// Copyright John Maddock 2006, 2007. // Copyright Paul A. Bristow 2008, 2010. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_DISTRIBUTIONS_CHI_SQUARED_HPP #define BOOST_MATH_DISTRIBUTIONS_CHI_SQUARED_HPP #include #include // for incomplete beta. #include // complements #include // error checks #include #include namespace boost{ namespace math{ template > class chi_squared_distribution { public: using value_type = RealType; using policy_type = Policy; explicit chi_squared_distribution(RealType i) : m_df(i) { RealType result; detail::check_df( "boost::math::chi_squared_distribution<%1%>::chi_squared_distribution", m_df, &result, Policy()); } // chi_squared_distribution RealType degrees_of_freedom()const { return m_df; } // Parameter estimation: static RealType find_degrees_of_freedom( RealType difference_from_variance, RealType alpha, RealType beta, RealType variance, RealType hint = 100); private: // // Data member: // RealType m_df; // degrees of freedom is a positive real number. }; // class chi_squared_distribution using chi_squared = chi_squared_distribution; #ifdef __cpp_deduction_guides template chi_squared_distribution(RealType)->chi_squared_distribution::type>; #endif #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable:4127) #endif template inline std::pair range(const chi_squared_distribution& /*dist*/) { // Range of permissible values for random variable x. if (std::numeric_limits::has_infinity) { return std::pair(static_cast(0), std::numeric_limits::infinity()); // 0 to + infinity. } else { using boost::math::tools::max_value; return std::pair(static_cast(0), max_value()); // 0 to + max. } } #ifdef _MSC_VER #pragma warning(pop) #endif template inline std::pair support(const chi_squared_distribution& /*dist*/) { // Range of supported values for random variable x. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. return std::pair(static_cast(0), tools::max_value()); // 0 to + infinity. } template RealType pdf(const chi_squared_distribution& dist, const RealType& chi_square) { BOOST_MATH_STD_USING // for ADL of std functions RealType degrees_of_freedom = dist.degrees_of_freedom(); // Error check: RealType error_result; static const char* function = "boost::math::pdf(const chi_squared_distribution<%1%>&, %1%)"; if(false == detail::check_df( function, degrees_of_freedom, &error_result, Policy())) return error_result; if((chi_square < 0) || !(boost::math::isfinite)(chi_square)) { return policies::raise_domain_error( function, "Chi Square parameter was %1%, but must be > 0 !", chi_square, Policy()); } if(chi_square == 0) { // Handle special cases: if(degrees_of_freedom < 2) { return policies::raise_overflow_error( function, 0, Policy()); } else if(degrees_of_freedom == 2) { return 0.5f; } else { return 0; } } return gamma_p_derivative(degrees_of_freedom / 2, chi_square / 2, Policy()) / 2; } // pdf template inline RealType cdf(const chi_squared_distribution& dist, const RealType& chi_square) { RealType degrees_of_freedom = dist.degrees_of_freedom(); // Error check: RealType error_result; static const char* function = "boost::math::cdf(const chi_squared_distribution<%1%>&, %1%)"; if(false == detail::check_df( function, degrees_of_freedom, &error_result, Policy())) return error_result; if((chi_square < 0) || !(boost::math::isfinite)(chi_square)) { return policies::raise_domain_error( function, "Chi Square parameter was %1%, but must be > 0 !", chi_square, Policy()); } return boost::math::gamma_p(degrees_of_freedom / 2, chi_square / 2, Policy()); } // cdf template inline RealType quantile(const chi_squared_distribution& dist, const RealType& p) { RealType degrees_of_freedom = dist.degrees_of_freedom(); static const char* function = "boost::math::quantile(const chi_squared_distribution<%1%>&, %1%)"; // Error check: RealType error_result; if(false == ( detail::check_df(function, degrees_of_freedom, &error_result, Policy()) && detail::check_probability(function, p, &error_result, Policy())) ) return error_result; return 2 * boost::math::gamma_p_inv(degrees_of_freedom / 2, p, Policy()); } // quantile template inline RealType cdf(const complemented2_type, RealType>& c) { RealType const& degrees_of_freedom = c.dist.degrees_of_freedom(); RealType const& chi_square = c.param; static const char* function = "boost::math::cdf(const chi_squared_distribution<%1%>&, %1%)"; // Error check: RealType error_result; if(false == detail::check_df( function, degrees_of_freedom, &error_result, Policy())) return error_result; if((chi_square < 0) || !(boost::math::isfinite)(chi_square)) { return policies::raise_domain_error( function, "Chi Square parameter was %1%, but must be > 0 !", chi_square, Policy()); } return boost::math::gamma_q(degrees_of_freedom / 2, chi_square / 2, Policy()); } template inline RealType quantile(const complemented2_type, RealType>& c) { RealType const& degrees_of_freedom = c.dist.degrees_of_freedom(); RealType const& q = c.param; static const char* function = "boost::math::quantile(const chi_squared_distribution<%1%>&, %1%)"; // Error check: RealType error_result; if(false == ( detail::check_df(function, degrees_of_freedom, &error_result, Policy()) && detail::check_probability(function, q, &error_result, Policy())) ) return error_result; return 2 * boost::math::gamma_q_inv(degrees_of_freedom / 2, q, Policy()); } template inline RealType mean(const chi_squared_distribution& dist) { // Mean of Chi-Squared distribution = v. return dist.degrees_of_freedom(); } // mean template inline RealType variance(const chi_squared_distribution& dist) { // Variance of Chi-Squared distribution = 2v. return 2 * dist.degrees_of_freedom(); } // variance template inline RealType mode(const chi_squared_distribution& dist) { RealType df = dist.degrees_of_freedom(); static const char* function = "boost::math::mode(const chi_squared_distribution<%1%>&)"; if(df < 2) return policies::raise_domain_error( function, "Chi-Squared distribution only has a mode for degrees of freedom >= 2, but got degrees of freedom = %1%.", df, Policy()); return df - 2; } template inline RealType skewness(const chi_squared_distribution& dist) { BOOST_MATH_STD_USING // For ADL RealType df = dist.degrees_of_freedom(); return sqrt (8 / df); } template inline RealType kurtosis(const chi_squared_distribution& dist) { RealType df = dist.degrees_of_freedom(); return 3 + 12 / df; } template inline RealType kurtosis_excess(const chi_squared_distribution& dist) { RealType df = dist.degrees_of_freedom(); return 12 / df; } // // Parameter estimation comes last: // namespace detail { template struct df_estimator { df_estimator(RealType a, RealType b, RealType variance, RealType delta) : alpha(a), beta(b), ratio(delta/variance) { // Constructor } RealType operator()(const RealType& df) { if(df <= tools::min_value()) return 1; chi_squared_distribution cs(df); RealType result; if(ratio > 0) { RealType r = 1 + ratio; result = cdf(cs, quantile(complement(cs, alpha)) / r) - beta; } else { // ratio <= 0 RealType r = 1 + ratio; result = cdf(complement(cs, quantile(cs, alpha) / r)) - beta; } return result; } private: RealType alpha; RealType beta; RealType ratio; // Difference from variance / variance, so fractional. }; } // namespace detail template RealType chi_squared_distribution::find_degrees_of_freedom( RealType difference_from_variance, RealType alpha, RealType beta, RealType variance, RealType hint) { static const char* function = "boost::math::chi_squared_distribution<%1%>::find_degrees_of_freedom(%1%,%1%,%1%,%1%,%1%)"; // Check for domain errors: RealType error_result; if(false == detail::check_probability(function, alpha, &error_result, Policy()) && detail::check_probability(function, beta, &error_result, Policy())) { // Either probability is outside 0 to 1. return error_result; } if(hint <= 0) { // No hint given, so guess df = 1. hint = 1; } detail::df_estimator f(alpha, beta, variance, difference_from_variance); tools::eps_tolerance tol(policies::digits()); std::uintmax_t max_iter = policies::get_max_root_iterations(); std::pair r = tools::bracket_and_solve_root(f, hint, RealType(2), false, tol, max_iter, Policy()); RealType result = r.first + (r.second - r.first) / 2; if(max_iter >= policies::get_max_root_iterations()) { policies::raise_evaluation_error(function, "Unable to locate solution in a reasonable time:" " either there is no answer to how many degrees of freedom are required" " or the answer is infinite. Current best guess is %1%", result, Policy()); } return result; } } // namespace math } // namespace boost // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include #endif // BOOST_MATH_DISTRIBUTIONS_CHI_SQUARED_HPP