title: “3.0 Blasting!” author: Susan Garcia date: “2023-04-11” output: html_document: theme: cosmo highlight: tango toc: true toc_float: true number_sections: true code_folding: show code_download: true
Assignment to place our code into a more user friendly document.
#Downloading Software
##BLAST acquisition
Dowloaded unto my mac the x64-macosx version of BLAST.
#Downloading the code into my desired location. This may change for you.
cd /home/joyvan/applications
curl -O https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ncbi-blast-2.13.0+-x64-linux.tar.gz
#Unzipping file
tar -xf ncbi-blast-2.13.0+-x64-linux.tar.gz
#Looking at the location of BLAST and this looks at the help menu
~/applications/ncbi-blast-2.13.0+/bin/blastx -h
##Creating the DataBase
Downloads and unzips the latest uniprot database.
#Locating yourself to where you want to dowload, make sure you gitignore. File is large.
cd ~/github/susan-coursework/assignments/data
# Using curl, download the latest version of uniprot.
curl -O https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.fasta.gz
# Renaming the file to showcase the new version
mv uniprot_sprot.fasta.gz uniprot_sprot_r2023_01.fasta.gz
# Unzip the file
gunzip -k uniprot_sprot_r2023_01.fasta.gz
#Check the file is where you want it
ls ../data
#Create BLAST database using the uniprot fasta then place the output in a BLAST database folder
# Run makeblastdb
~/applications/ncbi-blast-2.13.0+/bin/makeblastdb \
-in ../data/uniprot_sprot_r2023_01.fasta \
-dbtype prot \
-out ../blastdb/uniprot_sprot_r2023_01
#Obtaining the Query Sequence
Download unknown fasta file.
# Use curl to download fasta file
curl https://eagle.fish.washington.edu/cnidarian/Ab_4denovo_CLC6_a.fa \
-k \
> ../data/Ab_4denovo_CLC6_a.fa
What is this fasta file?
head ../data/Ab_4denovo_CLC6_a.fa
#Find out how many sequences there are.
echo "How many sequences are there?"
grep -c ">" ../data/Ab_4denovo_CLC6_a.fa
Visualizing the Sequence Lengths of the sequences
# Read out FASTA file
f_file <- "../data/Ab_4denovo_CLC6_a.fa"
seq <- readDNAStringSet(fasta_file)
# Calculate the sequence lengths
seq_lengths <- width(sequences)
# Create a data frame
seq_lengths_df <- data.frame(Length = seq_lengths)
# Plot histogram using ggplot2
ggplot(seq_lengths_df, aes(x = Length)) +
geom_histogram(binwidth = 0.01, color = "purple", fill = "blue", alpha = 0.75) +
labs(title = "Histogram of Sequence Lengths",
x = "Sequence Length",
y = "Frequency") +
theme_minimal()
#Running BLAST Annotation of the unknown sequences of the BLAST.
~/applications/ncbi-blast-2.13.0+/bin/blastx \
-query ../data/Ab_4denovo_CLC6_a.fa \
-db ../blastdb/uniprot_sprot_r2023_01 \
-out ../output/Ab_4-uniprot_blastx.tab \
-evalue 1E-20 \
-num_threads 20 \
-max_target_seqs 1 \
-outfmt 6
Look at the first couple lines and number of line by checking the output file.
head -2 ../output/Ab_4-uniprot_blastx.tab
wc -l ../output/Ab_4-uniprot_blastx.tab
curl -O "Accept: text/plain; format=tsv" "https://rest.uniprot.org/uniprotkb/search?query=reviewed:true+AND+organism_id:9606"
curl -O -H "Accept: text/plain; format=tsv" "https://gannet.fish.washington.edu/seashell/snaps/uniprot_table_r2023_01.tab"
#Joining blast table with annotation table
Create the tables with all the uniprot data in R.
head -2 ../output/Ab_4-uniprot_blastx.tab
wc -l ../output/Ab_4-uniprot_blastx.tab
tr '|' '\t' < ../output/Ab_4-uniprot_blastx.tab | head -2
tr '|' '\t' < ../output/Ab_4-uniprot_blastx.tab \
> ../output/Ab_4-uniprot_blastx_sep.tab
head -2 ../data/uniprot_table_r2023_01.tab
wc -l ../data/uniprot_table_r2023_01.tab
curl -O -H "Accept: text/plain; format=tsv" "https://gannet.fish.washington.edu/seashell/snaps/uniprot_table_r2023_01.tab"
# Read in data
bltabl <- read.csv("../output/Ab_4-uniprot_blastx_sep.tab", sep = '\t', header = FALSE)
spgo <- read.csv("../data/uniprot_table_r2023_01.tab", sep = '\t', header = TRUE)
str(spgo)
Combine both blast and annotation tables using a left join and clean up the names.
kbl(
head(
left_join(bltabl, spgo, by = c("V3" = "Entry")) %>%
select(V1, V3, V13, Protein.names, Organism, Gene.Ontology..biological.process., Gene.Ontology.IDs) %>% mutate(V1 = str_replace_all(V1,
pattern = "solid0078_20110412_FRAG_BC_WHITE_WHITE_F3_QV_SE_trimmed", replacement = "Ab"))
)
) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
left_join(bltabl, spgo, by = c("V3" = "Entry")) %>%
select(V1, V3, V13, Protein.names, Organism, Gene.Ontology..biological.process., Gene.Ontology.IDs) %>% mutate(V1 = str_replace_all(V1,
pattern = "solid0078_20110412_FRAG_BC_WHITE_WHITE_F3_QV_SE_trimmed", replacement = "Ab")) %>%
write_delim("../output/blast_annot_go.tab", delim = '\t')
##Write the file into the repository.
annot_tab <- read.csv("../output/blast_annot_go.tab", sep = '\t', header = TRUE)
#Visualize data.
#Read Dataset
annot_tab <- read.csv("../output/blast_annot_go.tab", sep = '\t', header = TRUE)
# Count the occurrences of each protein
strg_counts <- table(annot_tab[["Gene.Ontology..biological.process."]])
# Make a data frame and select the top 10
strg_counts_df <- as.data.frame(strg_counts)
colnames(strg_counts_df) <- c("Process", "Count")
strg_counts_df <- strg_counts_df[order(strg_counts_df$Count, decreasing = TRUE), ]
strg_counts_df$Process <- as.character(strg_counts_df$Process)
top_10_strgs <- head(subset(strg_counts_df, nchar(strg_counts_df$Process) > 0), n = 10)
# Clean up string names
top_10_strgs$Process <- str_split_fixed(top_10_strgs$Process, "GO", 2)[,1]
top_10_strgs$Process <- str_sub(top_10_strgs$Process, 1, str_length(top_10_strgs$Process)-2)
# Plot the top 10 most common strings using ggplot
ggplot(top_10_strgs, aes(x = reorder(Process, -Count), y = Count, fill = Process)) +
geom_bar(stat = "identity", position = "dodge", color = "black") +
labs(title = "Top 10 Process Hits",
x = "Process",
y = "Count") +
theme_minimal() +
theme(legend.position = "none") +
scale_fill_brewer(palette="Set1") +
coord_flip()