// Copyright 2014 Marco Guazzone (marco.guazzone@gmail.com) // // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // This module implements the Hyper-Exponential distribution. // // References: // - "Queueing Theory in Manufacturing Systems Analysis and Design" by H.T. Papadopolous, C. Heavey and J. Browne (Chapman & Hall/CRC, 1993) // - http://reference.wolfram.com/language/ref/HyperexponentialDistribution.html // - http://en.wikipedia.org/wiki/Hyperexponential_distribution // #ifndef BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP #define BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _MSC_VER # pragma warning (push) # pragma warning(disable:4127) // conditional expression is constant # pragma warning(disable:4389) // '==' : signed/unsigned mismatch in test_tools #endif // _MSC_VER namespace boost { namespace math { namespace detail { template typename Dist::value_type generic_quantile(const Dist& dist, const typename Dist::value_type& p, const typename Dist::value_type& guess, bool comp, const char* function); } // Namespace detail template class hyperexponential_distribution; namespace /**/ { namespace hyperexp_detail { template void normalize(std::vector& v) { if(!v.size()) return; // Our error handlers will get this later const T sum = std::accumulate(v.begin(), v.end(), static_cast(0)); T final_sum = 0; const typename std::vector::iterator end = --v.end(); for (typename std::vector::iterator it = v.begin(); it != end; ++it) { *it /= sum; final_sum += *it; } *end = 1 - final_sum; // avoids round off errors, ensures the probs really do sum to 1. } template bool check_probabilities(char const* function, std::vector const& probabilities, RealT* presult, PolicyT const& pol) { BOOST_MATH_STD_USING const std::size_t n = probabilities.size(); RealT sum = 0; for (std::size_t i = 0; i < n; ++i) { if (probabilities[i] < 0 || probabilities[i] > 1 || !(boost::math::isfinite)(probabilities[i])) { *presult = policies::raise_domain_error(function, "The elements of parameter \"probabilities\" must be >= 0 and <= 1, but at least one of them was: %1%.", probabilities[i], pol); return false; } sum += probabilities[i]; } // // We try to keep phase probabilities correctly normalized in the distribution constructors, // however in practice we have to allow for a very slight divergence from a sum of exactly 1: // if (fabs(sum - 1) > tools::epsilon() * 2) { *presult = policies::raise_domain_error(function, "The elements of parameter \"probabilities\" must sum to 1, but their sum is: %1%.", sum, pol); return false; } return true; } template bool check_rates(char const* function, std::vector const& rates, RealT* presult, PolicyT const& pol) { const std::size_t n = rates.size(); for (std::size_t i = 0; i < n; ++i) { if (rates[i] <= 0 || !(boost::math::isfinite)(rates[i])) { *presult = policies::raise_domain_error(function, "The elements of parameter \"rates\" must be > 0, but at least one of them is: %1%.", rates[i], pol); return false; } } return true; } template bool check_dist(char const* function, std::vector const& probabilities, std::vector const& rates, RealT* presult, PolicyT const& pol) { BOOST_MATH_STD_USING if (probabilities.size() != rates.size()) { *presult = policies::raise_domain_error(function, R"(The parameters "probabilities" and "rates" must have the same length, but their size differ by: %1%.)", fabs(static_cast(probabilities.size())-static_cast(rates.size())), pol); return false; } return check_probabilities(function, probabilities, presult, pol) && check_rates(function, rates, presult, pol); } template bool check_x(char const* function, RealT x, RealT* presult, PolicyT const& pol) { if (x < 0 || (boost::math::isnan)(x)) { *presult = policies::raise_domain_error(function, "The random variable must be >= 0, but is: %1%.", x, pol); return false; } return true; } template bool check_probability(char const* function, RealT p, RealT* presult, PolicyT const& pol) { if (p < 0 || p > 1 || (boost::math::isnan)(p)) { *presult = policies::raise_domain_error(function, "The probability be >= 0 and <= 1, but is: %1%.", p, pol); return false; } return true; } template RealT quantile_impl(hyperexponential_distribution const& dist, RealT const& p, bool comp) { // Don't have a closed form so try to numerically solve the inverse CDF... typedef typename policies::evaluation::type value_type; typedef typename policies::normalise, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; static const char* function = comp ? "boost::math::quantile(const boost::math::complemented2_type, %1%>&)" : "boost::math::quantile(const boost::math::hyperexponential_distribution<%1%>&, %1%)"; RealT result = 0; if (!check_probability(function, p, &result, PolicyT())) { return result; } const std::size_t n = dist.num_phases(); const std::vector probs = dist.probabilities(); const std::vector rates = dist.rates(); // A possible (but inaccurate) approximation is given below, where the // quantile is given by the weighted sum of exponential quantiles: RealT guess = 0; if (comp) { for (std::size_t i = 0; i < n; ++i) { const exponential_distribution exp(rates[i]); guess += probs[i]*quantile(complement(exp, p)); } } else { for (std::size_t i = 0; i < n; ++i) { const exponential_distribution exp(rates[i]); guess += probs[i]*quantile(exp, p); } } // Fast return in case the Hyper-Exponential is essentially an Exponential if (n == 1) { return guess; } value_type q; q = detail::generic_quantile(hyperexponential_distribution(probs, rates), p, guess, comp, function); result = policies::checked_narrowing_cast(q, function); return result; } }} // Namespace ::hyperexp_detail template > class hyperexponential_distribution { public: typedef RealT value_type; public: typedef PolicyT policy_type; public: hyperexponential_distribution() : probs_(1, 1), rates_(1, 1) { RealT err; hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution", probs_, rates_, &err, PolicyT()); } // Four arg constructor: no ambiguity here, the arguments must be two pairs of iterators: public: template hyperexponential_distribution(ProbIterT prob_first, ProbIterT prob_last, RateIterT rate_first, RateIterT rate_last) : probs_(prob_first, prob_last), rates_(rate_first, rate_last) { hyperexp_detail::normalize(probs_); RealT err; hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution", probs_, rates_, &err, PolicyT()); } private: template struct is_iterator { static constexpr bool value = false; }; template struct is_iterator::difference_type>> { // std::iterator_traits::difference_type returns void for invalid types static constexpr bool value = !std::is_same::difference_type, void>::value; }; // Two arg constructor from 2 ranges, we SFINAE this out of existence if // either argument type is incrementable as in that case the type is // probably an iterator: public: template ::value && !is_iterator::value, bool>::type = true> hyperexponential_distribution(ProbRangeT const& prob_range, RateRangeT const& rate_range) : probs_(std::begin(prob_range), std::end(prob_range)), rates_(std::begin(rate_range), std::end(rate_range)) { hyperexp_detail::normalize(probs_); RealT err; hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution", probs_, rates_, &err, PolicyT()); } // Two arg constructor for a pair of iterators: we SFINAE this out of // existence if neither argument types are incrementable. // Note that we allow different argument types here to allow for // construction from an array plus a pointer into that array. public: template ::value || is_iterator::value, bool>::type = true> hyperexponential_distribution(RateIterT const& rate_first, RateIterT2 const& rate_last) : probs_(std::distance(rate_first, rate_last), 1), // will be normalized below rates_(rate_first, rate_last) { hyperexp_detail::normalize(probs_); RealT err; hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution", probs_, rates_, &err, PolicyT()); } // Initializer list constructor: allows for construction from array literals: public: hyperexponential_distribution(std::initializer_list l1, std::initializer_list l2) : probs_(l1.begin(), l1.end()), rates_(l2.begin(), l2.end()) { hyperexp_detail::normalize(probs_); RealT err; hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution", probs_, rates_, &err, PolicyT()); } public: hyperexponential_distribution(std::initializer_list l1) : probs_(l1.size(), 1), rates_(l1.begin(), l1.end()) { hyperexp_detail::normalize(probs_); RealT err; hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution", probs_, rates_, &err, PolicyT()); } // Single argument constructor: argument must be a range. public: template hyperexponential_distribution(RateRangeT const& rate_range) : probs_(std::distance(std::begin(rate_range), std::end(rate_range)), 1), // will be normalized below rates_(std::begin(rate_range), std::end(rate_range)) { hyperexp_detail::normalize(probs_); RealT err; hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution", probs_, rates_, &err, PolicyT()); } public: std::vector probabilities() const { return probs_; } public: std::vector rates() const { return rates_; } public: std::size_t num_phases() const { return rates_.size(); } private: std::vector probs_; private: std::vector rates_; }; // class hyperexponential_distribution // Convenient type synonym for double. typedef hyperexponential_distribution hyperexponential; // Range of permissible values for random variable x template std::pair range(hyperexponential_distribution const&) { if (std::numeric_limits::has_infinity) { return std::make_pair(static_cast(0), std::numeric_limits::infinity()); // 0 to +inf. } return std::make_pair(static_cast(0), tools::max_value()); // 0 to + } // Range of supported values for random variable x. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. template std::pair support(hyperexponential_distribution const&) { return std::make_pair(tools::min_value(), tools::max_value()); // to +. } template RealT pdf(hyperexponential_distribution const& dist, RealT const& x) { BOOST_MATH_STD_USING RealT result = 0; if (!hyperexp_detail::check_x("boost::math::pdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT())) { return result; } const std::size_t n = dist.num_phases(); const std::vector probs = dist.probabilities(); const std::vector rates = dist.rates(); for (std::size_t i = 0; i < n; ++i) { const exponential_distribution exp(rates[i]); result += probs[i]*pdf(exp, x); //result += probs[i]*rates[i]*exp(-rates[i]*x); } return result; } template RealT cdf(hyperexponential_distribution const& dist, RealT const& x) { RealT result = 0; if (!hyperexp_detail::check_x("boost::math::cdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT())) { return result; } const std::size_t n = dist.num_phases(); const std::vector probs = dist.probabilities(); const std::vector rates = dist.rates(); for (std::size_t i = 0; i < n; ++i) { const exponential_distribution exp(rates[i]); result += probs[i]*cdf(exp, x); } return result; } template RealT quantile(hyperexponential_distribution const& dist, RealT const& p) { return hyperexp_detail::quantile_impl(dist, p , false); } template RealT cdf(complemented2_type, RealT> const& c) { RealT const& x = c.param; hyperexponential_distribution const& dist = c.dist; RealT result = 0; if (!hyperexp_detail::check_x("boost::math::cdf(boost::math::complemented2_type&, %1%>)", x, &result, PolicyT())) { return result; } const std::size_t n = dist.num_phases(); const std::vector probs = dist.probabilities(); const std::vector rates = dist.rates(); for (std::size_t i = 0; i < n; ++i) { const exponential_distribution exp(rates[i]); result += probs[i]*cdf(complement(exp, x)); } return result; } template RealT quantile(complemented2_type, RealT> const& c) { RealT const& p = c.param; hyperexponential_distribution const& dist = c.dist; return hyperexp_detail::quantile_impl(dist, p , true); } template RealT mean(hyperexponential_distribution const& dist) { RealT result = 0; const std::size_t n = dist.num_phases(); const std::vector probs = dist.probabilities(); const std::vector rates = dist.rates(); for (std::size_t i = 0; i < n; ++i) { const exponential_distribution exp(rates[i]); result += probs[i]*mean(exp); } return result; } template RealT variance(hyperexponential_distribution const& dist) { RealT result = 0; const std::size_t n = dist.num_phases(); const std::vector probs = dist.probabilities(); const std::vector rates = dist.rates(); for (std::size_t i = 0; i < n; ++i) { result += probs[i]/(rates[i]*rates[i]); } const RealT mean = boost::math::mean(dist); result = 2*result-mean*mean; return result; } template RealT skewness(hyperexponential_distribution const& dist) { BOOST_MATH_STD_USING const std::size_t n = dist.num_phases(); const std::vector probs = dist.probabilities(); const std::vector rates = dist.rates(); RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i} RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2} RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3} for (std::size_t i = 0; i < n; ++i) { const RealT p = probs[i]; const RealT r = rates[i]; const RealT r2 = r*r; const RealT r3 = r2*r; s1 += p/r; s2 += p/r2; s3 += p/r3; } const RealT s1s1 = s1*s1; const RealT num = (6*s3 - (3*(2*s2 - s1s1) + s1s1)*s1); const RealT den = (2*s2 - s1s1); return num / pow(den, static_cast(1.5)); } template RealT kurtosis(hyperexponential_distribution const& dist) { const std::size_t n = dist.num_phases(); const std::vector probs = dist.probabilities(); const std::vector rates = dist.rates(); RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i} RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2} RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3} RealT s4 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^4} for (std::size_t i = 0; i < n; ++i) { const RealT p = probs[i]; const RealT r = rates[i]; const RealT r2 = r*r; const RealT r3 = r2*r; const RealT r4 = r3*r; s1 += p/r; s2 += p/r2; s3 += p/r3; s4 += p/r4; } const RealT s1s1 = s1*s1; const RealT num = (24*s4 - 24*s3*s1 + 3*(2*(2*s2 - s1s1) + s1s1)*s1s1); const RealT den = (2*s2 - s1s1); return num/(den*den); } template RealT kurtosis_excess(hyperexponential_distribution const& dist) { return kurtosis(dist) - 3; } template RealT mode(hyperexponential_distribution const& /*dist*/) { return 0; } }} // namespace boost::math #ifdef _MSC_VER #pragma warning (pop) #endif // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include #include #endif // BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL