from functools import reduce, partial import inspect import sys from operator import attrgetter, not_ from importlib import import_module from types import MethodType from .utils import no_default PYPY = hasattr(sys, 'pypy_version_info') and sys.version_info[0] > 2 __all__ = ('identity', 'apply', 'thread_first', 'thread_last', 'memoize', 'compose', 'compose_left', 'pipe', 'complement', 'juxt', 'do', 'curry', 'flip', 'excepts') PYPY = hasattr(sys, 'pypy_version_info') def identity(x): """ Identity function. Return x >>> identity(3) 3 """ return x def apply(*func_and_args, **kwargs): """ Applies a function and returns the results >>> def double(x): return 2*x >>> def inc(x): return x + 1 >>> apply(double, 5) 10 >>> tuple(map(apply, [double, inc, double], [10, 500, 8000])) (20, 501, 16000) """ if not func_and_args: raise TypeError('func argument is required') func, args = func_and_args[0], func_and_args[1:] return func(*args, **kwargs) def thread_first(val, *forms): """ Thread value through a sequence of functions/forms >>> def double(x): return 2*x >>> def inc(x): return x + 1 >>> thread_first(1, inc, double) 4 If the function expects more than one input you can specify those inputs in a tuple. The value is used as the first input. >>> def add(x, y): return x + y >>> def pow(x, y): return x**y >>> thread_first(1, (add, 4), (pow, 2)) # pow(add(1, 4), 2) 25 So in general thread_first(x, f, (g, y, z)) expands to g(f(x), y, z) See Also: thread_last """ def evalform_front(val, form): if callable(form): return form(val) if isinstance(form, tuple): func, args = form[0], form[1:] args = (val,) + args return func(*args) return reduce(evalform_front, forms, val) def thread_last(val, *forms): """ Thread value through a sequence of functions/forms >>> def double(x): return 2*x >>> def inc(x): return x + 1 >>> thread_last(1, inc, double) 4 If the function expects more than one input you can specify those inputs in a tuple. The value is used as the last input. >>> def add(x, y): return x + y >>> def pow(x, y): return x**y >>> thread_last(1, (add, 4), (pow, 2)) # pow(2, add(4, 1)) 32 So in general thread_last(x, f, (g, y, z)) expands to g(y, z, f(x)) >>> def iseven(x): ... return x % 2 == 0 >>> list(thread_last([1, 2, 3], (map, inc), (filter, iseven))) [2, 4] See Also: thread_first """ def evalform_back(val, form): if callable(form): return form(val) if isinstance(form, tuple): func, args = form[0], form[1:] args = args + (val,) return func(*args) return reduce(evalform_back, forms, val) def instanceproperty(fget=None, fset=None, fdel=None, doc=None, classval=None): """ Like @property, but returns ``classval`` when used as a class attribute >>> class MyClass(object): ... '''The class docstring''' ... @instanceproperty(classval=__doc__) ... def __doc__(self): ... return 'An object docstring' ... @instanceproperty ... def val(self): ... return 42 ... >>> MyClass.__doc__ 'The class docstring' >>> MyClass.val is None True >>> obj = MyClass() >>> obj.__doc__ 'An object docstring' >>> obj.val 42 """ if fget is None: return partial(instanceproperty, fset=fset, fdel=fdel, doc=doc, classval=classval) return InstanceProperty(fget=fget, fset=fset, fdel=fdel, doc=doc, classval=classval) class InstanceProperty(property): """ Like @property, but returns ``classval`` when used as a class attribute Should not be used directly. Use ``instanceproperty`` instead. """ def __init__(self, fget=None, fset=None, fdel=None, doc=None, classval=None): self.classval = classval property.__init__(self, fget=fget, fset=fset, fdel=fdel, doc=doc) def __get__(self, obj, type=None): if obj is None: return self.classval return property.__get__(self, obj, type) def __reduce__(self): state = (self.fget, self.fset, self.fdel, self.__doc__, self.classval) return InstanceProperty, state class curry(object): """ Curry a callable function Enables partial application of arguments through calling a function with an incomplete set of arguments. >>> def mul(x, y): ... return x * y >>> mul = curry(mul) >>> double = mul(2) >>> double(10) 20 Also supports keyword arguments >>> @curry # Can use curry as a decorator ... def f(x, y, a=10): ... return a * (x + y) >>> add = f(a=1) >>> add(2, 3) 5 See Also: toolz.curried - namespace of curried functions https://toolz.readthedocs.io/en/latest/curry.html """ def __init__(self, *args, **kwargs): if not args: raise TypeError('__init__() takes at least 2 arguments (1 given)') func, args = args[0], args[1:] if not callable(func): raise TypeError("Input must be callable") # curry- or functools.partial-like object? Unpack and merge arguments if ( hasattr(func, 'func') and hasattr(func, 'args') and hasattr(func, 'keywords') and isinstance(func.args, tuple) ): _kwargs = {} if func.keywords: _kwargs.update(func.keywords) _kwargs.update(kwargs) kwargs = _kwargs args = func.args + args func = func.func if kwargs: self._partial = partial(func, *args, **kwargs) else: self._partial = partial(func, *args) self.__doc__ = getattr(func, '__doc__', None) self.__name__ = getattr(func, '__name__', '') self.__module__ = getattr(func, '__module__', None) self.__qualname__ = getattr(func, '__qualname__', None) self._sigspec = None self._has_unknown_args = None @instanceproperty def func(self): return self._partial.func @instanceproperty def __signature__(self): sig = inspect.signature(self.func) args = self.args or () keywords = self.keywords or {} if is_partial_args(self.func, args, keywords, sig) is False: raise TypeError('curry object has incorrect arguments') params = list(sig.parameters.values()) skip = 0 for param in params[:len(args)]: if param.kind == param.VAR_POSITIONAL: break skip += 1 kwonly = False newparams = [] for param in params[skip:]: kind = param.kind default = param.default if kind == param.VAR_KEYWORD: pass elif kind == param.VAR_POSITIONAL: if kwonly: continue elif param.name in keywords: default = keywords[param.name] kind = param.KEYWORD_ONLY kwonly = True else: if kwonly: kind = param.KEYWORD_ONLY if default is param.empty: default = no_default newparams.append(param.replace(default=default, kind=kind)) return sig.replace(parameters=newparams) @instanceproperty def args(self): return self._partial.args @instanceproperty def keywords(self): return self._partial.keywords @instanceproperty def func_name(self): return self.__name__ def __str__(self): return str(self.func) def __repr__(self): return repr(self.func) def __hash__(self): return hash((self.func, self.args, frozenset(self.keywords.items()) if self.keywords else None)) def __eq__(self, other): return (isinstance(other, curry) and self.func == other.func and self.args == other.args and self.keywords == other.keywords) def __ne__(self, other): return not self.__eq__(other) def __call__(self, *args, **kwargs): try: return self._partial(*args, **kwargs) except TypeError as exc: if self._should_curry(args, kwargs, exc): return self.bind(*args, **kwargs) raise def _should_curry(self, args, kwargs, exc=None): func = self.func args = self.args + args if self.keywords: kwargs = dict(self.keywords, **kwargs) if self._sigspec is None: sigspec = self._sigspec = _sigs.signature_or_spec(func) self._has_unknown_args = has_varargs(func, sigspec) is not False else: sigspec = self._sigspec if is_partial_args(func, args, kwargs, sigspec) is False: # Nothing can make the call valid return False elif self._has_unknown_args: # The call may be valid and raised a TypeError, but we curry # anyway because the function may have `*args`. This is useful # for decorators with signature `func(*args, **kwargs)`. return True elif not is_valid_args(func, args, kwargs, sigspec): # Adding more arguments may make the call valid return True else: # There was a genuine TypeError return False def bind(self, *args, **kwargs): return type(self)(self, *args, **kwargs) def call(self, *args, **kwargs): return self._partial(*args, **kwargs) def __get__(self, instance, owner): if instance is None: return self return curry(self, instance) def __reduce__(self): func = self.func modname = getattr(func, '__module__', None) qualname = getattr(func, '__qualname__', None) if qualname is None: # pragma: no cover qualname = getattr(func, '__name__', None) is_decorated = None if modname and qualname: attrs = [] obj = import_module(modname) for attr in qualname.split('.'): if isinstance(obj, curry): attrs.append('func') obj = obj.func obj = getattr(obj, attr, None) if obj is None: break attrs.append(attr) if isinstance(obj, curry) and obj.func is func: is_decorated = obj is self qualname = '.'.join(attrs) func = '%s:%s' % (modname, qualname) # functools.partial objects can't be pickled userdict = tuple((k, v) for k, v in self.__dict__.items() if k not in ('_partial', '_sigspec')) state = (type(self), func, self.args, self.keywords, userdict, is_decorated) return _restore_curry, state def _restore_curry(cls, func, args, kwargs, userdict, is_decorated): if isinstance(func, str): modname, qualname = func.rsplit(':', 1) obj = import_module(modname) for attr in qualname.split('.'): obj = getattr(obj, attr) if is_decorated: return obj func = obj.func obj = cls(func, *args, **(kwargs or {})) obj.__dict__.update(userdict) return obj @curry def memoize(func, cache=None, key=None): """ Cache a function's result for speedy future evaluation Considerations: Trades memory for speed. Only use on pure functions. >>> def add(x, y): return x + y >>> add = memoize(add) Or use as a decorator >>> @memoize ... def add(x, y): ... return x + y Use the ``cache`` keyword to provide a dict-like object as an initial cache >>> @memoize(cache={(1, 2): 3}) ... def add(x, y): ... return x + y Note that the above works as a decorator because ``memoize`` is curried. It is also possible to provide a ``key(args, kwargs)`` function that calculates keys used for the cache, which receives an ``args`` tuple and ``kwargs`` dict as input, and must return a hashable value. However, the default key function should be sufficient most of the time. >>> # Use key function that ignores extraneous keyword arguments >>> @memoize(key=lambda args, kwargs: args) ... def add(x, y, verbose=False): ... if verbose: ... print('Calculating %s + %s' % (x, y)) ... return x + y """ if cache is None: cache = {} try: may_have_kwargs = has_keywords(func) is not False # Is unary function (single arg, no variadic argument or keywords)? is_unary = is_arity(1, func) except TypeError: # pragma: no cover may_have_kwargs = True is_unary = False if key is None: if is_unary: def key(args, kwargs): return args[0] elif may_have_kwargs: def key(args, kwargs): return ( args or None, frozenset(kwargs.items()) if kwargs else None, ) else: def key(args, kwargs): return args def memof(*args, **kwargs): k = key(args, kwargs) try: return cache[k] except TypeError: raise TypeError("Arguments to memoized function must be hashable") except KeyError: cache[k] = result = func(*args, **kwargs) return result try: memof.__name__ = func.__name__ except AttributeError: pass memof.__doc__ = func.__doc__ memof.__wrapped__ = func return memof class Compose(object): """ A composition of functions See Also: compose """ __slots__ = 'first', 'funcs' def __init__(self, funcs): funcs = tuple(reversed(funcs)) self.first = funcs[0] self.funcs = funcs[1:] def __call__(self, *args, **kwargs): ret = self.first(*args, **kwargs) for f in self.funcs: ret = f(ret) return ret def __getstate__(self): return self.first, self.funcs def __setstate__(self, state): self.first, self.funcs = state @instanceproperty(classval=__doc__) def __doc__(self): def composed_doc(*fs): """Generate a docstring for the composition of fs. """ if not fs: # Argument name for the docstring. return '*args, **kwargs' return '{f}({g})'.format(f=fs[0].__name__, g=composed_doc(*fs[1:])) try: return ( 'lambda *args, **kwargs: ' + composed_doc(*reversed((self.first,) + self.funcs)) ) except AttributeError: # One of our callables does not have a `__name__`, whatever. return 'A composition of functions' @property def __name__(self): try: return '_of_'.join( (f.__name__ for f in reversed((self.first,) + self.funcs)) ) except AttributeError: return type(self).__name__ def __repr__(self): return '{.__class__.__name__}{!r}'.format( self, tuple(reversed((self.first, ) + self.funcs))) def __eq__(self, other): if isinstance(other, Compose): return other.first == self.first and other.funcs == self.funcs return NotImplemented def __ne__(self, other): equality = self.__eq__(other) return NotImplemented if equality is NotImplemented else not equality def __hash__(self): return hash(self.first) ^ hash(self.funcs) # Mimic the descriptor behavior of python functions. # i.e. let Compose be called as a method when bound to a class. # adapted from # docs.python.org/3/howto/descriptor.html#functions-and-methods def __get__(self, obj, objtype=None): return self if obj is None else MethodType(self, obj) # introspection with Signature is only possible from py3.3+ @instanceproperty def __signature__(self): base = inspect.signature(self.first) last = inspect.signature(self.funcs[-1]) return base.replace(return_annotation=last.return_annotation) __wrapped__ = instanceproperty(attrgetter('first')) def compose(*funcs): """ Compose functions to operate in series. Returns a function that applies other functions in sequence. Functions are applied from right to left so that ``compose(f, g, h)(x, y)`` is the same as ``f(g(h(x, y)))``. If no arguments are provided, the identity function (f(x) = x) is returned. >>> inc = lambda i: i + 1 >>> compose(str, inc)(3) '4' See Also: compose_left pipe """ if not funcs: return identity if len(funcs) == 1: return funcs[0] else: return Compose(funcs) def compose_left(*funcs): """ Compose functions to operate in series. Returns a function that applies other functions in sequence. Functions are applied from left to right so that ``compose_left(f, g, h)(x, y)`` is the same as ``h(g(f(x, y)))``. If no arguments are provided, the identity function (f(x) = x) is returned. >>> inc = lambda i: i + 1 >>> compose_left(inc, str)(3) '4' See Also: compose pipe """ return compose(*reversed(funcs)) def pipe(data, *funcs): """ Pipe a value through a sequence of functions I.e. ``pipe(data, f, g, h)`` is equivalent to ``h(g(f(data)))`` We think of the value as progressing through a pipe of several transformations, much like pipes in UNIX ``$ cat data | f | g | h`` >>> double = lambda i: 2 * i >>> pipe(3, double, str) '6' See Also: compose compose_left thread_first thread_last """ for func in funcs: data = func(data) return data def complement(func): """ Convert a predicate function to its logical complement. In other words, return a function that, for inputs that normally yield True, yields False, and vice-versa. >>> def iseven(n): return n % 2 == 0 >>> isodd = complement(iseven) >>> iseven(2) True >>> isodd(2) False """ return compose(not_, func) class juxt(object): """ Creates a function that calls several functions with the same arguments Takes several functions and returns a function that applies its arguments to each of those functions then returns a tuple of the results. Name comes from juxtaposition: the fact of two things being seen or placed close together with contrasting effect. >>> inc = lambda x: x + 1 >>> double = lambda x: x * 2 >>> juxt(inc, double)(10) (11, 20) >>> juxt([inc, double])(10) (11, 20) """ __slots__ = ['funcs'] def __init__(self, *funcs): if len(funcs) == 1 and not callable(funcs[0]): funcs = funcs[0] self.funcs = tuple(funcs) def __call__(self, *args, **kwargs): return tuple(func(*args, **kwargs) for func in self.funcs) def __getstate__(self): return self.funcs def __setstate__(self, state): self.funcs = state def do(func, x): """ Runs ``func`` on ``x``, returns ``x`` Because the results of ``func`` are not returned, only the side effects of ``func`` are relevant. Logging functions can be made by composing ``do`` with a storage function like ``list.append`` or ``file.write`` >>> from toolz import compose >>> from toolz.curried import do >>> log = [] >>> inc = lambda x: x + 1 >>> inc = compose(inc, do(log.append)) >>> inc(1) 2 >>> inc(11) 12 >>> log [1, 11] """ func(x) return x @curry def flip(func, a, b): """ Call the function call with the arguments flipped This function is curried. >>> def div(a, b): ... return a // b ... >>> flip(div, 2, 6) 3 >>> div_by_two = flip(div, 2) >>> div_by_two(4) 2 This is particularly useful for built in functions and functions defined in C extensions that accept positional only arguments. For example: isinstance, issubclass. >>> data = [1, 'a', 'b', 2, 1.5, object(), 3] >>> only_ints = list(filter(flip(isinstance, int), data)) >>> only_ints [1, 2, 3] """ return func(b, a) def return_none(exc): """ Returns None. """ return None class excepts(object): """A wrapper around a function to catch exceptions and dispatch to a handler. This is like a functional try/except block, in the same way that ifexprs are functional if/else blocks. Examples -------- >>> excepting = excepts( ... ValueError, ... lambda a: [1, 2].index(a), ... lambda _: -1, ... ) >>> excepting(1) 0 >>> excepting(3) -1 Multiple exceptions and default except clause. >>> excepting = excepts((IndexError, KeyError), lambda a: a[0]) >>> excepting([]) >>> excepting([1]) 1 >>> excepting({}) >>> excepting({0: 1}) 1 """ def __init__(self, exc, func, handler=return_none): self.exc = exc self.func = func self.handler = handler def __call__(self, *args, **kwargs): try: return self.func(*args, **kwargs) except self.exc as e: return self.handler(e) @instanceproperty(classval=__doc__) def __doc__(self): from textwrap import dedent exc = self.exc try: if isinstance(exc, tuple): exc_name = '(%s)' % ', '.join( map(attrgetter('__name__'), exc), ) else: exc_name = exc.__name__ return dedent( """\ A wrapper around {inst.func.__name__!r} that will except: {exc} and handle any exceptions with {inst.handler.__name__!r}. Docs for {inst.func.__name__!r}: {inst.func.__doc__} Docs for {inst.handler.__name__!r}: {inst.handler.__doc__} """ ).format( inst=self, exc=exc_name, ) except AttributeError: return type(self).__doc__ @property def __name__(self): exc = self.exc try: if isinstance(exc, tuple): exc_name = '_or_'.join(map(attrgetter('__name__'), exc)) else: exc_name = exc.__name__ return '%s_excepting_%s' % (self.func.__name__, exc_name) except AttributeError: return 'excepting' def _check_sigspec(sigspec, func, builtin_func, *builtin_args): if sigspec is None: try: sigspec = inspect.signature(func) except (ValueError, TypeError) as e: sigspec = e if isinstance(sigspec, ValueError): return None, builtin_func(*builtin_args) elif not isinstance(sigspec, inspect.Signature): if ( func in _sigs.signatures and (( hasattr(func, '__signature__') and hasattr(func.__signature__, '__get__') )) ): val = builtin_func(*builtin_args) return None, val return None, False return sigspec, None if PYPY: # pragma: no cover _check_sigspec_orig = _check_sigspec def _check_sigspec(sigspec, func, builtin_func, *builtin_args): # PyPy may lie, so use our registry for builtins instead if func in _sigs.signatures: val = builtin_func(*builtin_args) return None, val return _check_sigspec_orig(sigspec, func, builtin_func, *builtin_args) _check_sigspec.__doc__ = """ \ Private function to aid in introspection compatibly across Python versions. If a callable doesn't have a signature (Python 3) or an argspec (Python 2), the signature registry in toolz._signatures is used. """ def num_required_args(func, sigspec=None): sigspec, rv = _check_sigspec(sigspec, func, _sigs._num_required_args, func) if sigspec is None: return rv return sum(1 for p in sigspec.parameters.values() if p.default is p.empty and p.kind in (p.POSITIONAL_OR_KEYWORD, p.POSITIONAL_ONLY)) def has_varargs(func, sigspec=None): sigspec, rv = _check_sigspec(sigspec, func, _sigs._has_varargs, func) if sigspec is None: return rv return any(p.kind == p.VAR_POSITIONAL for p in sigspec.parameters.values()) def has_keywords(func, sigspec=None): sigspec, rv = _check_sigspec(sigspec, func, _sigs._has_keywords, func) if sigspec is None: return rv return any(p.default is not p.empty or p.kind in (p.KEYWORD_ONLY, p.VAR_KEYWORD) for p in sigspec.parameters.values()) def is_valid_args(func, args, kwargs, sigspec=None): sigspec, rv = _check_sigspec(sigspec, func, _sigs._is_valid_args, func, args, kwargs) if sigspec is None: return rv try: sigspec.bind(*args, **kwargs) except TypeError: return False return True def is_partial_args(func, args, kwargs, sigspec=None): sigspec, rv = _check_sigspec(sigspec, func, _sigs._is_partial_args, func, args, kwargs) if sigspec is None: return rv try: sigspec.bind_partial(*args, **kwargs) except TypeError: return False return True def is_arity(n, func, sigspec=None): """ Does a function have only n positional arguments? This function relies on introspection and does not call the function. Returns None if validity can't be determined. >>> def f(x): ... return x >>> is_arity(1, f) True >>> def g(x, y=1): ... return x + y >>> is_arity(1, g) False """ sigspec, rv = _check_sigspec(sigspec, func, _sigs._is_arity, n, func) if sigspec is None: return rv num = num_required_args(func, sigspec) if num is not None: num = num == n if not num: return False varargs = has_varargs(func, sigspec) if varargs: return False keywords = has_keywords(func, sigspec) if keywords: return False if num is None or varargs is None or keywords is None: # pragma: no cover return None return True num_required_args.__doc__ = """ \ Number of required positional arguments This function relies on introspection and does not call the function. Returns None if validity can't be determined. >>> def f(x, y, z=3): ... return x + y + z >>> num_required_args(f) 2 >>> def g(*args, **kwargs): ... pass >>> num_required_args(g) 0 """ has_varargs.__doc__ = """ \ Does a function have variadic positional arguments? This function relies on introspection and does not call the function. Returns None if validity can't be determined. >>> def f(*args): ... return args >>> has_varargs(f) True >>> def g(**kwargs): ... return kwargs >>> has_varargs(g) False """ has_keywords.__doc__ = """ \ Does a function have keyword arguments? This function relies on introspection and does not call the function. Returns None if validity can't be determined. >>> def f(x, y=0): ... return x + y >>> has_keywords(f) True """ is_valid_args.__doc__ = """ \ Is ``func(*args, **kwargs)`` a valid function call? This function relies on introspection and does not call the function. Returns None if validity can't be determined. >>> def add(x, y): ... return x + y >>> is_valid_args(add, (1,), {}) False >>> is_valid_args(add, (1, 2), {}) True >>> is_valid_args(map, (), {}) False **Implementation notes** Python 2 relies on ``inspect.getargspec``, which only works for user-defined functions. Python 3 uses ``inspect.signature``, which works for many more types of callables. Many builtins in the standard library are also supported. """ is_partial_args.__doc__ = """ \ Can partial(func, *args, **kwargs)(*args2, **kwargs2) be a valid call? Returns True *only* if the call is valid or if it is possible for the call to become valid by adding more positional or keyword arguments. This function relies on introspection and does not call the function. Returns None if validity can't be determined. >>> def add(x, y): ... return x + y >>> is_partial_args(add, (1,), {}) True >>> is_partial_args(add, (1, 2), {}) True >>> is_partial_args(add, (1, 2, 3), {}) False >>> is_partial_args(map, (), {}) True **Implementation notes** Python 2 relies on ``inspect.getargspec``, which only works for user-defined functions. Python 3 uses ``inspect.signature``, which works for many more types of callables. Many builtins in the standard library are also supported. """ from . import _signatures as _sigs