// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2013-2017 Adam Wulkiewicz, Lodz, Poland. // This file was modified by Oracle on 2014-2021. // Modifications copyright (c) 2014-2021, Oracle and/or its affiliates. // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP #define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(BOOST_GEOMETRY_DEBUG_ROBUSTNESS) # include #endif namespace boost { namespace geometry { namespace strategy { namespace intersection { namespace detail_usage { // When calculating the intersection, the information of "a" or "b" can be used. // Theoretically this gives equal results, but due to floating point precision // there might be tiny differences. These are edge cases. // This structure is to determine if "a" or "b" should be used. // Prefer the segment closer to the endpoint. // If both are about equally close, then prefer the longer segment // To avoid hard thresholds, behavior is made fluent. // Calculate comparable length indications, // the longer the segment (relatively), the lower the value // such that the shorter lengths are evaluated higher and will // be preferred. template struct use_a { template static bool apply(Ct const& cla, Ct const& clb, Ev const& eva, Ev const& evb) { auto const clm = (std::max)(cla, clb); if (clm <= 0) { return true; } // Relative comparible length auto const rcla = Ct(1.0) - cla / clm; auto const rclb = Ct(1.0) - clb / clm; // Multipliers for edgevalue (ev) and relative comparible length (rcl) // They determine the balance between edge value (should be larger) // and segment length. In 99.9xx% of the cases there is no difference // at all (if either a or b is used). Therefore the values of the // constants are not sensitive for the majority of the situations. // One known case is #mysql_23023665_6 (difference) which needs mev >= 2 Ev const mev = 5; Ev const mrcl = 1; return mev * eva + mrcl * rcla > mev * evb + mrcl * rclb; } }; // Specialization for non arithmetic types. They will always use "a" template <> struct use_a { template static bool apply(Ct const& , Ct const& , Ev const& , Ev const& ) { return true; } }; } /*! \see http://mathworld.wolfram.com/Line-LineIntersection.html */ template < typename CalculationType = void > struct cartesian_segments { typedef cartesian_tag cs_tag; template struct segment_intersection_info { private : typedef typename select_most_precise < CoordinateType, double >::type promoted_type; promoted_type comparable_length_a() const { return dx_a * dx_a + dy_a * dy_a; } promoted_type comparable_length_b() const { return dx_b * dx_b + dy_b * dy_b; } template void assign_a(Point& point, Segment1 const& a, Segment2 const& ) const { assign(point, a, dx_a, dy_a, robust_ra); } template void assign_b(Point& point, Segment1 const& , Segment2 const& b) const { assign(point, b, dx_b, dy_b, robust_rb); } template void assign(Point& point, Segment const& segment, CoordinateType const& dx, CoordinateType const& dy, SegmentRatio const& ratio) const { // Calculate the intersection point based on segment_ratio // The division, postponed until here, is done now. In case of integer this // results in an integer which rounds to the nearest integer. BOOST_GEOMETRY_ASSERT(ratio.denominator() != typename SegmentRatio::int_type(0)); typedef typename promote_integral::type calc_type; calc_type const numerator = boost::numeric_cast(ratio.numerator()); calc_type const denominator = boost::numeric_cast(ratio.denominator()); calc_type const dx_calc = boost::numeric_cast(dx); calc_type const dy_calc = boost::numeric_cast(dy); set<0>(point, get<0, 0>(segment) + boost::numeric_cast( math::divide(numerator * dx_calc, denominator))); set<1>(point, get<0, 1>(segment) + boost::numeric_cast( math::divide(numerator * dy_calc, denominator))); } template static bool exceeds_side_in_dimension(Point& p, Segment const& s) { // Situation a (positive) // 0>-------------->1 segment // * point left of segment in D x or y // Situation b (negative) // 1<--------------<0 segment // * point right of segment // Situation c (degenerate), return false (check other dimension) auto const& c = get(p); auto const& c0 = get(s); auto const& c1 = get<1 - Index, Dim>(s); return c0 < c1 ? math::smaller(c, c0) : c0 > c1 ? math::larger(c, c0) : false; } template static bool exceeds_side_of_segment(Point& p, Segment const& s) { return exceeds_side_in_dimension(p, s) || exceeds_side_in_dimension(p, s); } template static void assign_if_exceeds(Point& point, Segment const& s) { if (exceeds_side_of_segment<0>(point, s)) { detail::assign_point_from_index<0>(s, point); } else if (exceeds_side_of_segment<1>(point, s)) { detail::assign_point_from_index<1>(s, point); } } public : template void calculate(Point& point, Segment1 const& a, Segment2 const& b) const { bool const use_a = detail_usage::use_a < std::is_arithmetic::value >::apply(comparable_length_a(), comparable_length_b(), robust_ra.edge_value(), robust_rb.edge_value()); if (use_a) { assign_a(point, a, b); } else { assign_b(point, a, b); } #if defined(BOOST_GEOMETRY_USE_RESCALING) return; #endif // Verify nearly collinear cases (the threshold is arbitrary // but influences performance). If the intersection is located // outside the segments, then it should be moved. if (robust_ra.possibly_collinear(1.0e-3) && robust_rb.possibly_collinear(1.0e-3)) { // The segments are nearly collinear and because of the calculation // method with very small denominator, the IP appears outside the // segment(s). Correct it to the end point. // Because they are nearly collinear, it doesn't really matter to // to which endpoint (or it is corrected twice). assign_if_exceeds(point, a); assign_if_exceeds(point, b); } } CoordinateType dx_a, dy_a; CoordinateType dx_b, dy_b; SegmentRatio robust_ra; SegmentRatio robust_rb; }; template static inline void cramers_rule(D const& dx_a, D const& dy_a, D const& dx_b, D const& dy_b, W const& wx, W const& wy, // out: ResultType& nominator, ResultType& denominator) { // Cramers rule nominator = geometry::detail::determinant(dx_b, dy_b, wx, wy); denominator = geometry::detail::determinant(dx_a, dy_a, dx_b, dy_b); // Ratio r = nominator/denominator // Collinear if denominator == 0, intersecting if 0 <= r <= 1 // IntersectionPoint = (x1 + r * dx_a, y1 + r * dy_a) } // Version for non-rescaled policies template < typename UniqueSubRange1, typename UniqueSubRange2, typename Policy > static inline typename Policy::return_type apply(UniqueSubRange1 const& range_p, UniqueSubRange2 const& range_q, Policy const& policy) { // Pass the same ranges both as normal ranges and as modelled ranges return apply(range_p, range_q, policy, range_p, range_q); } // Version for non rescaled versions. // The "modelled" parameter might be rescaled (will be removed later) template < typename UniqueSubRange1, typename UniqueSubRange2, typename Policy, typename ModelledUniqueSubRange1, typename ModelledUniqueSubRange2 > static inline typename Policy::return_type apply(UniqueSubRange1 const& range_p, UniqueSubRange2 const& range_q, Policy const& policy, ModelledUniqueSubRange1 const& modelled_range_p, ModelledUniqueSubRange2 const& modelled_range_q) { typedef typename UniqueSubRange1::point_type point1_type; typedef typename UniqueSubRange2::point_type point2_type; BOOST_CONCEPT_ASSERT( (concepts::ConstPoint) ); BOOST_CONCEPT_ASSERT( (concepts::ConstPoint) ); point1_type const& p1 = range_p.at(0); point1_type const& p2 = range_p.at(1); point2_type const& q1 = range_q.at(0); point2_type const& q2 = range_q.at(1); // Declare segments, currently necessary for the policies // (segment_crosses, segment_colinear, degenerate, one_degenerate, etc) model::referring_segment const p(p1, p2); model::referring_segment const q(q1, q2); typedef typename select_most_precise < typename geometry::coordinate_type::type, typename geometry::coordinate_type::type >::type modelled_coordinate_type; typedef segment_ratio ratio_type; segment_intersection_info < typename select_calculation_type::type, ratio_type > sinfo; sinfo.dx_a = get<0>(p2) - get<0>(p1); // distance in x-dir sinfo.dx_b = get<0>(q2) - get<0>(q1); sinfo.dy_a = get<1>(p2) - get<1>(p1); // distance in y-dir sinfo.dy_b = get<1>(q2) - get<1>(q1); return unified(sinfo, p, q, policy, modelled_range_p, modelled_range_q); } //! Returns true if two segments do not overlap. //! If not, then no further calculations need to be done. template < std::size_t Dimension, typename PointP, typename PointQ > static inline bool disjoint_by_range(PointP const& p1, PointP const& p2, PointQ const& q1, PointQ const& q2) { auto minp = get(p1); auto maxp = get(p2); auto minq = get(q1); auto maxq = get(q2); if (minp > maxp) { std::swap(minp, maxp); } if (minq > maxq) { std::swap(minq, maxq); } // In this case, max(p) < min(q) // P Q // <-------> <-------> // (and the space in between is not extremely small) return math::smaller(maxp, minq) || math::smaller(maxq, minp); } // Implementation for either rescaled or non rescaled versions. template < typename RatioType, typename SegmentInfo, typename Segment1, typename Segment2, typename Policy, typename UniqueSubRange1, typename UniqueSubRange2 > static inline typename Policy::return_type unified(SegmentInfo& sinfo, Segment1 const& p, Segment2 const& q, Policy const&, UniqueSubRange1 const& range_p, UniqueSubRange2 const& range_q) { typedef typename UniqueSubRange1::point_type point1_type; typedef typename UniqueSubRange2::point_type point2_type; typedef typename select_most_precise < typename geometry::coordinate_type::type, typename geometry::coordinate_type::type >::type coordinate_type; point1_type const& p1 = range_p.at(0); point1_type const& p2 = range_p.at(1); point2_type const& q1 = range_q.at(0); point2_type const& q2 = range_q.at(1); bool const p_is_point = equals_point_point(p1, p2); bool const q_is_point = equals_point_point(q1, q2); if (p_is_point && q_is_point) { return equals_point_point(p1, q2) ? Policy::degenerate(p, true) : Policy::disjoint() ; } if (disjoint_by_range<0>(p1, p2, q1, q2) || disjoint_by_range<1>(p1, p2, q1, q2)) { return Policy::disjoint(); } using side_strategy_type = typename side::services::default_strategy ::type; side_info sides; sides.set<0>(side_strategy_type::apply(q1, q2, p1), side_strategy_type::apply(q1, q2, p2)); if (sides.same<0>()) { // Both points are at same side of other segment, we can leave return Policy::disjoint(); } sides.set<1>(side_strategy_type::apply(p1, p2, q1), side_strategy_type::apply(p1, p2, q2)); if (sides.same<1>()) { // Both points are at same side of other segment, we can leave return Policy::disjoint(); } bool collinear = sides.collinear(); // Calculate the differences again // (for rescaled version, this is different from dx_p etc) coordinate_type const dx_p = get<0>(p2) - get<0>(p1); coordinate_type const dx_q = get<0>(q2) - get<0>(q1); coordinate_type const dy_p = get<1>(p2) - get<1>(p1); coordinate_type const dy_q = get<1>(q2) - get<1>(q1); // r: ratio 0-1 where intersection divides A/B // (only calculated for non-collinear segments) if (! collinear) { coordinate_type denominator_a, nominator_a; coordinate_type denominator_b, nominator_b; cramers_rule(dx_p, dy_p, dx_q, dy_q, get<0>(p1) - get<0>(q1), get<1>(p1) - get<1>(q1), nominator_a, denominator_a); cramers_rule(dx_q, dy_q, dx_p, dy_p, get<0>(q1) - get<0>(p1), get<1>(q1) - get<1>(p1), nominator_b, denominator_b); math::detail::equals_factor_policy policy(dx_p, dy_p, dx_q, dy_q); coordinate_type const zero = 0; if (math::detail::equals_by_policy(denominator_a, zero, policy) || math::detail::equals_by_policy(denominator_b, zero, policy)) { // If this is the case, no rescaling is done for FP precision. // We set it to collinear, but it indicates a robustness issue. sides.set<0>(0, 0); sides.set<1>(0, 0); collinear = true; } else { sinfo.robust_ra.assign(nominator_a, denominator_a); sinfo.robust_rb.assign(nominator_b, denominator_b); } } if (collinear) { std::pair const collinear_use_first = is_x_more_significant(geometry::math::abs(dx_p), geometry::math::abs(dy_p), geometry::math::abs(dx_q), geometry::math::abs(dy_q), p_is_point, q_is_point); if (collinear_use_first.second) { // Degenerate cases: segments of single point, lying on other segment, are not disjoint // This situation is collinear too if (collinear_use_first.first) { return relate_collinear<0, Policy, RatioType>(p, q, p1, p2, q1, q2, p_is_point, q_is_point); } else { // Y direction contains larger segments (maybe dx is zero) return relate_collinear<1, Policy, RatioType>(p, q, p1, p2, q1, q2, p_is_point, q_is_point); } } } return Policy::segments_crosses(sides, sinfo, p, q); } private: // first is true if x is more significant // second is true if the more significant difference is not 0 template static inline std::pair is_x_more_significant(CoordinateType const& abs_dx_a, CoordinateType const& abs_dy_a, CoordinateType const& abs_dx_b, CoordinateType const& abs_dy_b, bool const a_is_point, bool const b_is_point) { //BOOST_GEOMETRY_ASSERT_MSG(!(a_is_point && b_is_point), "both segments shouldn't be degenerated"); // for degenerated segments the second is always true because this function // shouldn't be called if both segments were degenerated if (a_is_point) { return std::make_pair(abs_dx_b >= abs_dy_b, true); } else if (b_is_point) { return std::make_pair(abs_dx_a >= abs_dy_a, true); } else { CoordinateType const min_dx = (std::min)(abs_dx_a, abs_dx_b); CoordinateType const min_dy = (std::min)(abs_dy_a, abs_dy_b); return min_dx == min_dy ? std::make_pair(true, min_dx > CoordinateType(0)) : std::make_pair(min_dx > min_dy, true); } } template < std::size_t Dimension, typename Policy, typename RatioType, typename Segment1, typename Segment2, typename RobustPoint1, typename RobustPoint2 > static inline typename Policy::return_type relate_collinear(Segment1 const& a, Segment2 const& b, RobustPoint1 const& robust_a1, RobustPoint1 const& robust_a2, RobustPoint2 const& robust_b1, RobustPoint2 const& robust_b2, bool a_is_point, bool b_is_point) { if (a_is_point) { return relate_one_degenerate(a, get(robust_a1), get(robust_b1), get(robust_b2), true); } if (b_is_point) { return relate_one_degenerate(b, get(robust_b1), get(robust_a1), get(robust_a2), false); } return relate_collinear(a, b, get(robust_a1), get(robust_a2), get(robust_b1), get(robust_b2)); } /// Relate segments known collinear template < typename Policy, typename RatioType, typename Segment1, typename Segment2, typename Type1, typename Type2 > static inline typename Policy::return_type relate_collinear(Segment1 const& a, Segment2 const& b, Type1 oa_1, Type1 oa_2, Type2 ob_1, Type2 ob_2) { // Calculate the ratios where a starts in b, b starts in a // a1--------->a2 (2..7) // b1----->b2 (5..8) // length_a: 7-2=5 // length_b: 8-5=3 // b1 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a) // b2 is located w.r.t. a at ratio: (8-2)/5=6/5 (right of a) // a1 is located w.r.t. b at ratio: (2-5)/3=-3/3 (left of b) // a2 is located w.r.t. b at ratio: (7-5)/3=2/3 (on b) // A arrives (a2 on b), B departs (b1 on a) // If both are reversed: // a2<---------a1 (7..2) // b2<-----b1 (8..5) // length_a: 2-7=-5 // length_b: 5-8=-3 // b1 is located w.r.t. a at ratio: (8-7)/-5=-1/5 (before a starts) // b2 is located w.r.t. a at ratio: (5-7)/-5=2/5 (on a) // a1 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b) // a2 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends) // If both one is reversed: // a1--------->a2 (2..7) // b2<-----b1 (8..5) // length_a: 7-2=+5 // length_b: 5-8=-3 // b1 is located w.r.t. a at ratio: (8-2)/5=6/5 (after a ends) // b2 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a) // a1 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends) // a2 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b) Type1 const length_a = oa_2 - oa_1; // no abs, see above Type2 const length_b = ob_2 - ob_1; RatioType ra_from(oa_1 - ob_1, length_b); RatioType ra_to(oa_2 - ob_1, length_b); RatioType rb_from(ob_1 - oa_1, length_a); RatioType rb_to(ob_2 - oa_1, length_a); // use absolute measure to detect endpoints intersection // NOTE: it'd be possible to calculate bx_wrt_a using ax_wrt_b values int const a1_wrt_b = position_value(oa_1, ob_1, ob_2); int const a2_wrt_b = position_value(oa_2, ob_1, ob_2); int const b1_wrt_a = position_value(ob_1, oa_1, oa_2); int const b2_wrt_a = position_value(ob_2, oa_1, oa_2); // fix the ratios if necessary // CONSIDER: fixing ratios also in other cases, if they're inconsistent // e.g. if ratio == 1 or 0 (so IP at the endpoint) // but position value indicates that the IP is in the middle of the segment // because one of the segments is very long // In such case the ratios could be moved into the middle direction // by some small value (e.g. EPS+1ULP) if (a1_wrt_b == 1) { ra_from.assign(0, 1); rb_from.assign(0, 1); } else if (a1_wrt_b == 3) { ra_from.assign(1, 1); rb_to.assign(0, 1); } if (a2_wrt_b == 1) { ra_to.assign(0, 1); rb_from.assign(1, 1); } else if (a2_wrt_b == 3) { ra_to.assign(1, 1); rb_to.assign(1, 1); } if ((a1_wrt_b < 1 && a2_wrt_b < 1) || (a1_wrt_b > 3 && a2_wrt_b > 3)) //if ((ra_from.left() && ra_to.left()) || (ra_from.right() && ra_to.right())) { return Policy::disjoint(); } bool const opposite = math::sign(length_a) != math::sign(length_b); return Policy::segments_collinear(a, b, opposite, a1_wrt_b, a2_wrt_b, b1_wrt_a, b2_wrt_a, ra_from, ra_to, rb_from, rb_to); } /// Relate segments where one is degenerate template < typename Policy, typename RatioType, typename DegenerateSegment, typename Type1, typename Type2 > static inline typename Policy::return_type relate_one_degenerate(DegenerateSegment const& degenerate_segment, Type1 d, Type2 s1, Type2 s2, bool a_degenerate) { // Calculate the ratios where ds starts in s // a1--------->a2 (2..6) // b1/b2 (4..4) // Ratio: (4-2)/(6-2) RatioType const ratio(d - s1, s2 - s1); if (!ratio.on_segment()) { return Policy::disjoint(); } return Policy::one_degenerate(degenerate_segment, ratio, a_degenerate); } template static inline int position_value(ProjCoord1 const& ca1, ProjCoord2 const& cb1, ProjCoord2 const& cb2) { // S1x 0 1 2 3 4 // S2 |----------> return math::equals(ca1, cb1) ? 1 : math::equals(ca1, cb2) ? 3 : cb1 < cb2 ? ( ca1 < cb1 ? 0 : ca1 > cb2 ? 4 : 2 ) : ( ca1 > cb1 ? 0 : ca1 < cb2 ? 4 : 2 ); } template static inline bool equals_point_point(Point1 const& point1, Point2 const& point2) { return strategy::within::cartesian_point_point::apply(point1, point2); } }; #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS namespace services { template struct default_strategy { typedef cartesian_segments type; }; } // namespace services #endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS }} // namespace strategy::intersection namespace strategy { namespace within { namespace services { template struct default_strategy { typedef strategy::intersection::cartesian_segments<> type; }; template struct default_strategy { typedef strategy::intersection::cartesian_segments<> type; }; template struct default_strategy { typedef strategy::intersection::cartesian_segments<> type; }; template struct default_strategy { typedef strategy::intersection::cartesian_segments<> type; }; }} // within::services namespace covered_by { namespace services { template struct default_strategy { typedef strategy::intersection::cartesian_segments<> type; }; template struct default_strategy { typedef strategy::intersection::cartesian_segments<> type; }; template struct default_strategy { typedef strategy::intersection::cartesian_segments<> type; }; template struct default_strategy { typedef strategy::intersection::cartesian_segments<> type; }; }} // within::services } // strategy }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP