////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2018-2022. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINER_HASH_TABLE_HPP #define BOOST_CONTAINER_HASH_TABLE_HPP #ifndef BOOST_CONFIG_HPP # include #endif #if defined(BOOST_HAS_PRAGMA_ONCE) # pragma once #endif #include #include // container #include #include #include #include #include // container/detail #include //algo_equal(), algo_lexicographical_compare #include #include #include #include #include #include #include // intrusive #include #include // intrusive/detail #include //pair #include //tree_value_compare // move #include // move/detail #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) #include #endif #include #include // other #include #include namespace boost { namespace container { namespace dtl { static const unsigned hash_default_bucket = 11; using boost::intrusive::tree_value_compare; template struct intrusive_hash_table_hook { typedef typename dtl::bi::make_unordered_set_base_hook < dtl::bi::void_pointer , dtl::bi::link_mode , dtl::bi::store_hash >::type type; }; //This trait is used to type-pun std::pair because in C++03 //compilers std::pair is useless for C++11 features template struct hash_table_internal_data_type { typedef T type; }; template struct hash_table_internal_data_type< std::pair > { typedef pair::type, T2> type; }; template struct iiterator_node_value_type< base_node, true > > { typedef T type; }; template struct get_hash_opt { typedef Options type; }; template<> struct get_hash_opt { typedef hash_assoc_defaults type; }; template struct hash_key_of_value { typedef KeyOfValue type; }; template struct hash_key_of_value { typedef dtl::identity type; }; template struct hash_key_of_value, int> { typedef dtl::select1st type; }; template struct hash_key_of_value, int> { typedef dtl::select1st type; }; template class hash_insert_equal_end_hint_functor { Icont &icont_; public: BOOST_CONTAINER_FORCEINLINE hash_insert_equal_end_hint_functor(Icont &icont) : icont_(icont) {} BOOST_CONTAINER_FORCEINLINE void operator()(Node &n) { this->icont_.insert_equal(n); } }; }//namespace dtl { namespace dtl { template< class NodeType, class KeyOfNode, class NodeHashType, class NodeCompareType , class SizeType, class HookType, bool CompareHash , bool CacheBegin, bool LinearBuckets, bool FastmodBuckets> struct intrusive_hash_table_dispatch { typedef typename dtl::bi::make_hashtable ,dtl::bi::hash ,dtl::bi::equal ,dtl::bi::base_hook ,dtl::bi::constant_time_size ,dtl::bi::size_type ,dtl::bi::cache_begin ,dtl::bi::compare_hash ,dtl::bi::linear_buckets ,dtl::bi::fastmod_buckets >::type type; }; template struct intrusive_hash_table_type { private: typedef typename boost::container:: allocator_traits::value_type value_type; typedef typename boost::container:: allocator_traits::void_pointer void_pointer; typedef typename boost::container:: allocator_traits::size_type size_type; typedef base_node, true > node_t; //Deducing the hook type from node_t (e.g. node_t::hook_type) would //provoke an early instantiation of node_t that could ruin recursive //hash_table definitions, so retype the complete type to avoid any problem. typedef typename intrusive_hash_table_hook ::type hook_type; typedef key_of_node key_of_node_t; public: typedef typename intrusive_hash_table_dispatch < node_t, key_of_node_t, KeyHash, KeyCompare , size_type, hook_type, StoreHash , CacheBegin, LinearBuckets, FastmodBuckets>::type type; }; } //namespace dtl { namespace dtl { //This functor will be used with Intrusive clone functions to obtain //already allocated nodes from a intrusive container instead of //allocating new ones. When the intrusive container runs out of nodes //the node holder is used instead. template class HashRecyclingCloner { typedef typename AllocHolder::intrusive_container intrusive_container; typedef typename AllocHolder::Node node_t; typedef typename AllocHolder::NodePtr node_ptr_type; typedef dtl::allocator_node_destroyer Destroyer; typedef typename AllocHolder::alloc_version alloc_version; public: HashRecyclingCloner(AllocHolder &holder, intrusive_container &itree) : m_holder(holder), m_icont(itree) {} BOOST_CONTAINER_FORCEINLINE static void do_assign(node_ptr_type &p, const node_t &other, bool_) { p->do_move_assign(const_cast(other).m_data); } BOOST_CONTAINER_FORCEINLINE static void do_assign(node_ptr_type &p, const node_t &other, bool_) { p->do_assign(other.m_data); } node_ptr_type operator()(const node_t &other) const { if(!m_icont.empty()) { typename intrusive_container::const_iterator iit = m_icont.iterator_to(other); node_ptr_type p = iit.unconst().operator->(); m_icont.erase(iit); //First recycle a node (this can't throw) BOOST_TRY{ //This can throw this->do_assign(p, other, bool_()); return p; } BOOST_CATCH(...){ //If there is an exception destroy the whole source m_holder.destroy_node(p); m_holder.clear(alloc_version()); BOOST_RETHROW } BOOST_CATCH_END } else{ return m_holder.create_node(other.m_data); } } AllocHolder &m_holder; intrusive_container &m_icont; }; template struct hash_table_types { typedef typename hash_key_of_value < typename allocator_traits::value_type , KeyOfValue>::type key_of_value_t; typedef tree_value_compare < typename allocator_traits::pointer , KeyHash, key_of_value_t, std::size_t> ValHash; typedef tree_value_compare < typename allocator_traits::pointer , KeyEqual, key_of_value_t, bool> ValEqual; typedef typename get_hash_opt::type options_type; typedef typename dtl::intrusive_hash_table_type < Allocator, key_of_value_t, KeyHash, ValEqual , options_type::store_hash , options_type::cache_begin , options_type::linear_buckets , options_type::fastmod_buckets >::type Icont; typedef typename Icont::bucket_type bucket_type; typedef typename Icont::bucket_traits bucket_traits; typedef typename boost::container:: allocator_traits::template portable_rebind_alloc::type bucket_allocator; typedef boost::container::vector bucket_holder_t; typedef dtl::node_alloc_holder AllocHolder; }; template struct static_buckets { static const std::size_t size = N; Bucket buckets_[N]; }; const std::size_t SmallestBucketSize = 3u; template class hash_table : public static_buckets< typename hash_table_types::bucket_type , hash_table_types::Icont::bucket_overhead+SmallestBucketSize> , public hash_table_types::bucket_holder_t , public hash_table_types::AllocHolder { typedef hash_table_types hash_table_types_t; typedef typename hash_table_types_t::ValHash ValHash; typedef typename hash_table_types_t::ValEqual ValEqual; typedef typename hash_table_types_t::options_type options_type; typedef typename hash_table_types_t::Icont Icont; typedef typename hash_table_types_t::AllocHolder AllocHolder; typedef typename AllocHolder::NodePtr NodePtr; typedef hash_table< T, KeyOfValue, KeyHash , KeyEqual, Allocator, Options> ThisType; typedef typename AllocHolder::NodeAlloc NodeAlloc; typedef boost::container:: allocator_traits allocator_traits_type; typedef typename AllocHolder::ValAlloc ValAlloc; typedef typename AllocHolder::Node Node; typedef typename Icont::iterator iiterator; typedef typename Icont::const_iterator iconst_iterator; typedef typename Icont::local_iterator ilocal_iterator; typedef typename Icont::const_local_iterator iconst_local_iterator; typedef dtl::allocator_node_destroyer Destroyer; typedef typename AllocHolder::alloc_version alloc_version; typedef typename Icont::bucket_type bucket_type; typedef typename Icont::bucket_traits bucket_traits; typedef typename hash_table_types ::bucket_holder_t bucket_holder_t; typedef static_buckets< typename Icont::bucket_type , Icont::bucket_overhead + SmallestBucketSize > static_buckets_t; BOOST_COPYABLE_AND_MOVABLE(hash_table) public: typedef typename hash_table_types_t:: key_of_value_t key_of_value_type; typedef typename hash_table_types_t:: key_of_value_t::type key_type; typedef T value_type; typedef Allocator allocator_type; typedef KeyHash hasher; typedef ValHash value_hasher; typedef KeyEqual key_equal; typedef ValEqual value_equal; typedef typename boost::container:: allocator_traits::pointer pointer; typedef typename boost::container:: allocator_traits::const_pointer const_pointer; typedef typename boost::container:: allocator_traits::reference reference; typedef typename boost::container:: allocator_traits::const_reference const_reference; typedef typename boost::container:: allocator_traits::size_type size_type; typedef typename boost::container:: allocator_traits::difference_type difference_type; typedef dtl::iterator_from_iiterator iterator; typedef dtl::iterator_from_iiterator const_iterator; typedef dtl::iterator_from_iiterator local_iterator; typedef dtl::iterator_from_iiterator const_local_iterator; typedef node_handle < NodeAlloc, void> node_type; typedef insert_return_type_base insert_return_type; typedef NodeAlloc stored_allocator_type; private: typedef key_node_pred KeyNodeEqual; typedef key_node_pred KeyNodeHash; public: BOOST_CONTAINER_FORCEINLINE hash_table() : AllocHolder(bucket_traits( ((static_buckets_t&)*this).buckets_, static_buckets_t::size)) { this->reserve(0); } BOOST_CONTAINER_FORCEINLINE explicit hash_table(const allocator_type& a) : bucket_holder_t(a), AllocHolder(a) { this->reserve(0); } BOOST_CONTAINER_FORCEINLINE explicit hash_table(size_type n) : AllocHolder() { this->reserve(n); } BOOST_CONTAINER_FORCEINLINE hash_table(size_type n, const hasher& hf) : AllocHolder(value_hasher(hf)) { this->reserve(n); } BOOST_CONTAINER_FORCEINLINE hash_table(size_type n, const hasher& hf, const key_equal& eql) : AllocHolder(value_hasher(hf), value_equal(eql)) { this->reserve(n); } BOOST_CONTAINER_FORCEINLINE hash_table(size_type n, const hasher& hf, const key_equal& eql, const allocator_type& a) : bucket_holder_t(a), AllocHolder(value_hasher(hf), value_equal(eql), a) { this->reserve(n); } BOOST_CONTAINER_FORCEINLINE hash_table(size_type n, const allocator_type& a) : bucket_holder_t(a), AllocHolder(a) { this->reserve(n); } BOOST_CONTAINER_FORCEINLINE hash_table(size_type n, const hasher& hf, const allocator_type& a) : bucket_holder_t(a), AllocHolder(value_hasher(hf), value_equal(), a) { this->reserve(n); } template hash_table(bool unique_insertion, InputIterator first, InputIterator last) : AllocHolder() { this->reserve(0); this->hash_table_construct(unique_insertion, first, last); //AllocHolder clears in case of exception } template hash_table(bool unique_insertion, InputIterator first, InputIterator last, size_type n) : AllocHolder() { this->reserve(n); this->hash_table_construct(unique_insertion, first, last); //AllocHolder clears in case of exception } template hash_table(bool unique_insertion, InputIterator first, InputIterator last, size_type n, const hasher& hf) : AllocHolder(value_hasher(hf)) { this->reserve(n); this->hash_table_construct(unique_insertion, first, last); //AllocHolder clears in case of exception } template hash_table(bool unique_insertion, InputIterator first, InputIterator last, size_type n, const hasher& hf, const key_equal& eql) : AllocHolder(value_hasher(hf), value_equal(eql)) { this->reserve(n); this->hash_table_construct(unique_insertion, first, last); //AllocHolder clears in case of exception } template hash_table (bool unique_insertion, InputIterator first, InputIterator last ,size_type n, const hasher& hf, const key_equal& eql, const allocator_type& a) : bucket_holder_t(a), AllocHolder(value_hasher(hf), value_equal(eql), a) { this->reserve(n); this->hash_table_construct(unique_insertion, first, last); //AllocHolder clears in case of exception } template hash_table (bool unique_insertion, InputIterator first, InputIterator last, size_type n, const allocator_type& a) : bucket_holder_t(a), AllocHolder(a) { this->reserve(n); this->hash_table_construct(unique_insertion, first, last); //AllocHolder clears in case of exception } //! Effects: Constructs an empty hash_table using at least n buckets //! and specified allocator and hash function. //! Then, inserts elements from the range [first ,last ). //! //! Complexity: Average case linear, worst case quadratic. template hash_table (bool unique_insertion, InputIterator first, InputIterator last, size_type n, const hasher& hf, const allocator_type& a) : bucket_holder_t(a), AllocHolder(value_hasher(hf), a) { this->reserve(n); this->hash_table_construct(unique_insertion, first, last); //AllocHolder clears in case of exception } private: template void hash_table_construct(bool unique_insertion, InputIterator first, InputIterator last) { //Use cend() as hint to achieve linear time for //ordered ranges as required by the standard //for the constructor if(unique_insertion){ const const_iterator end_it(this->cend()); for ( ; first != last; ++first){ this->insert_unique_convertible(end_it, *first); } } else{ this->hash_table_construct_non_unique(first, last); } } template void hash_table_construct_non_unique(InputIterator first, InputIterator last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename dtl::enable_if_or < void , dtl::is_same , dtl::is_input_iterator >::type * = 0 #endif ) { //Use cend() as hint to achieve linear time for //ordered ranges as required by the standard //for the constructor const const_iterator end_it(this->cend()); for ( ; first != last; ++first){ this->insert_equal_convertible(end_it, *first); } } template void hash_table_construct_non_unique(InputIterator first, InputIterator last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename dtl::disable_if_or < void , dtl::is_same , dtl::is_input_iterator >::type * = 0 #endif ) { //Optimized allocation and construction this->allocate_many_and_construct ( first, boost::container::iterator_udistance(first, last) , hash_insert_equal_end_hint_functor(this->m_icont)); } public: BOOST_CONTAINER_FORCEINLINE hash_table(const hash_table& x) : AllocHolder(x, x.value_hash_function(), x.value_eq()) { this->m_icont.clone_from (x.icont(), typename AllocHolder::cloner(*this), Destroyer(this->node_alloc())); } BOOST_CONTAINER_FORCEINLINE hash_table(BOOST_RV_REF(hash_table) x) BOOST_NOEXCEPT_IF(boost::container::dtl::is_nothrow_move_constructible::value && boost::container::dtl::is_nothrow_move_constructible::value) : AllocHolder(BOOST_MOVE_BASE(AllocHolder, x), x.value_hash_function(), x.value_eq()) {} BOOST_CONTAINER_FORCEINLINE hash_table(const hash_table& x, const allocator_type &a) : AllocHolder(x.value_hash_function(), x.value_eq(), a) { this->m_icont.clone_from (x.icont(), typename AllocHolder::cloner(*this), Destroyer(this->node_alloc())); //AllocHolder clears in case of exception } hash_table(BOOST_RV_REF(hash_table) x, const allocator_type &a) : AllocHolder(x.hash_function(), x.key_eq(), a) { if(this->node_alloc() == x.node_alloc()){ this->m_icont.swap(x.icont()); } else{ this->m_icont.clone_from (boost::move(x.icont()), typename AllocHolder::move_cloner(*this), Destroyer(this->node_alloc())); } //AllocHolder clears in case of exception } BOOST_CONTAINER_FORCEINLINE ~hash_table() { } //AllocHolder clears the hash_table hash_table& operator=(BOOST_COPY_ASSIGN_REF(hash_table) x) { if (&x != this){ NodeAlloc &this_alloc = this->get_stored_allocator(); const NodeAlloc &x_alloc = x.get_stored_allocator(); dtl::bool_:: propagate_on_container_copy_assignment::value> flag; if(flag && this_alloc != x_alloc){ this->clear(); } this->AllocHolder::copy_assign_alloc(x); //Transfer all the nodes to a temporary hash_table //If anything goes wrong, all the nodes will be destroyed //automatically Icont other_hash_table(::boost::move(this->m_icont)); //Now recreate the source hash_table reusing nodes stored by other_hash_table this->m_icont.clone_from (x.icont() , HashRecyclingCloner(*this, other_hash_table) , Destroyer(this->node_alloc())); //If there are remaining nodes, destroy them other_hash_table.clear_and_dispose(Destroyer(this->node_alloc())); } return *this; } hash_table& operator=(BOOST_RV_REF(hash_table) x) BOOST_NOEXCEPT_IF( (allocator_traits_type::propagate_on_container_move_assignment::value || allocator_traits_type::is_always_equal::value) && boost::container::dtl::is_nothrow_move_assignable::value && boost::container::dtl::is_nothrow_move_assignable::value) { BOOST_ASSERT(this != &x); NodeAlloc &this_alloc = this->node_alloc(); NodeAlloc &x_alloc = x.node_alloc(); const bool propagate_alloc = allocator_traits:: propagate_on_container_move_assignment::value; const bool allocators_equal = this_alloc == x_alloc; (void)allocators_equal; //Resources can be transferred if both allocators are //going to be equal after this function (either propagated or already equal) if(propagate_alloc || allocators_equal){ //Destroy this->clear(); //Move allocator if needed this->AllocHolder::move_assign_alloc(x); //Obtain resources this->m_icont = boost::move(x.icont()); } //Else do a one by one move else{ //Transfer all the nodes to a temporary hash_table //If anything goes wrong, all the nodes will be destroyed //automatically Icont other_hash_table(::boost::move(this->m_icont)); //Now recreate the source hash_table reusing nodes stored by other_hash_table this->m_icont.clone_from (::boost::move(x.icont()) , HashRecyclingCloner(*this, other_hash_table) , Destroyer(this->node_alloc())); //If there are remaining nodes, destroy them other_hash_table.clear_and_dispose(Destroyer(this->node_alloc())); } return *this; } public: // accessors: BOOST_CONTAINER_FORCEINLINE key_equal key_eq() const { return this->m_icont.key_eq(); } BOOST_CONTAINER_FORCEINLINE value_equal value_eq() const { return value_equal(this->key_eq()); } BOOST_CONTAINER_FORCEINLINE hasher hash_function() const { return this->m_icont.hash_function(); } BOOST_CONTAINER_FORCEINLINE value_hasher value_hash_function() const { return value_hasher(this->hash_function()); } BOOST_CONTAINER_FORCEINLINE allocator_type get_allocator() const { return allocator_type(this->node_alloc()); } BOOST_CONTAINER_FORCEINLINE const stored_allocator_type &get_stored_allocator() const { return this->node_alloc(); } BOOST_CONTAINER_FORCEINLINE stored_allocator_type &get_stored_allocator() { return this->node_alloc(); } BOOST_CONTAINER_FORCEINLINE iterator begin() { return iterator(this->m_icont.begin()); } BOOST_CONTAINER_FORCEINLINE const_iterator begin() const { return this->cbegin(); } BOOST_CONTAINER_FORCEINLINE iterator end() { return iterator(this->m_icont.end()); } BOOST_CONTAINER_FORCEINLINE const_iterator end() const { return this->cend(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE const_iterator cbegin() const { return const_iterator(this->non_const_icont().begin()); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. BOOST_CONTAINER_FORCEINLINE const_iterator cend() const { return const_iterator(this->non_const_icont().end()); } BOOST_CONTAINER_FORCEINLINE bool empty() const { return !this->size(); } BOOST_CONTAINER_FORCEINLINE size_type size() const { return this->m_icont.size(); } BOOST_CONTAINER_FORCEINLINE size_type max_size() const { return AllocHolder::max_size(); } BOOST_CONTAINER_FORCEINLINE void swap(ThisType& x) BOOST_NOEXCEPT_IF( allocator_traits_type::is_always_equal::value && boost::container::dtl::is_nothrow_swappable::value && boost::container::dtl::is_nothrow_swappable::value ) { AllocHolder::swap(x); } public: typedef typename Icont::insert_commit_data insert_commit_data; // insert/erase std::pair insert_unique_check (const key_type& key, insert_commit_data &data) { std::pair ret = this->m_icont.insert_unique_check (key, data); return std::pair(iterator(ret.first), ret.second); } std::pair insert_unique_check (const_iterator hint, const key_type& key, insert_commit_data &data) { //to-do: take advantage of hint: just check for equality and insert after if equal (void)hint; BOOST_ASSERT((priv_is_linked)(hint)); std::pair ret = this->m_icont.insert_unique_check (key, data); return std::pair(iterator(ret.first), ret.second); } template iterator insert_unique_commit (BOOST_FWD_REF(MovableConvertible) v, insert_commit_data &data) { NodePtr tmp = AllocHolder::create_node(boost::forward(v)); return iterator(this->m_icont.insert_unique_commit(*tmp, data)); } template std::pair insert_unique(BOOST_FWD_REF(MovableConvertible) v) { insert_commit_data data; std::pair ret = this->insert_unique_check(key_of_value_type()(v), data); if(ret.second){ ret.first = this->insert_unique_commit(boost::forward(v), data); } return ret; } private: template iiterator priv_insert_or_assign_commit (BOOST_FWD_REF(KeyConvertible) key, BOOST_FWD_REF(M) obj, insert_commit_data &data) { NodePtr tmp = AllocHolder::create_node(boost::forward(key), boost::forward(obj)); scoped_node_destroy_deallocator destroy_deallocator(tmp, this->node_alloc()); iiterator ret(this->m_icont.insert_unique_commit(*tmp, data)); destroy_deallocator.release(); return ret; } bool priv_is_linked(const_iterator const position) const { iiterator const cur(position.get()); return cur == this->m_icont.end() || (++iiterator(cur) != cur && ++iiterator(cur) != iiterator()); } template void push_back_impl(BOOST_FWD_REF(MovableConvertible) v) { NodePtr tmp(AllocHolder::create_node(boost::forward(v))); //push_back has no-throw guarantee so avoid any deallocator/destroyer this->m_icont.push_back(*tmp); } std::pair emplace_unique_impl(NodePtr p) { value_type &v = p->get_data(); insert_commit_data data; scoped_node_destroy_deallocator destroy_deallocator(p, this->node_alloc()); std::pair ret = this->insert_unique_check(key_of_value_type()(v), data); if(!ret.second){ return ret; } //No throw insertion part, release rollback destroy_deallocator.release(); return std::pair ( iterator(this->m_icont.insert_unique_commit(*p, data)) , true ); } iterator emplace_unique_hint_impl(const_iterator hint, NodePtr p) { BOOST_ASSERT((priv_is_linked)(hint)); value_type &v = p->get_data(); insert_commit_data data; std::pair ret = this->insert_unique_check(hint, key_of_value_type()(v), data); if(!ret.second){ Destroyer(this->node_alloc())(p); return ret.first; } return iterator(this->m_icont.insert_unique_commit(*p, data)); } public: #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) template BOOST_CONTAINER_FORCEINLINE std::pair emplace_unique(BOOST_FWD_REF(Args)... args) { return this->emplace_unique_impl(AllocHolder::create_node(boost::forward(args)...)); } template BOOST_CONTAINER_FORCEINLINE iterator emplace_hint_unique(const_iterator hint, BOOST_FWD_REF(Args)... args) { return this->emplace_unique_hint_impl(hint, AllocHolder::create_node(boost::forward(args)...)); } template iterator emplace_equal(BOOST_FWD_REF(Args)... args) { NodePtr tmp(AllocHolder::create_node(boost::forward(args)...)); scoped_node_destroy_deallocator destroy_deallocator(tmp, this->node_alloc()); iterator ret(this->m_icont.insert_equal(*tmp)); destroy_deallocator.release(); return ret; } template iterator emplace_hint_equal(const_iterator hint, BOOST_FWD_REF(Args)... args) { BOOST_ASSERT((priv_is_linked)(hint)); NodePtr tmp(AllocHolder::create_node(boost::forward(args)...)); scoped_node_destroy_deallocator destroy_deallocator(tmp, this->node_alloc()); //to-do: take advantage of hint: just check for equality and insert after if equal iterator ret(this->m_icont.insert_equal(*tmp)); destroy_deallocator.release(); return ret; } template BOOST_CONTAINER_FORCEINLINE std::pair try_emplace (const_iterator hint, BOOST_FWD_REF(KeyType) key, BOOST_FWD_REF(Args)... args) { insert_commit_data data; const key_type & k = key; //Support emulated rvalue references std::pair ret = hint == const_iterator() ? this->m_icont.insert_unique_check\ (k, data) : this->m_icont.insert_unique_check\ (hint.get(), k, data); if(ret.second){ ret.first = this->m_icont.insert_unique_commit (*AllocHolder::create_node(try_emplace_t(), boost::forward(key), boost::forward(args)...), data); } return std::pair(iterator(ret.first), ret.second); } #else // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) #define BOOST_CONTAINER_TREE_EMPLACE_CODE(N) \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ std::pair emplace_unique(BOOST_MOVE_UREF##N)\ { return this->emplace_unique_impl(AllocHolder::create_node(BOOST_MOVE_FWD##N)); }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ iterator emplace_hint_unique(const_iterator hint BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ { return this->emplace_unique_hint_impl(hint, AllocHolder::create_node(BOOST_MOVE_FWD##N)); }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ iterator emplace_equal(BOOST_MOVE_UREF##N)\ {\ NodePtr tmp(AllocHolder::create_node(BOOST_MOVE_FWD##N));\ scoped_node_destroy_deallocator destroy_deallocator(tmp, this->node_alloc());\ iterator ret(this->m_icont.insert_equal(this->m_icont.end(), *tmp));\ destroy_deallocator.release();\ return ret;\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ iterator emplace_hint_equal(const_iterator hint BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ BOOST_ASSERT((priv_is_linked)(hint));\ NodePtr tmp(AllocHolder::create_node(BOOST_MOVE_FWD##N));\ scoped_node_destroy_deallocator destroy_deallocator(tmp, this->node_alloc());\ iterator ret(this->m_icont.insert_equal(hint.get(), *tmp));\ destroy_deallocator.release();\ return ret;\ }\ \ template \ BOOST_CONTAINER_FORCEINLINE std::pair\ try_emplace(const_iterator hint, BOOST_FWD_REF(KeyType) key BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ insert_commit_data data;\ const key_type & k = key;\ std::pair ret =\ hint == const_iterator() ? this->m_icont.insert_unique_check\ ( k, data)\ : this->m_icont.insert_unique_check\ (hint.get(), k, data);\ if(ret.second){\ ret.first = this->m_icont.insert_unique_commit\ (*AllocHolder::create_node(try_emplace_t(), boost::forward(key) BOOST_MOVE_I##N BOOST_MOVE_FWD##N), data);\ }\ return std::pair(iterator(ret.first), ret.second);\ }\ // BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_TREE_EMPLACE_CODE) #undef BOOST_CONTAINER_TREE_EMPLACE_CODE #endif // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) template iterator insert_unique_convertible(const_iterator hint, BOOST_FWD_REF(MovableConvertible) v) { BOOST_ASSERT((priv_is_linked)(hint)); insert_commit_data data; std::pair ret = this->insert_unique_check(hint, key_of_value_type()(v), data); if(!ret.second) return ret.first; return this->insert_unique_commit(boost::forward(v), data); } BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert_unique, value_type, iterator, this->insert_unique_convertible, const_iterator, const_iterator) template void insert_unique(InputIterator first, InputIterator last) { for( ; first != last; ++first) this->insert_unique(*first); } iterator insert_equal(const value_type& v) { NodePtr tmp(AllocHolder::create_node(v)); scoped_node_destroy_deallocator destroy_deallocator(tmp, this->node_alloc()); //to-do: take advantage of hint: just check for equality and insert after if equal iterator ret(this->m_icont.insert_equal(*tmp)); // destroy_deallocator.release(); return ret; } //IOG temp BOOST_CONTAINER_FORCEINLINE iterator insert(const value_type& v) { if(BOOST_UNLIKELY(this->size() == this->bucket_count())) this->reserve(this->size() + 1u); return this->insert_unique(v).first; } template iterator insert_equal(BOOST_FWD_REF(MovableConvertible) v) { NodePtr tmp(AllocHolder::create_node(boost::forward(v))); scoped_node_destroy_deallocator destroy_deallocator(tmp, this->node_alloc()); iterator ret(this->m_icont.insert_equal(*tmp)); destroy_deallocator.release(); return ret; } template iterator insert_equal_convertible(const_iterator hint, BOOST_FWD_REF(MovableConvertible) v) { BOOST_ASSERT((priv_is_linked)(hint)); NodePtr tmp(AllocHolder::create_node(boost::forward(v))); scoped_node_destroy_deallocator destroy_deallocator(tmp, this->node_alloc()); //to-do: take advantage of hint: just check for equality and insert after if equal (void)hint; iterator ret(this->m_icont.insert_equal(*tmp)); destroy_deallocator.release(); return ret; } BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert_equal, value_type, iterator, this->insert_equal_convertible, const_iterator, const_iterator) template void insert_equal(InputIterator first, InputIterator last) { for( ; first != last; ++first) this->insert_equal(*first); } template std::pair insert_or_assign(const_iterator hint, BOOST_FWD_REF(KeyType) key, BOOST_FWD_REF(M) obj) { insert_commit_data data; const key_type & k = key; //Support emulated rvalue references std::pair ret = hint == const_iterator() ? this->m_icont.insert_unique_check\ (k, data) : this->m_icont.insert_unique_check\ (hint.get(), k, data); if(ret.second){ ret.first = this->priv_insert_or_assign_commit(boost::forward(key), boost::forward(obj), data); } else{ ret.first->get_data().second = boost::forward(obj); } return std::pair(iterator(ret.first), ret.second); } BOOST_CONTAINER_FORCEINLINE void erase(const_iterator position) { BOOST_ASSERT(position != this->cend() && (priv_is_linked)(position)); return this->m_icont.erase_and_dispose(position.get(), Destroyer(this->node_alloc())); } BOOST_CONTAINER_FORCEINLINE size_type erase(const key_type& k) { return AllocHolder::erase_key(k, alloc_version()); } iterator erase(const_iterator first, const_iterator last) { BOOST_ASSERT(first == last || (first != this->cend() && (priv_is_linked)(first))); BOOST_ASSERT(first == last || (priv_is_linked)(last)); return iterator(AllocHolder::erase_range(first.get(), last.get(), alloc_version())); } node_type extract(const key_type& k) { iterator const it = this->find(k); if(this->end() != it){ return this->extract(it); } return node_type(); } node_type extract(const_iterator position) { BOOST_ASSERT(position != this->cend() && (priv_is_linked)(position)); iiterator const iit(position.get()); this->m_icont.erase(iit); return node_type(iit.operator->(), this->node_alloc()); } insert_return_type insert_unique_node(BOOST_RV_REF_BEG_IF_CXX11 node_type BOOST_RV_REF_END_IF_CXX11 nh) { return this->insert_unique_node(this->end(), boost::move(nh)); } insert_return_type insert_unique_node(const_iterator hint, BOOST_RV_REF_BEG_IF_CXX11 node_type BOOST_RV_REF_END_IF_CXX11 nh) { insert_return_type irt; //inserted == false, node.empty() if(!nh.empty()){ insert_commit_data data; std::pair ret = this->insert_unique_check(hint, key_of_value_type()(nh.value()), data); if(ret.second){ irt.inserted = true; irt.position = iterator(this->m_icont.insert_unique_commit(*nh.get(), data)); nh.release(); } else{ irt.position = ret.first; irt.node = boost::move(nh); } } else{ irt.position = this->end(); } return BOOST_MOVE_RET(insert_return_type, irt); } iterator insert_equal_node(BOOST_RV_REF_BEG_IF_CXX11 node_type BOOST_RV_REF_END_IF_CXX11 nh) { if(nh.empty()){ return this->end(); } else{ NodePtr const p(nh.release()); return iterator(this->m_icont.insert_equal(*p)); } } iterator insert_equal_node(const_iterator hint, BOOST_RV_REF_BEG_IF_CXX11 node_type BOOST_RV_REF_END_IF_CXX11 nh) { if(nh.empty()){ return this->end(); } else{ NodePtr const p(nh.release()); //to-do: take advantage of hint: just check for equality and insert after if equal return iterator(this->m_icont.insert_equal(*p)); (void)hint; } } template BOOST_CONTAINER_FORCEINLINE void merge_unique(hash_table& ) { assert(0); } //TODO template BOOST_CONTAINER_FORCEINLINE void merge_equal(hash_table& ) { assert(0); } //TODO BOOST_CONTAINER_FORCEINLINE void clear() { this->AllocHolder::clear(alloc_version()); } // search operations. Const and non-const overloads even if no iterator is returned // so splay implementations can to their rebalancing when searching in non-const versions BOOST_CONTAINER_FORCEINLINE iterator find(const key_type& k) { return iterator(this->m_icont.find(k)); } BOOST_CONTAINER_FORCEINLINE const_iterator find(const key_type& k) const { return const_iterator(this->non_const_icont().find(k)); } BOOST_CONTAINER_FORCEINLINE size_type count(const key_type& k) const { return size_type(this->m_icont.count(k)); } BOOST_CONTAINER_FORCEINLINE bool contains(const key_type& x) const { return this->find(x) != this->cend(); } std::pair equal_range(const key_type& k) { std::pair ret = this->m_icont.equal_range(k); return std::pair(iterator(ret.first), iterator(ret.second)); } std::pair equal_range(const key_type& k) const { std::pair ret = this->non_const_icont().equal_range(k); return std::pair (const_iterator(ret.first), const_iterator(ret.second)); } BOOST_CONTAINER_FORCEINLINE std::pair equal_range_unique(const key_type& k) { return priv_equal_range_unique(*this, k); } BOOST_CONTAINER_FORCEINLINE std::pair equal_range_unique(const key_type& k) const { return priv_equal_range_unique(*this, k); } BOOST_CONTAINER_FORCEINLINE size_type bucket_count() const BOOST_NOEXCEPT { return this->m_icont.bucket_count(); } BOOST_CONTAINER_FORCEINLINE size_type max_bucket_count() const BOOST_NOEXCEPT { return this->max_size(); } BOOST_CONTAINER_FORCEINLINE size_type bucket_size(size_type n) const { return this->m_icont.bucket_size(n); } BOOST_CONTAINER_FORCEINLINE size_type bucket(const key_type& k) const { return this->m_icont.bucket(k, KeyNodeHash()); } /* BOOST_CONTAINER_FORCEINLINE local_iterator begin(size_type n) { return local_iterator(this->m_icont.begin(n)); } BOOST_CONTAINER_FORCEINLINE const_local_iterator begin(size_type n) const { return this->cbegin(n); } BOOST_CONTAINER_FORCEINLINE const_local_iterator cbegin(size_type n) const { return const_local_iterator(this->non_const_icont().begin(n)); } BOOST_CONTAINER_FORCEINLINE local_iterator end(size_type n) { return local_iterator(this->m_icont.end(n)); } BOOST_CONTAINER_FORCEINLINE const_local_iterator end(size_type n) const { return this->cend(n); } BOOST_CONTAINER_FORCEINLINE const_local_iterator cend(size_type n) const { return const_local_iterator(this->non_const_icont().end(n)); } */ float load_factor() const BOOST_NOEXCEPT { assert(0); return 0.0f; } float max_load_factor() const BOOST_NOEXCEPT { assert(0); return 0.0f; } void max_load_factor(float) { assert(0); } void rehash(size_type n) { (void)n; //! Effects: bucket_count() >= size() / max_load_factor() and bucket_count() >= n. assert(0); } void reserve(size_type n) { if (this->bucket_count() < n) { std::size_t sc = Icont::suggested_lower_bucket_count(n); bucket_holder_t& this_buckets = *this; bucket_holder_t new_buckets(sc + Icont::bucket_overhead, this_buckets.get_allocator()); this->m_icont.rehash(bucket_traits(new_buckets.data(), new_buckets.size())); this_buckets.swap(new_buckets); } } BOOST_CONTAINER_FORCEINLINE friend bool operator==(const hash_table& x, const hash_table& y) { return x.size() == y.size() && ::boost::container::algo_equal(x.begin(), x.end(), y.begin()); } BOOST_CONTAINER_FORCEINLINE friend bool operator!=(const hash_table& x, const hash_table& y) { return !(x == y); } BOOST_CONTAINER_FORCEINLINE friend void swap(hash_table& x, hash_table& y) BOOST_NOEXCEPT_IF( allocator_traits_type::is_always_equal::value && boost::container::dtl::is_nothrow_swappable::value && boost::container::dtl::is_nothrow_swappable::value ) { x.swap(y); } BOOST_CONTAINER_FORCEINLINE friend std::size_t hash_value(const hash_table& x) { return boost::hash_range(x.cbegin(), x.end()); } private: template BOOST_CONTAINER_FORCEINLINE static std::pair priv_equal_range_unique(C &c, const K& k) { I i = c.find(k); I j = i; if (i != c.end()) ++j; return std::pair(i, j); } }; } //namespace dtl { } //namespace container { template struct has_trivial_destructor_after_move; //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move < ::boost::container::dtl::hash_table > { typedef typename ::boost::container::allocator_traits::pointer pointer; static const bool value = ::boost::has_trivial_destructor_after_move::value && ::boost::has_trivial_destructor_after_move::value && ::boost::has_trivial_destructor_after_move::value && ::boost::has_trivial_destructor_after_move::value; }; } //namespace boost { #include #endif //BOOST_CONTAINER_HASH_TABLE_HPP