/////////////////////////////////////////////////////////////// // Copyright 2012-21 John Maddock. // Copyright 2021 Iskandarov Lev. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt #ifndef BOOST_MP_INTEGER_HPP #define BOOST_MP_INTEGER_HPP #include #include #include #include #include namespace boost { namespace multiprecision { template inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value && boost::multiprecision::detail::is_integral::value, Integer&>::type multiply(Integer& result, const I2& a, const I2& b) { return result = static_cast(a) * static_cast(b); } template inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value && boost::multiprecision::detail::is_integral::value, Integer&>::type add(Integer& result, const I2& a, const I2& b) { return result = static_cast(a) + static_cast(b); } template inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value && boost::multiprecision::detail::is_integral::value, Integer&>::type subtract(Integer& result, const I2& a, const I2& b) { return result = static_cast(a) - static_cast(b); } template inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value>::type divide_qr(const Integer& x, const Integer& y, Integer& q, Integer& r) { q = x / y; r = x % y; } template inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value && boost::multiprecision::detail::is_integral::value, I2>::type integer_modulus(const I1& x, I2 val) { return static_cast(x % val); } namespace detail { // // Figure out the kind of integer that has twice as many bits as some builtin // integer type I. Use a native type if we can (including types which may not // be recognised by boost::int_t because they're larger than long long), // otherwise synthesize a cpp_int to do the job. // template struct double_integer { static constexpr const unsigned int_t_digits = 2 * sizeof(I) <= sizeof(long long) ? std::numeric_limits::digits * 2 : 1; using type = typename std::conditional< 2 * sizeof(I) <= sizeof(long long), typename std::conditional< boost::multiprecision::detail::is_signed::value && boost::multiprecision::detail::is_integral::value, typename boost::multiprecision::detail::int_t::least, typename boost::multiprecision::detail::uint_t::least>::type, typename std::conditional< 2 * sizeof(I) <= sizeof(double_limb_type), typename std::conditional< boost::multiprecision::detail::is_signed::value && boost::multiprecision::detail::is_integral::value, signed_double_limb_type, double_limb_type>::type, number::value ? signed_magnitude : unsigned_magnitude), unchecked, void> > >::type>::type; }; } // namespace detail template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value && boost::multiprecision::detail::is_unsigned::value && boost::multiprecision::detail::is_integral::value, I1>::type powm(const I1& a, I2 b, I3 c) { using double_type = typename detail::double_integer::type; I1 x(1), y(a); double_type result(0); while (b > 0) { if (b & 1) { multiply(result, x, y); x = integer_modulus(result, c); } multiply(result, y, y); y = integer_modulus(result, c); b >>= 1; } return x % c; } template inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value && boost::multiprecision::detail::is_signed::value && boost::multiprecision::detail::is_integral::value && boost::multiprecision::detail::is_integral::value, I1>::type powm(const I1& a, I2 b, I3 c) { if (b < 0) { BOOST_MP_THROW_EXCEPTION(std::runtime_error("powm requires a positive exponent.")); } return powm(a, static_cast::type>(b), c); } template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value, std::size_t>::type lsb(const Integer& val) { if (val <= 0) { if (val == 0) { BOOST_MP_THROW_EXCEPTION(std::domain_error("No bits were set in the operand.")); } else { BOOST_MP_THROW_EXCEPTION(std::domain_error("Testing individual bits in negative values is not supported - results are undefined.")); } } return detail::find_lsb(val); } template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value, std::size_t>::type msb(Integer val) { if (val <= 0) { if (val == 0) { BOOST_MP_THROW_EXCEPTION(std::domain_error("No bits were set in the operand.")); } else { BOOST_MP_THROW_EXCEPTION(std::domain_error("Testing individual bits in negative values is not supported - results are undefined.")); } } return detail::find_msb(val); } template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value, bool>::type bit_test(const Integer& val, std::size_t index) { Integer mask = 1; if (index >= sizeof(Integer) * CHAR_BIT) return 0; if (index) mask <<= index; return val & mask ? true : false; } template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value, Integer&>::type bit_set(Integer& val, std::size_t index) { Integer mask = 1; if (index >= sizeof(Integer) * CHAR_BIT) return val; if (index) mask <<= index; val |= mask; return val; } template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value, Integer&>::type bit_unset(Integer& val, std::size_t index) { Integer mask = 1; if (index >= sizeof(Integer) * CHAR_BIT) return val; if (index) mask <<= index; val &= ~mask; return val; } template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value, Integer&>::type bit_flip(Integer& val, std::size_t index) { Integer mask = 1; if (index >= sizeof(Integer) * CHAR_BIT) return val; if (index) mask <<= index; val ^= mask; return val; } namespace detail { template BOOST_MP_CXX14_CONSTEXPR Integer karatsuba_sqrt(const Integer& x, Integer& r, size_t bits) { // // Define the floating point type used for std::sqrt, in our tests, sqrt(double) and sqrt(long double) take // about the same amount of time as long as long double is not an emulated 128-bit type (ie the same type // as __float128 from libquadmath). So only use long double if it's an 80-bit type: // #ifndef __clang__ typedef typename std::conditional<(std::numeric_limits::digits == 64), long double, double>::type real_cast_type; #else // clang has buggy __int128 -> long double conversion: typedef double real_cast_type; #endif // // As per the Karatsuba sqrt algorithm, the low order bits/4 bits pay no part in the result, only in the remainder, // so define the number of bits our argument must have before passing to std::sqrt is safe, even if doing so // looses a few bits: // constexpr std::size_t cutoff = (std::numeric_limits::digits * 4) / 3; // // Type which can hold at least "cutoff" bits: // #ifdef BOOST_HAS_INT128 using cutoff_t = typename std::conditional<(cutoff > 64), uint128_type, std::uint64_t>::type; #else using cutoff_t = std::uint64_t; #endif // // See if we can take the fast path: // if (bits <= cutoff) { constexpr cutoff_t half_bits = (cutoff_t(1u) << ((sizeof(cutoff_t) * CHAR_BIT) / 2)) - 1; cutoff_t val = static_cast(x); real_cast_type real_val = static_cast(val); cutoff_t s64 = static_cast(std::sqrt(real_val)); // converting to long double can loose some precision, and `sqrt` can give eps error, so we'll fix this // this is needed while ((s64 > half_bits) || (s64 * s64 > val)) s64--; // in my tests this never fired, but theoretically this might be needed while ((s64 < half_bits) && ((s64 + 1) * (s64 + 1) <= val)) s64++; r = static_cast(val - s64 * s64); return static_cast(s64); } // https://hal.inria.fr/file/index/docid/72854/filename/RR-3805.pdf std::size_t b = bits / 4; Integer q = x; q >>= b * 2; Integer s = karatsuba_sqrt(q, r, bits - b * 2); Integer t = 0u; bit_set(t, static_cast(b * 2)); r <<= b; t--; t &= x; t >>= b; t += r; s <<= 1; divide_qr(t, s, q, r); r <<= b; t = 0u; bit_set(t, static_cast(b)); t--; t &= x; r += t; s <<= (b - 1); // we already <<1 it before s += q; q *= q; // we substract after, so it works for unsigned integers too if (r < q) { t = s; t <<= 1; t--; r += t; s--; } r -= q; return s; } template BOOST_MP_CXX14_CONSTEXPR Integer bitwise_sqrt(const Integer& x, Integer& r) { // // This is slow bit-by-bit integer square root, see for example // http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_.28base_2.29 // There are better methods such as http://hal.inria.fr/docs/00/07/28/54/PDF/RR-3805.pdf // and http://hal.inria.fr/docs/00/07/21/13/PDF/RR-4475.pdf which should be implemented // at some point. // Integer s = 0; switch (x) { case 0: r = 0; return s; case 1: r = 0; return 1; case 2: r = 1; return 1; case 3: r = 2; return 1; default: break; // fall through: } std::ptrdiff_t g = msb(x); Integer t = 0; r = x; g /= 2; bit_set(s, g); bit_set(t, 2 * g); r = x - t; --g; do { t = s; t <<= g + 1; bit_set(t, 2 * g); if (t <= r) { bit_set(s, g); r -= t; } --g; } while (g >= 0); return s; } } // namespace detail template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value, Integer>::type sqrt(const Integer& x, Integer& r) { #ifndef BOOST_MP_NO_CONSTEXPR_DETECTION // recursive Karatsuba sqrt can cause issues in constexpr context: if (BOOST_MP_IS_CONST_EVALUATED(x)) { return detail::bitwise_sqrt(x, r); } #endif if (x == 0u) { r = 0u; return 0u; } return detail::karatsuba_sqrt(x, r, msb(x) + 1); } template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value, Integer>::type sqrt(const Integer& x) { Integer r(0); return sqrt(x, r); } }} // namespace boost::multiprecision #endif