// boost\math\distributions\geometric.hpp // Copyright John Maddock 2010. // Copyright Paul A. Bristow 2010. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // geometric distribution is a discrete probability distribution. // It expresses the probability distribution of the number (k) of // events, occurrences, failures or arrivals before the first success. // supported on the set {0, 1, 2, 3...} // Note that the set includes zero (unlike some definitions that start at one). // The random variate k is the number of events, occurrences or arrivals. // k argument may be integral, signed, or unsigned, or floating point. // If necessary, it has already been promoted from an integral type. // Note that the geometric distribution // (like others including the binomial, geometric & Bernoulli) // is strictly defined as a discrete function: // only integral values of k are envisaged. // However because the method of calculation uses a continuous gamma function, // it is convenient to treat it as if a continuous function, // and permit non-integral values of k. // To enforce the strict mathematical model, users should use floor or ceil functions // on k outside this function to ensure that k is integral. // See http://en.wikipedia.org/wiki/geometric_distribution // http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html // http://mathworld.wolfram.com/GeometricDistribution.html #ifndef BOOST_MATH_SPECIAL_GEOMETRIC_HPP #define BOOST_MATH_SPECIAL_GEOMETRIC_HPP #include #include // for ibeta(a, b, x) == Ix(a, b). #include // complement. #include // error checks domain_error & logic_error. #include // isnan. #include // for root finding. #include #include // using std::numeric_limits; #include #if defined (BOOST_MSVC) # pragma warning(push) // This believed not now necessary, so commented out. //# pragma warning(disable: 4702) // unreachable code. // in domain_error_imp in error_handling. #endif namespace boost { namespace math { namespace geometric_detail { // Common error checking routines for geometric distribution function: template inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol) { if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) ) { *result = policies::raise_domain_error( function, "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol); return false; } return true; } template inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& pol) { return check_success_fraction(function, p, result, pol); } template inline bool check_dist_and_k(const char* function, const RealType& p, RealType k, RealType* result, const Policy& pol) { if(check_dist(function, p, result, pol) == false) { return false; } if( !(boost::math::isfinite)(k) || (k < 0) ) { // Check k failures. *result = policies::raise_domain_error( function, "Number of failures argument is %1%, but must be >= 0 !", k, pol); return false; } return true; } // Check_dist_and_k template inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& pol) { if((check_dist(function, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false) { return false; } return true; } // check_dist_and_prob } // namespace geometric_detail template > class geometric_distribution { public: typedef RealType value_type; typedef Policy policy_type; geometric_distribution(RealType p) : m_p(p) { // Constructor stores success_fraction p. RealType result; geometric_detail::check_dist( "geometric_distribution<%1%>::geometric_distribution", m_p, // Check success_fraction 0 <= p <= 1. &result, Policy()); } // geometric_distribution constructor. // Private data getter class member functions. RealType success_fraction() const { // Probability of success as fraction in range 0 to 1. return m_p; } RealType successes() const { // Total number of successes r = 1 (for compatibility with negative binomial?). return 1; } // Parameter estimation. // (These are copies of negative_binomial distribution with successes = 1). static RealType find_lower_bound_on_p( RealType trials, RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. { static const char* function = "boost::math::geometric<%1%>::find_lower_bound_on_p"; RealType result = 0; // of error checks. RealType successes = 1; RealType failures = trials - successes; if(false == detail::check_probability(function, alpha, &result, Policy()) && geometric_detail::check_dist_and_k( function, RealType(0), failures, &result, Policy())) { return result; } // Use complement ibeta_inv function for lower bound. // This is adapted from the corresponding binomial formula // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm // This is a Clopper-Pearson interval, and may be overly conservative, // see also "A Simple Improved Inferential Method for Some // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf // return ibeta_inv(successes, failures + 1, alpha, static_cast(nullptr), Policy()); } // find_lower_bound_on_p static RealType find_upper_bound_on_p( RealType trials, RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. { static const char* function = "boost::math::geometric<%1%>::find_upper_bound_on_p"; RealType result = 0; // of error checks. RealType successes = 1; RealType failures = trials - successes; if(false == geometric_detail::check_dist_and_k( function, RealType(0), failures, &result, Policy()) && detail::check_probability(function, alpha, &result, Policy())) { return result; } if(failures == 0) { return 1; }// Use complement ibetac_inv function for upper bound. // Note adjusted failures value: *not* failures+1 as usual. // This is adapted from the corresponding binomial formula // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm // This is a Clopper-Pearson interval, and may be overly conservative, // see also "A Simple Improved Inferential Method for Some // Discrete Distributions" Yong CAI and K. Krishnamoorthy // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf // return ibetac_inv(successes, failures, alpha, static_cast(nullptr), Policy()); } // find_upper_bound_on_p // Estimate number of trials : // "How many trials do I need to be P% sure of seeing k or fewer failures?" static RealType find_minimum_number_of_trials( RealType k, // number of failures (k >= 0). RealType p, // success fraction 0 <= p <= 1. RealType alpha) // risk level threshold 0 <= alpha <= 1. { static const char* function = "boost::math::geometric<%1%>::find_minimum_number_of_trials"; // Error checks: RealType result = 0; if(false == geometric_detail::check_dist_and_k( function, p, k, &result, Policy()) && detail::check_probability(function, alpha, &result, Policy())) { return result; } result = ibeta_inva(k + 1, p, alpha, Policy()); // returns n - k return result + k; } // RealType find_number_of_failures static RealType find_maximum_number_of_trials( RealType k, // number of failures (k >= 0). RealType p, // success fraction 0 <= p <= 1. RealType alpha) // risk level threshold 0 <= alpha <= 1. { static const char* function = "boost::math::geometric<%1%>::find_maximum_number_of_trials"; // Error checks: RealType result = 0; if(false == geometric_detail::check_dist_and_k( function, p, k, &result, Policy()) && detail::check_probability(function, alpha, &result, Policy())) { return result; } result = ibetac_inva(k + 1, p, alpha, Policy()); // returns n - k return result + k; } // RealType find_number_of_trials complemented private: //RealType m_r; // successes fixed at unity. RealType m_p; // success_fraction }; // template class geometric_distribution typedef geometric_distribution geometric; // Reserved name of type double. #ifdef __cpp_deduction_guides template geometric_distribution(RealType)->geometric_distribution::type>; #endif template inline const std::pair range(const geometric_distribution& /* dist */) { // Range of permissible values for random variable k. using boost::math::tools::max_value; return std::pair(static_cast(0), max_value()); // max_integer? } template inline const std::pair support(const geometric_distribution& /* dist */) { // Range of supported values for random variable k. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. using boost::math::tools::max_value; return std::pair(static_cast(0), max_value()); // max_integer? } template inline RealType mean(const geometric_distribution& dist) { // Mean of geometric distribution = (1-p)/p. return (1 - dist.success_fraction() ) / dist.success_fraction(); } // mean // median implemented via quantile(half) in derived accessors. template inline RealType mode(const geometric_distribution&) { // Mode of geometric distribution = zero. BOOST_MATH_STD_USING // ADL of std functions. return 0; } // mode template inline RealType variance(const geometric_distribution& dist) { // Variance of Binomial distribution = (1-p) / p^2. return (1 - dist.success_fraction()) / (dist.success_fraction() * dist.success_fraction()); } // variance template inline RealType skewness(const geometric_distribution& dist) { // skewness of geometric distribution = 2-p / (sqrt(r(1-p)) BOOST_MATH_STD_USING // ADL of std functions. RealType p = dist.success_fraction(); return (2 - p) / sqrt(1 - p); } // skewness template inline RealType kurtosis(const geometric_distribution& dist) { // kurtosis of geometric distribution // http://en.wikipedia.org/wiki/geometric is kurtosis_excess so add 3 RealType p = dist.success_fraction(); return 3 + (p*p - 6*p + 6) / (1 - p); } // kurtosis template inline RealType kurtosis_excess(const geometric_distribution& dist) { // kurtosis excess of geometric distribution // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess RealType p = dist.success_fraction(); return (p*p - 6*p + 6) / (1 - p); } // kurtosis_excess // RealType standard_deviation(const geometric_distribution& dist) // standard_deviation provided by derived accessors. // RealType hazard(const geometric_distribution& dist) // hazard of geometric distribution provided by derived accessors. // RealType chf(const geometric_distribution& dist) // chf of geometric distribution provided by derived accessors. template inline RealType pdf(const geometric_distribution& dist, const RealType& k) { // Probability Density/Mass Function. BOOST_FPU_EXCEPTION_GUARD BOOST_MATH_STD_USING // For ADL of math functions. static const char* function = "boost::math::pdf(const geometric_distribution<%1%>&, %1%)"; RealType p = dist.success_fraction(); RealType result = 0; if(false == geometric_detail::check_dist_and_k( function, p, k, &result, Policy())) { return result; } if (k == 0) { return p; // success_fraction } RealType q = 1 - p; // Inaccurate for small p? // So try to avoid inaccuracy for large or small p. // but has little effect > last significant bit. //cout << "p * pow(q, k) " << result << endl; // seems best whatever p //cout << "exp(p * k * log1p(-p)) " << p * exp(k * log1p(-p)) << endl; //if (p < 0.5) //{ // result = p * pow(q, k); //} //else //{ // result = p * exp(k * log1p(-p)); //} result = p * pow(q, k); return result; } // geometric_pdf template inline RealType cdf(const geometric_distribution& dist, const RealType& k) { // Cumulative Distribution Function of geometric. static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)"; // k argument may be integral, signed, or unsigned, or floating point. // If necessary, it has already been promoted from an integral type. RealType p = dist.success_fraction(); // Error check: RealType result = 0; if(false == geometric_detail::check_dist_and_k( function, p, k, &result, Policy())) { return result; } if(k == 0) { return p; // success_fraction } //RealType q = 1 - p; // Bad for small p //RealType probability = 1 - std::pow(q, k+1); RealType z = boost::math::log1p(-p, Policy()) * (k + 1); RealType probability = -boost::math::expm1(z, Policy()); return probability; } // cdf Cumulative Distribution Function geometric. template inline RealType cdf(const complemented2_type, RealType>& c) { // Complemented Cumulative Distribution Function geometric. BOOST_MATH_STD_USING static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)"; // k argument may be integral, signed, or unsigned, or floating point. // If necessary, it has already been promoted from an integral type. RealType const& k = c.param; geometric_distribution const& dist = c.dist; RealType p = dist.success_fraction(); // Error check: RealType result = 0; if(false == geometric_detail::check_dist_and_k( function, p, k, &result, Policy())) { return result; } RealType z = boost::math::log1p(-p, Policy()) * (k+1); RealType probability = exp(z); return probability; } // cdf Complemented Cumulative Distribution Function geometric. template inline RealType quantile(const geometric_distribution& dist, const RealType& x) { // Quantile, percentile/100 or Percent Point geometric function. // Return the number of expected failures k for a given probability p. // Inverse cumulative Distribution Function or Quantile (percentile / 100) of geometric Probability. // k argument may be integral, signed, or unsigned, or floating point. static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)"; BOOST_MATH_STD_USING // ADL of std functions. RealType success_fraction = dist.success_fraction(); // Check dist and x. RealType result = 0; if(false == geometric_detail::check_dist_and_prob (function, success_fraction, x, &result, Policy())) { return result; } // Special cases. if (x == 1) { // Would need +infinity failures for total confidence. result = policies::raise_overflow_error( function, "Probability argument is 1, which implies infinite failures !", Policy()); return result; // usually means return +std::numeric_limits::infinity(); // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR } if (x == 0) { // No failures are expected if P = 0. return 0; // Total trials will be just dist.successes. } // if (P <= pow(dist.success_fraction(), 1)) if (x <= success_fraction) { // p <= pdf(dist, 0) == cdf(dist, 0) return 0; } if (x == 1) { return 0; } // log(1-x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small result = boost::math::log1p(-x, Policy()) / boost::math::log1p(-success_fraction, Policy()) - 1; // Subtract a few epsilons here too? // to make sure it doesn't slip over, so ceil would be one too many. return result; } // RealType quantile(const geometric_distribution dist, p) template inline RealType quantile(const complemented2_type, RealType>& c) { // Quantile or Percent Point Binomial function. // Return the number of expected failures k for a given // complement of the probability Q = 1 - P. static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)"; BOOST_MATH_STD_USING // Error checks: RealType x = c.param; const geometric_distribution& dist = c.dist; RealType success_fraction = dist.success_fraction(); RealType result = 0; if(false == geometric_detail::check_dist_and_prob( function, success_fraction, x, &result, Policy())) { return result; } // Special cases: if(x == 1) { // There may actually be no answer to this question, // since the probability of zero failures may be non-zero, return 0; // but zero is the best we can do: } if (-x <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy())) { // q <= cdf(complement(dist, 0)) == pdf(dist, 0) return 0; // } if(x == 0) { // Probability 1 - Q == 1 so infinite failures to achieve certainty. // Would need +infinity failures for total confidence. result = policies::raise_overflow_error( function, "Probability argument complement is 0, which implies infinite failures !", Policy()); return result; // usually means return +std::numeric_limits::infinity(); // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR } // log(x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small result = log(x) / boost::math::log1p(-success_fraction, Policy()) - 1; return result; } // quantile complement } // namespace math } // namespace boost // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include #if defined (BOOST_MSVC) # pragma warning(pop) #endif #endif // BOOST_MATH_SPECIAL_GEOMETRIC_HPP