++j) { Real arg = Real(j) / Real(n); dlp = discrete_legendre(n, arg); f[j] = coeffs[1]*arg; for (std::size_t l = 3; l <= p; l += 2) { dlp.next(); f[j] += coeffs[l]*dlp.next(); } f[j] /= (n * n); } return f; } template std::vector boundary_velocity_filter(std::size_t n, std::size_t p, int64_t s) { std::vector coeffs(p+1, std::numeric_limits::quiet_NaN()); Real sn = Real(s) / Real(n); auto dlp = discrete_legendre(n, sn); coeffs[0] = 0; coeffs[1] = 1/dlp.norm_sq(1); for (std::size_t l = 2; l < p + 1; ++l) { // Calculation of the norms is common to all filters, // so it seems like an obvious optimization target. // I tried this: The spent in computing the norms time is not negligible, // but still a small fraction of the total compute time. // Hence I'm not refactoring out these norm calculations. coeffs[l] = dlp.next_prime()/ dlp.norm_sq(l); } std::vector f(2*n + 1); for (std::size_t k = 0; k < f.size(); ++k) { Real j = Real(k) - Real(n); Real arg = j/Real(n); dlp = discrete_legendre(n, arg); f[k] = coeffs[1]*arg; for (std::size_t l = 2; l <= p; ++l) { f[k] += coeffs[l]*dlp.next(); } f[k] /= (n * n); } return f; } template std::vector acceleration_filter(std::size_t n, std::size_t p, int64_t s) { BOOST_MATH_ASSERT_MSG(p <= 2*n, "Approximation order must be <= 2*n"); BOOST_MATH_ASSERT_MSG(p > 2, "Approximation order must be > 2"); std::vector coeffs(p+1, std::numeric_limits::quiet_NaN()); Real sn = Real(s) / Real(n); auto dlp = discrete_legendre(n, sn); coeffs[0] = 0; coeffs[1] = 0; for (std::size_t l = 2; l < p + 1; ++l) { coeffs[l] = dlp.next_dbl_prime()/ dlp.norm_sq(l); } std::vector f(2*n + 1, 0); for (std::size_t k = 0; k < f.size(); ++k) { Real j = Real(k) - Real(n); Real arg = j/Real(n); dlp = discrete_legendre(n, arg); for (std::size_t l = 2; l <= p; ++l) { f[k] += coeffs[l]*dlp.next(); } f[k] /= (n * n * n); } return f; } } // namespace detail template class discrete_lanczos_derivative { public: discrete_lanczos_derivative(Real const & spacing, std::size_t n = 18, std::size_t approximation_order = 3) : m_dt{spacing} { static_assert(!std::is_integral_v, "Spacing must be a floating point type."); BOOST_MATH_ASSERT_MSG(spacing > 0, "Spacing between samples must be > 0."); if constexpr (order == 1) { BOOST_MATH_ASSERT_MSG(approximation_order <= 2 * n, "The approximation order must be <= 2n"); BOOST_MATH_ASSERT_MSG(approximation_order >= 2, "The approximation order must be >= 2"); if constexpr (std::is_same_v || std::is_same_v) { auto interior = detail::interior_velocity_filter(n, approximation_order); m_f.resize(interior.size()); for (std::size_t j = 0; j < interior.size(); ++j) { m_f[j] = static_cast(interior[j])/m_dt; } } else { m_f = detail::interior_velocity_filter(n, approximation_order); for (auto & x : m_f) { x /= m_dt; } } m_boundary_filters.resize(n); // This for loop is a natural candidate for parallelization. // But does it matter? Probably not. for (std::size_t i = 0; i < n; ++i) { if constexpr (std::is_same_v || std::is_same_v) { int64_t s = static_cast(i) - static_cast(n); auto bf = detail::boundary_velocity_filter(n, approximation_order, s); m_boundary_filters[i].resize(bf.size()); for (std::size_t j = 0; j < bf.size(); ++j) { m_boundary_filters[i][j] = static_cast(bf[j])/m_dt; } } else { int64_t s = static_cast(i) - static_cast(n); m_boundary_filters[i] = detail::boundary_velocity_filter(n, approximation_order, s); for (auto & bf : m_boundary_filters[i]) { bf /= m_dt; } } } } else if constexpr (order == 2) { // High precision isn't warranted for small p; only for large p. // (The computation appears stable for large n.) // But given that the filters are reusable for many vectors, // it's better to do a high precision computation and then cast back, // since the resulting cost is a factor of 2, and the cost of the filters not working is hours of debugging. if constexpr (std::is_same_v || std::is_same_v) { auto f = detail::acceleration_filter(n, approximation_order, 0); m_f.resize(n+1); for (std::size_t i = 0; i < m_f.size(); ++i) { m_f[i] = static_cast(f[i+n])/(m_dt*m_dt); } m_boundary_filters.resize(n); for (std::size_t i = 0; i < n; ++i) { int64_t s = static_cast(i) - static_cast(n); auto bf = detail::acceleration_filter(n, approximation_order, s); m_boundary_filters[i].resize(bf.size()); for (std::size_t j = 0; j < bf.size(); ++j) { m_boundary_filters[i][j] = static_cast(bf[j])/(m_dt*m_dt); } } } else { // Given that the purpose is denoising, for higher precision calculations, // the default precision should be fine. auto f = detail::acceleration_filter(n, approximation_order, 0); m_f.resize(n+1); for (std::size_t i = 0; i < m_f.size(); ++i) { m_f[i] = f[i+n]/(m_dt*m_dt); } m_boundary_filters.resize(n); for (std::size_t i = 0; i < n; ++i) { int64_t s = static_cast(i) - static_cast(n); m_boundary_filters[i] = detail::acceleration_filter(n, approximation_order, s); for (auto & bf : m_boundary_filters[i]) { bf /= (m_dt*m_dt); } } } } else { BOOST_MATH_ASSERT_MSG(false, "Derivatives of order 3 and higher are not implemented."); } } Real get_spacing() const { return m_dt; } template Real operator()(RandomAccessContainer const & v, std::size_t i) const { static_assert(std::is_same_v, "The type of the values in the vector provided does not match the type in the filters."); BOOST_MATH_ASSERT_MSG(std::size(v) >= m_boundary_filters[0].size(), "Vector must be at least as long as the filter length"); if constexpr (order==1) { if (i >= m_f.size() - 1 && i <= std::size(v) - m_f.size()) { // The filter has length >= 1: Real dvdt = m_f[1] * (v[i + 1] - v[i - 1]); for (std::size_t j = 2; j < m_f.size(); ++j) { dvdt += m_f[j] * (v[i + j] - v[i - j]); } return dvdt; } // m_f.size() = N+1 if (i < m_f.size() - 1) { auto &bf = m_boundary_filters[i]; Real dvdt = bf[0]*v[0]; for (std::size_t j = 1; j < bf.size(); ++j) { dvdt += bf[j] * v[j]; } return dvdt; } if (i > std::size(v) - m_f.size() && i < std::size(v)) { int k = std::size(v) - 1 - i; auto &bf = m_boundary_filters[k]; Real dvdt = bf[0]*v[std::size(v)-1]; for (std::size_t j = 1; j < bf.size(); ++j) { dvdt += bf[j] * v[std::size(v) - 1 - j]; } return -dvdt; } } else if constexpr (order==2) { if (i >= m_f.size() - 1 && i <= std::size(v) - m_f.size()) { Real d2vdt2 = m_f[0]*v[i]; for (std::size_t j = 1; j < m_f.size(); ++j) { d2vdt2 += m_f[j] * (v[i + j] + v[i - j]); } return d2vdt2; } // m_f.size() = N+1 if (i < m_f.size() - 1) { auto &bf = m_boundary_filters[i]; Real d2vdt2 = bf[0]*v[0]; for (std::size_t j = 1; j < bf.size(); ++j) { d2vdt2 += bf[j] * v[j]; } return d2vdt2; } if (i > std::size(v) - m_f.size() && i < std::size(v)) { int k = std::size(v) - 1 - i; auto &bf = m_boundary_filters[k]; Real d2vdt2 = bf[0] * v[std::size(v) - 1]; for (std::size_t j = 1; j < bf.size(); ++j) { d2vdt2 += bf[j] * v[std::size(v) - 1 - j]; } return d2vdt2; } } // OOB access: std::string msg = "Out of bounds access in Lanczos derivative."; msg += "Input vector has length " + std::to_string(std::size(v)) + ", but user requested access at index " + std::to_string(i) + "."; throw std::out_of_range(msg); return std::numeric_limits::quiet_NaN(); } template void operator()(RandomAccessContainer const & v, RandomAccessContainer & w) const { static_assert(std::is_same_v, "The type of the values in the vector provided does not match the type in the filters."); if (&w[0] == &v[0]) { throw std::logic_error("This transform cannot be performed in-place."); } if (std::size(v) < m_boundary_filters[0].size()) { std::string msg = "The input vector must be at least as long as the filter length. "; msg += "The input vector has length = " + std::to_string(std::size(v)) + ", the filter has length " + std::to_string(m_boundary_filters[0].size()); throw std::length_error(msg); } if (std::size(w) < std::size(v)) { std::string msg = "The output vector (containing the derivative) must be at least as long as the input vector."; msg += "The output vector has length = " + std::to_string(std::size(w)) + ", the input vector has length " + std::to_string(std::size(v)); throw std::length_error(msg); } if constexpr (order==1) { for (std::size_t i = 0; i < m_f.size() - 1; ++i) { auto &bf = m_boundary_filters[i]; Real dvdt = bf[0] * v[0]; for (std::size_t j = 1; j < bf.size(); ++j) { dvdt += bf[j] * v[j]; } w[i] = dvdt; } for(std::size_t i = m_f.size() - 1; i <= std::size(v) - m_f.size(); ++i) { Real dvdt = m_f[1] * (v[i + 1] - v[i - 1]); for (std::size_t j = 2; j < m_f.size(); ++j) { dvdt += m_f[j] *(v[i + j] - v[i - j]); } w[i] = dvdt; } for(std::size_t i = std::size(v) - m_f.size() + 1; i < std::size(v); ++i) { int k = std::size(v) - 1 - i; auto &f = m_boundary_filters[k]; Real dvdt = f[0] * v[std::size(v) - 1];; for (std::size_t j = 1; j < f.size(); ++j) { dvdt += f[j] * v[std::size(v) - 1 - j]; } w[i] = -dvdt; } } else if constexpr (order==2) { // m_f.size() = N+1 for (std::size_t i = 0; i < m_f.size() - 1; ++i) { auto &bf = m_boundary_filters[i]; Real d2vdt2 = 0; for (std::size_t j = 0; j < bf.size(); ++j) { d2vdt2 += bf[j] * v[j]; } w[i] = d2vdt2; } for (std::size_t i = m_f.size() - 1; i <= std::size(v) - m_f.size(); ++i) { Real d2vdt2 = m_f[0]*v[i]; for (std::size_t j = 1; j < m_f.size(); ++j) { d2vdt2 += m_f[j] * (v[i + j] + v[i - j]); } w[i] = d2vdt2; } for (std::size_t i = std::size(v) - m_f.size() + 1; i < std::size(v); ++i) { int k = std::size(v) - 1 - i; auto &bf = m_boundary_filters[k]; Real d2vdt2 = bf[0] * v[std::size(v) - 1]; for (std::size_t j = 1; j < bf.size(); ++j) { d2vdt2 += bf[j] * v[std::size(v) - 1 - j]; } w[i] = d2vdt2; } } } template RandomAccessContainer operator()(RandomAccessContainer const & v) const { RandomAccessContainer w(std::size(v)); this->operator()(v, w); return w; } // Don't copy; too big. discrete_lanczos_derivative( const discrete_lanczos_derivative & ) = delete; discrete_lanczos_derivative& operator=(const discrete_lanczos_derivative&) = delete; // Allow moves: discrete_lanczos_derivative(discrete_lanczos_derivative&&) noexcept = default; discrete_lanczos_derivative& operator=(discrete_lanczos_derivative&&) noexcept = default; private: std::vector m_f; std::vector> m_boundary_filters; Real m_dt; }; } // namespaces #endif