// SPDX-License-Identifier: Apache-2.0 // // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) // Copyright 2008-2016 National ICT Australia (NICTA) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ------------------------------------------------------------------------ //! \addtogroup op_var //! @{ //! Class for finding variance values of a matrix class op_var : public traits_op_xvec { public: template inline static void apply(Mat& out, const mtOp& in); // template inline static typename get_pod_type::result var_vec(const subview_col& X, const uword norm_type = 0); template inline static typename get_pod_type::result var_vec(const subview_row& X, const uword norm_type = 0); template inline static typename T1::pod_type var_vec(const Base& X, const uword norm_type = 0); // template inline static eT direct_var(const eT* const X, const uword N, const uword norm_type = 0); template inline static eT direct_var_robust(const eT* const X, const uword N, const uword norm_type = 0); // template inline static T direct_var(const std::complex* const X, const uword N, const uword norm_type = 0); template inline static T direct_var_robust(const std::complex* const X, const uword N, const uword norm_type = 0); }; //! @}