// Copyright Christopher Kormanyos 2002 - 2011. // Copyright 2011 John Maddock. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // This work is based on an earlier work: // "Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations", // in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469 // // This file has no include guards or namespaces - it's expanded inline inside default_ops.hpp // #include #include #include #ifdef BOOST_MSVC #pragma warning(push) #pragma warning(disable : 6326) // comparison of two constants #pragma warning(disable : 4127) // conditional expression is constant #endif template void hyp0F1(T& result, const T& b, const T& x) { using si_type = typename boost::multiprecision::detail::canonical::type ; using ui_type = typename boost::multiprecision::detail::canonical::type; // Compute the series representation of Hypergeometric0F1 taken from // http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric0F1/06/01/01/ // There are no checks on input range or parameter boundaries. T x_pow_n_div_n_fact(x); T pochham_b(b); T bp(b); eval_divide(result, x_pow_n_div_n_fact, pochham_b); eval_add(result, ui_type(1)); si_type n; T tol; tol = ui_type(1); eval_ldexp(tol, tol, 1 - boost::multiprecision::detail::digits2 >::value()); eval_multiply(tol, result); if (eval_get_sign(tol) < 0) tol.negate(); T term; const int series_limit = boost::multiprecision::detail::digits2 >::value() < 100 ? 100 : boost::multiprecision::detail::digits2 >::value(); // Series expansion of hyperg_0f1(; b; x). for (n = 2; n < series_limit; ++n) { eval_multiply(x_pow_n_div_n_fact, x); eval_divide(x_pow_n_div_n_fact, n); eval_increment(bp); eval_multiply(pochham_b, bp); eval_divide(term, x_pow_n_div_n_fact, pochham_b); eval_add(result, term); bool neg_term = eval_get_sign(term) < 0; if (neg_term) term.negate(); if (term.compare(tol) <= 0) break; } if (n >= series_limit) BOOST_MP_THROW_EXCEPTION(std::runtime_error("H0F1 Failed to Converge")); } template >::value> struct scoped_N_precision { template scoped_N_precision(U const&) {} template void reduce(U&) {} }; template struct scoped_N_precision { unsigned old_precision, old_arg_precision; scoped_N_precision(T& arg) { old_precision = T::thread_default_precision(); old_arg_precision = arg.precision(); T::thread_default_precision(old_arg_precision * N); arg.precision(old_arg_precision * N); } ~scoped_N_precision() { T::thread_default_precision(old_precision); } void reduce(T& arg) { arg.precision(old_arg_precision); } }; template void reduce_n_half_pi(T& arg, const T& n, bool go_down) { // // We need to perform argument reduction at 3 times the precision of arg // in order to ensure a correct result up to arg = 1/epsilon. Beyond that // the value of n will have been incorrectly calculated anyway since it will // have a value greater than 1/epsilon and no longer be an exact integer value. // // More information in ARGUMENT REDUCTION FOR HUGE ARGUMENTS. K C Ng. // // There are two mutually exclusive ways to achieve this, both of which are // supported here: // 1) To define a fixed precision type with 3 times the precision for the calculation. // 2) To dynamically increase the precision of the variables. // using reduction_type = typename boost::multiprecision::detail::transcendental_reduction_type::type; // // Make a copy of the arg at higher precision: // reduction_type big_arg(arg); // // Dynamically increase precision when supported, this increases the default // and ups the precision of big_arg to match: // scoped_N_precision scoped_precision(big_arg); // // High precision PI: // reduction_type reduction = get_constant_pi(); eval_ldexp(reduction, reduction, -1); // divide by 2 eval_multiply(reduction, n); BOOST_MATH_INSTRUMENT_CODE(big_arg.str(10, std::ios_base::scientific)); BOOST_MATH_INSTRUMENT_CODE(reduction.str(10, std::ios_base::scientific)); if (go_down) eval_subtract(big_arg, reduction, big_arg); else eval_subtract(big_arg, reduction); arg = T(big_arg); // // If arg is a variable precision type, then we have just copied the // precision of big_arg s well it's value. Reduce the precision now: // scoped_precision.reduce(arg); BOOST_MATH_INSTRUMENT_CODE(big_arg.str(10, std::ios_base::scientific)); BOOST_MATH_INSTRUMENT_CODE(arg.str(10, std::ios_base::scientific)); } template void eval_sin(T& result, const T& x) { static_assert(number_category::value == number_kind_floating_point, "The sin function is only valid for floating point types."); BOOST_MATH_INSTRUMENT_CODE(x.str(0, std::ios_base::scientific)); if (&result == &x) { T temp; eval_sin(temp, x); result = temp; return; } using si_type = typename boost::multiprecision::detail::canonical::type ; using ui_type = typename boost::multiprecision::detail::canonical::type; using fp_type = typename std::tuple_element<0, typename T::float_types>::type ; switch (eval_fpclassify(x)) { case FP_INFINITE: case FP_NAN: BOOST_IF_CONSTEXPR(std::numeric_limits >::has_quiet_NaN) { result = std::numeric_limits >::quiet_NaN().backend(); errno = EDOM; } else BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type.")); return; case FP_ZERO: result = x; return; default:; } // Local copy of the argument T xx = x; // Analyze and prepare the phase of the argument. // Make a local, positive copy of the argument, xx. // The argument xx will be reduced to 0 <= xx <= pi/2. bool b_negate_sin = false; if (eval_get_sign(x) < 0) { xx.negate(); b_negate_sin = !b_negate_sin; } T n_pi, t; T half_pi = get_constant_pi(); eval_ldexp(half_pi, half_pi, -1); // divide by 2 // Remove multiples of pi/2. if (xx.compare(half_pi) > 0) { eval_divide(n_pi, xx, half_pi); eval_trunc(n_pi, n_pi); t = ui_type(4); eval_fmod(t, n_pi, t); bool b_go_down = false; if (t.compare(ui_type(1)) == 0) { b_go_down = true; } else if (t.compare(ui_type(2)) == 0) { b_negate_sin = !b_negate_sin; } else if (t.compare(ui_type(3)) == 0) { b_negate_sin = !b_negate_sin; b_go_down = true; } if (b_go_down) eval_increment(n_pi); // // If n_pi is > 1/epsilon, then it is no longer an exact integer value // but an approximation. As a result we can no longer reliably reduce // xx to 0 <= xx < pi/2, nor can we tell the sign of the result as we need // n_pi % 4 for that, but that will always be zero in this situation. // We could use a higher precision type for n_pi, along with division at // higher precision, but that's rather expensive. So for now we do not support // this, and will see if anyone complains and has a legitimate use case. // if (n_pi.compare(get_constant_one_over_epsilon()) > 0) { result = ui_type(0); return; } reduce_n_half_pi(xx, n_pi, b_go_down); // // Post reduction we may be a few ulp below zero or above pi/2 // given that n_pi was calculated at working precision and not // at the higher precision used for reduction. Correct that now: // if (eval_get_sign(xx) < 0) { xx.negate(); b_negate_sin = !b_negate_sin; } if (xx.compare(half_pi) > 0) { eval_ldexp(half_pi, half_pi, 1); eval_subtract(xx, half_pi, xx); eval_ldexp(half_pi, half_pi, -1); b_go_down = !b_go_down; } BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific)); BOOST_MATH_INSTRUMENT_CODE(n_pi.str(0, std::ios_base::scientific)); BOOST_MP_ASSERT(xx.compare(half_pi) <= 0); BOOST_MP_ASSERT(xx.compare(ui_type(0)) >= 0); } t = half_pi; eval_subtract(t, xx); const bool b_zero = eval_get_sign(xx) == 0; const bool b_pi_half = eval_get_sign(t) == 0; BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific)); BOOST_MATH_INSTRUMENT_CODE(t.str(0, std::ios_base::scientific)); // Check if the reduced argument is very close to 0 or pi/2. const bool b_near_zero = xx.compare(fp_type(1e-1)) < 0; const bool b_near_pi_half = t.compare(fp_type(1e-1)) < 0; if (b_zero) { result = ui_type(0); } else if (b_pi_half) { result = ui_type(1); } else if (b_near_zero) { eval_multiply(t, xx, xx); eval_divide(t, si_type(-4)); T t2; t2 = fp_type(1.5); hyp0F1(result, t2, t); BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific)); eval_multiply(result, xx); } else if (b_near_pi_half) { eval_multiply(t, t); eval_divide(t, si_type(-4)); T t2; t2 = fp_type(0.5); hyp0F1(result, t2, t); BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific)); } else { // Scale to a small argument for an efficient Taylor series, // implemented as a hypergeometric function. Use a standard // divide by three identity a certain number of times. // Here we use division by 3^9 --> (19683 = 3^9). constexpr si_type n_scale = 9; constexpr si_type n_three_pow_scale = static_cast(19683L); eval_divide(xx, n_three_pow_scale); // Now with small arguments, we are ready for a series expansion. eval_multiply(t, xx, xx); eval_divide(t, si_type(-4)); T t2; t2 = fp_type(1.5); hyp0F1(result, t2, t); BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific)); eval_multiply(result, xx); // Convert back using multiple angle identity. for (std::int32_t k = static_cast(0); k < n_scale; k++) { // Rescale the cosine value using the multiple angle identity. eval_multiply(t2, result, ui_type(3)); eval_multiply(t, result, result); eval_multiply(t, result); eval_multiply(t, ui_type(4)); eval_subtract(result, t2, t); } } if (b_negate_sin) result.negate(); BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific)); } template void eval_cos(T& result, const T& x) { static_assert(number_category::value == number_kind_floating_point, "The cos function is only valid for floating point types."); if (&result == &x) { T temp; eval_cos(temp, x); result = temp; return; } using si_type = typename boost::multiprecision::detail::canonical::type ; using ui_type = typename boost::multiprecision::detail::canonical::type; switch (eval_fpclassify(x)) { case FP_INFINITE: case FP_NAN: BOOST_IF_CONSTEXPR(std::numeric_limits >::has_quiet_NaN) { result = std::numeric_limits >::quiet_NaN().backend(); errno = EDOM; } else BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type.")); return; case FP_ZERO: result = ui_type(1); return; default:; } // Local copy of the argument T xx = x; // Analyze and prepare the phase of the argument. // Make a local, positive copy of the argument, xx. // The argument xx will be reduced to 0 <= xx <= pi/2. bool b_negate_cos = false; if (eval_get_sign(x) < 0) { xx.negate(); } BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific)); T n_pi, t; T half_pi = get_constant_pi(); eval_ldexp(half_pi, half_pi, -1); // divide by 2 // Remove even multiples of pi. if (xx.compare(half_pi) > 0) { eval_divide(t, xx, half_pi); eval_trunc(n_pi, t); // // If n_pi is > 1/epsilon, then it is no longer an exact integer value // but an approximation. As a result we can no longer reliably reduce // xx to 0 <= xx < pi/2, nor can we tell the sign of the result as we need // n_pi % 4 for that, but that will always be zero in this situation. // We could use a higher precision type for n_pi, along with division at // higher precision, but that's rather expensive. So for now we do not support // this, and will see if anyone complains and has a legitimate use case. // if (n_pi.compare(get_constant_one_over_epsilon()) > 0) { result = ui_type(1); return; } BOOST_MATH_INSTRUMENT_CODE(n_pi.str(0, std::ios_base::scientific)); t = ui_type(4); eval_fmod(t, n_pi, t); bool b_go_down = false; if (t.compare(ui_type(0)) == 0) { b_go_down = true; } else if (t.compare(ui_type(1)) == 0) { b_negate_cos = true; } else if (t.compare(ui_type(2)) == 0) { b_go_down = true; b_negate_cos = true; } else { BOOST_MP_ASSERT(t.compare(ui_type(3)) == 0); } if (b_go_down) eval_increment(n_pi); reduce_n_half_pi(xx, n_pi, b_go_down); // // Post reduction we may be a few ulp below zero or above pi/2 // given that n_pi was calculated at working precision and not // at the higher precision used for reduction. Correct that now: // if (eval_get_sign(xx) < 0) { xx.negate(); b_negate_cos = !b_negate_cos; } if (xx.compare(half_pi) > 0) { eval_ldexp(half_pi, half_pi, 1); eval_subtract(xx, half_pi, xx); eval_ldexp(half_pi, half_pi, -1); } BOOST_MP_ASSERT(xx.compare(half_pi) <= 0); BOOST_MP_ASSERT(xx.compare(ui_type(0)) >= 0); } else { n_pi = ui_type(1); reduce_n_half_pi(xx, n_pi, true); } const bool b_zero = eval_get_sign(xx) == 0; if (b_zero) { result = si_type(0); } else { eval_sin(result, xx); } if (b_negate_cos) result.negate(); BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific)); } template void eval_tan(T& result, const T& x) { static_assert(number_category::value == number_kind_floating_point, "The tan function is only valid for floating point types."); if (&result == &x) { T temp; eval_tan(temp, x); result = temp; return; } T t; eval_sin(result, x); eval_cos(t, x); eval_divide(result, t); } template void hyp2F1(T& result, const T& a, const T& b, const T& c, const T& x) { // Compute the series representation of hyperg_2f1 taken from // Abramowitz and Stegun 15.1.1. // There are no checks on input range or parameter boundaries. using ui_type = typename boost::multiprecision::detail::canonical::type; T x_pow_n_div_n_fact(x); T pochham_a(a); T pochham_b(b); T pochham_c(c); T ap(a); T bp(b); T cp(c); eval_multiply(result, pochham_a, pochham_b); eval_divide(result, pochham_c); eval_multiply(result, x_pow_n_div_n_fact); eval_add(result, ui_type(1)); T lim; eval_ldexp(lim, result, 1 - boost::multiprecision::detail::digits2 >::value()); if (eval_get_sign(lim) < 0) lim.negate(); ui_type n; T term; const unsigned series_limit = boost::multiprecision::detail::digits2 >::value() < 100 ? 100 : boost::multiprecision::detail::digits2 >::value(); // Series expansion of hyperg_2f1(a, b; c; x). for (n = 2; n < series_limit; ++n) { eval_multiply(x_pow_n_div_n_fact, x); eval_divide(x_pow_n_div_n_fact, n); eval_increment(ap); eval_multiply(pochham_a, ap); eval_increment(bp); eval_multiply(pochham_b, bp); eval_increment(cp); eval_multiply(pochham_c, cp); eval_multiply(term, pochham_a, pochham_b); eval_divide(term, pochham_c); eval_multiply(term, x_pow_n_div_n_fact); eval_add(result, term); if (eval_get_sign(term) < 0) term.negate(); if (lim.compare(term) >= 0) break; } if (n > series_limit) BOOST_MP_THROW_EXCEPTION(std::runtime_error("H2F1 failed to converge.")); } template void eval_asin(T& result, const T& x) { static_assert(number_category::value == number_kind_floating_point, "The asin function is only valid for floating point types."); using ui_type = typename boost::multiprecision::detail::canonical::type; using fp_type = typename std::tuple_element<0, typename T::float_types>::type ; if (&result == &x) { T t(x); eval_asin(result, t); return; } switch (eval_fpclassify(x)) { case FP_NAN: case FP_INFINITE: BOOST_IF_CONSTEXPR(std::numeric_limits >::has_quiet_NaN) { result = std::numeric_limits >::quiet_NaN().backend(); errno = EDOM; } else BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type.")); return; case FP_ZERO: result = x; return; default:; } const bool b_neg = eval_get_sign(x) < 0; T xx(x); if (b_neg) xx.negate(); int c = xx.compare(ui_type(1)); if (c > 0) { BOOST_IF_CONSTEXPR(std::numeric_limits >::has_quiet_NaN) { result = std::numeric_limits >::quiet_NaN().backend(); errno = EDOM; } else BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type.")); return; } else if (c == 0) { result = get_constant_pi(); eval_ldexp(result, result, -1); if (b_neg) result.negate(); return; } if (xx.compare(fp_type(1e-3)) < 0) { // http://functions.wolfram.com/ElementaryFunctions/ArcSin/26/01/01/ eval_multiply(xx, xx); T t1, t2; t1 = fp_type(0.5f); t2 = fp_type(1.5f); hyp2F1(result, t1, t1, t2, xx); eval_multiply(result, x); return; } else if (xx.compare(fp_type(1 - 5e-2f)) > 0) { // http://functions.wolfram.com/ElementaryFunctions/ArcSin/26/01/01/ // This branch is simlilar in complexity to Newton iterations down to // the above limit. It is *much* more accurate. T dx1; T t1, t2; eval_subtract(dx1, ui_type(1), xx); t1 = fp_type(0.5f); t2 = fp_type(1.5f); eval_ldexp(dx1, dx1, -1); hyp2F1(result, t1, t1, t2, dx1); eval_ldexp(dx1, dx1, 2); eval_sqrt(t1, dx1); eval_multiply(result, t1); eval_ldexp(t1, get_constant_pi(), -1); result.negate(); eval_add(result, t1); if (b_neg) result.negate(); return; } #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS using guess_type = typename boost::multiprecision::detail::canonical::type; #else using guess_type = fp_type; #endif // Get initial estimate using standard math function asin. guess_type dd; eval_convert_to(&dd, xx); result = (guess_type)(std::asin(dd)); // Newton-Raphson iteration, we should double our precision with each iteration, // in practice this seems to not quite work in all cases... so terminate when we // have at least 2/3 of the digits correct on the assumption that the correction // we've just added will finish the job... std::intmax_t current_precision = eval_ilogb(result); std::intmax_t target_precision = std::numeric_limits >::is_specialized ? current_precision - 1 - (std::numeric_limits >::digits * 2) / 3 : current_precision - 1 - (boost::multiprecision::detail::digits2 >::value() * 2) / 3; // Newton-Raphson iteration while (current_precision > target_precision) { T sine, cosine; eval_sin(sine, result); eval_cos(cosine, result); eval_subtract(sine, xx); eval_divide(sine, cosine); eval_subtract(result, sine); current_precision = eval_ilogb(sine); if (current_precision <= (std::numeric_limits::min)() + 1) break; } if (b_neg) result.negate(); } template inline void eval_acos(T& result, const T& x) { static_assert(number_category::value == number_kind_floating_point, "The acos function is only valid for floating point types."); using ui_type = typename boost::multiprecision::detail::canonical::type; switch (eval_fpclassify(x)) { case FP_NAN: case FP_INFINITE: BOOST_IF_CONSTEXPR(std::numeric_limits >::has_quiet_NaN) { result = std::numeric_limits >::quiet_NaN().backend(); errno = EDOM; } else BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type.")); return; case FP_ZERO: result = get_constant_pi(); eval_ldexp(result, result, -1); // divide by two. return; } T xx; eval_abs(xx, x); int c = xx.compare(ui_type(1)); if (c > 0) { BOOST_IF_CONSTEXPR(std::numeric_limits >::has_quiet_NaN) { result = std::numeric_limits >::quiet_NaN().backend(); errno = EDOM; } else BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type.")); return; } else if (c == 0) { if (eval_get_sign(x) < 0) result = get_constant_pi(); else result = ui_type(0); return; } using fp_type = typename std::tuple_element<0, typename T::float_types>::type; if (xx.compare(fp_type(1e-3)) < 0) { // https://functions.wolfram.com/ElementaryFunctions/ArcCos/26/01/01/ eval_multiply(xx, xx); T t1, t2; t1 = fp_type(0.5f); t2 = fp_type(1.5f); hyp2F1(result, t1, t1, t2, xx); eval_multiply(result, x); eval_ldexp(t1, get_constant_pi(), -1); result.negate(); eval_add(result, t1); return; } if (eval_get_sign(x) < 0) { eval_acos(result, xx); result.negate(); eval_add(result, get_constant_pi()); return; } else if (xx.compare(fp_type(0.85)) > 0) { // https://functions.wolfram.com/ElementaryFunctions/ArcCos/26/01/01/ // This branch is simlilar in complexity to Newton iterations down to // the above limit. It is *much* more accurate. T dx1; T t1, t2; eval_subtract(dx1, ui_type(1), xx); t1 = fp_type(0.5f); t2 = fp_type(1.5f); eval_ldexp(dx1, dx1, -1); hyp2F1(result, t1, t1, t2, dx1); eval_ldexp(dx1, dx1, 2); eval_sqrt(t1, dx1); eval_multiply(result, t1); return; } #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS using guess_type = typename boost::multiprecision::detail::canonical::type; #else using guess_type = fp_type; #endif // Get initial estimate using standard math function asin. guess_type dd; eval_convert_to(&dd, xx); result = (guess_type)(std::acos(dd)); // Newton-Raphson iteration, we should double our precision with each iteration, // in practice this seems to not quite work in all cases... so terminate when we // have at least 2/3 of the digits correct on the assumption that the correction // we've just added will finish the job... std::intmax_t current_precision = eval_ilogb(result); std::intmax_t target_precision = std::numeric_limits >::is_specialized ? current_precision - 1 - (std::numeric_limits >::digits * 2) / 3 : current_precision - 1 - (boost::multiprecision::detail::digits2 >::value() * 2) / 3; // Newton-Raphson iteration while (current_precision > target_precision) { T sine, cosine; eval_sin(sine, result); eval_cos(cosine, result); eval_subtract(cosine, xx); cosine.negate(); eval_divide(cosine, sine); eval_subtract(result, cosine); current_precision = eval_ilogb(cosine); if (current_precision <= (std::numeric_limits::min)() + 1) break; } } template void eval_atan(T& result, const T& x) { static_assert(number_category::value == number_kind_floating_point, "The atan function is only valid for floating point types."); using si_type = typename boost::multiprecision::detail::canonical::type ; using ui_type = typename boost::multiprecision::detail::canonical::type; using fp_type = typename std::tuple_element<0, typename T::float_types>::type ; switch (eval_fpclassify(x)) { case FP_NAN: result = x; errno = EDOM; return; case FP_ZERO: result = x; return; case FP_INFINITE: if (eval_get_sign(x) < 0) { eval_ldexp(result, get_constant_pi(), -1); result.negate(); } else eval_ldexp(result, get_constant_pi(), -1); return; default:; } const bool b_neg = eval_get_sign(x) < 0; T xx(x); if (b_neg) xx.negate(); if (xx.compare(fp_type(0.1)) < 0) { T t1, t2, t3; t1 = ui_type(1); t2 = fp_type(0.5f); t3 = fp_type(1.5f); eval_multiply(xx, xx); xx.negate(); hyp2F1(result, t1, t2, t3, xx); eval_multiply(result, x); return; } if (xx.compare(fp_type(10)) > 0) { T t1, t2, t3; t1 = fp_type(0.5f); t2 = ui_type(1u); t3 = fp_type(1.5f); eval_multiply(xx, xx); eval_divide(xx, si_type(-1), xx); hyp2F1(result, t1, t2, t3, xx); eval_divide(result, x); if (!b_neg) result.negate(); eval_ldexp(t1, get_constant_pi(), -1); eval_add(result, t1); if (b_neg) result.negate(); return; } // Get initial estimate using standard math function atan. fp_type d; eval_convert_to(&d, xx); result = fp_type(std::atan(d)); // Newton-Raphson iteration, we should double our precision with each iteration, // in practice this seems to not quite work in all cases... so terminate when we // have at least 2/3 of the digits correct on the assumption that the correction // we've just added will finish the job... std::intmax_t current_precision = eval_ilogb(result); std::intmax_t target_precision = std::numeric_limits >::is_specialized ? current_precision - 1 - (std::numeric_limits >::digits * 2) / 3 : current_precision - 1 - (boost::multiprecision::detail::digits2 >::value() * 2) / 3; T s, c, t; while (current_precision > target_precision) { eval_sin(s, result); eval_cos(c, result); eval_multiply(t, xx, c); eval_subtract(t, s); eval_multiply(s, t, c); eval_add(result, s); current_precision = eval_ilogb(s); if (current_precision <= (std::numeric_limits::min)() + 1) break; } if (b_neg) result.negate(); } template void eval_atan2(T& result, const T& y, const T& x) { static_assert(number_category::value == number_kind_floating_point, "The atan2 function is only valid for floating point types."); if (&result == &y) { T temp(y); eval_atan2(result, temp, x); return; } else if (&result == &x) { T temp(x); eval_atan2(result, y, temp); return; } using ui_type = typename boost::multiprecision::detail::canonical::type; switch (eval_fpclassify(y)) { case FP_NAN: result = y; errno = EDOM; return; case FP_ZERO: { if (eval_signbit(x)) { result = get_constant_pi(); if (eval_signbit(y)) result.negate(); } else { result = y; // Note we allow atan2(0,0) to be +-zero, even though it's mathematically undefined } return; } case FP_INFINITE: { if (eval_fpclassify(x) == FP_INFINITE) { if (eval_signbit(x)) { // 3Pi/4 eval_ldexp(result, get_constant_pi(), -2); eval_subtract(result, get_constant_pi()); if (eval_get_sign(y) >= 0) result.negate(); } else { // Pi/4 eval_ldexp(result, get_constant_pi(), -2); if (eval_get_sign(y) < 0) result.negate(); } } else { eval_ldexp(result, get_constant_pi(), -1); if (eval_get_sign(y) < 0) result.negate(); } return; } } switch (eval_fpclassify(x)) { case FP_NAN: result = x; errno = EDOM; return; case FP_ZERO: { eval_ldexp(result, get_constant_pi(), -1); if (eval_get_sign(y) < 0) result.negate(); return; } case FP_INFINITE: if (eval_get_sign(x) > 0) result = ui_type(0); else result = get_constant_pi(); if (eval_get_sign(y) < 0) result.negate(); return; } T xx; eval_divide(xx, y, x); if (eval_get_sign(xx) < 0) xx.negate(); eval_atan(result, xx); // Determine quadrant (sign) based on signs of x, y const bool y_neg = eval_get_sign(y) < 0; const bool x_neg = eval_get_sign(x) < 0; if (y_neg != x_neg) result.negate(); if (x_neg) { if (y_neg) eval_subtract(result, get_constant_pi()); else eval_add(result, get_constant_pi()); } } template inline typename std::enable_if::value, void>::type eval_atan2(T& result, const T& x, const A& a) { using canonical_type = typename boost::multiprecision::detail::canonical::type ; using cast_type = typename std::conditional::value, T, canonical_type>::type; cast_type c; c = a; eval_atan2(result, x, c); } template inline typename std::enable_if::value, void>::type eval_atan2(T& result, const A& x, const T& a) { using canonical_type = typename boost::multiprecision::detail::canonical::type ; using cast_type = typename std::conditional::value, T, canonical_type>::type; cast_type c; c = x; eval_atan2(result, c, a); } #ifdef BOOST_MSVC #pragma warning(pop) #endif