// Copyright John Maddock 2006, 2007. // Copyright Paul A. Bristow 2007. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_STATS_CAUCHY_HPP #define BOOST_STATS_CAUCHY_HPP #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4127) // conditional expression is constant #endif #include #include #include #include #include #include namespace boost{ namespace math { template class cauchy_distribution; namespace detail { template RealType cdf_imp(const cauchy_distribution& dist, const RealType& x, bool complement) { // // This calculates the cdf of the Cauchy distribution and/or its complement. // // The usual formula for the Cauchy cdf is: // // cdf = 0.5 + atan(x)/pi // // But that suffers from cancellation error as x -> -INF. // // Recall that for x < 0: // // atan(x) = -pi/2 - atan(1/x) // // Substituting into the above we get: // // CDF = -atan(1/x) ; x < 0 // // So the procedure is to calculate the cdf for -fabs(x) // using the above formula, and then subtract from 1 when required // to get the result. // BOOST_MATH_STD_USING // for ADL of std functions static const char* function = "boost::math::cdf(cauchy<%1%>&, %1%)"; RealType result = 0; RealType location = dist.location(); RealType scale = dist.scale(); if(false == detail::check_location(function, location, &result, Policy())) { return result; } if(false == detail::check_scale(function, scale, &result, Policy())) { return result; } if(std::numeric_limits::has_infinity && x == std::numeric_limits::infinity()) { // cdf +infinity is unity. return static_cast((complement) ? 0 : 1); } if(std::numeric_limits::has_infinity && x == -std::numeric_limits::infinity()) { // cdf -infinity is zero. return static_cast((complement) ? 1 : 0); } if(false == detail::check_x(function, x, &result, Policy())) { // Catches x == NaN return result; } RealType mx = -fabs((x - location) / scale); // scale is > 0 if(mx > -tools::epsilon() / 8) { // special case first: x extremely close to location. return 0.5; } result = -atan(1 / mx) / constants::pi(); return (((x > location) != complement) ? 1 - result : result); } // cdf template RealType quantile_imp( const cauchy_distribution& dist, const RealType& p, bool complement) { // This routine implements the quantile for the Cauchy distribution, // the value p may be the probability, or its complement if complement=true. // // The procedure first performs argument reduction on p to avoid error // when calculating the tangent, then calculates the distance from the // mid-point of the distribution. This is either added or subtracted // from the location parameter depending on whether `complement` is true. // static const char* function = "boost::math::quantile(cauchy<%1%>&, %1%)"; BOOST_MATH_STD_USING // for ADL of std functions RealType result = 0; RealType location = dist.location(); RealType scale = dist.scale(); if(false == detail::check_location(function, location, &result, Policy())) { return result; } if(false == detail::check_scale(function, scale, &result, Policy())) { return result; } if(false == detail::check_probability(function, p, &result, Policy())) { return result; } // Special cases: if(p == 1) { return (complement ? -1 : 1) * policies::raise_overflow_error(function, 0, Policy()); } if(p == 0) { return (complement ? 1 : -1) * policies::raise_overflow_error(function, 0, Policy()); } RealType P = p - floor(p); // argument reduction of p: if(P > 0.5) { P = P - 1; } if(P == 0.5) // special case: { return location; } result = -scale / tan(constants::pi() * P); return complement ? RealType(location - result) : RealType(location + result); } // quantile } // namespace detail template > class cauchy_distribution { public: typedef RealType value_type; typedef Policy policy_type; cauchy_distribution(RealType l_location = 0, RealType l_scale = 1) : m_a(l_location), m_hg(l_scale) { static const char* function = "boost::math::cauchy_distribution<%1%>::cauchy_distribution"; RealType result; detail::check_location(function, l_location, &result, Policy()); detail::check_scale(function, l_scale, &result, Policy()); } // cauchy_distribution RealType location()const { return m_a; } RealType scale()const { return m_hg; } private: RealType m_a; // The location, this is the median of the distribution. RealType m_hg; // The scale )or shape), this is the half width at half height. }; typedef cauchy_distribution cauchy; #ifdef __cpp_deduction_guides template cauchy_distribution(RealType)->cauchy_distribution::type>; template cauchy_distribution(RealType,RealType)->cauchy_distribution::type>; #endif template inline const std::pair range(const cauchy_distribution&) { // Range of permissible values for random variable x. if (std::numeric_limits::has_infinity) { return std::pair(-std::numeric_limits::infinity(), std::numeric_limits::infinity()); // - to + infinity. } else { // Can only use max_value. using boost::math::tools::max_value; return std::pair(-max_value(), max_value()); // - to + max. } } template inline const std::pair support(const cauchy_distribution& ) { // Range of supported values for random variable x. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. if (std::numeric_limits::has_infinity) { return std::pair(-std::numeric_limits::infinity(), std::numeric_limits::infinity()); // - to + infinity. } else { // Can only use max_value. using boost::math::tools::max_value; return std::pair(-tools::max_value(), max_value()); // - to + max. } } template inline RealType pdf(const cauchy_distribution& dist, const RealType& x) { BOOST_MATH_STD_USING // for ADL of std functions static const char* function = "boost::math::pdf(cauchy<%1%>&, %1%)"; RealType result = 0; RealType location = dist.location(); RealType scale = dist.scale(); if(false == detail::check_scale("boost::math::pdf(cauchy<%1%>&, %1%)", scale, &result, Policy())) { return result; } if(false == detail::check_location("boost::math::pdf(cauchy<%1%>&, %1%)", location, &result, Policy())) { return result; } if((boost::math::isinf)(x)) { return 0; // pdf + and - infinity is zero. } // These produce MSVC 4127 warnings, so the above used instead. //if(std::numeric_limits::has_infinity && abs(x) == std::numeric_limits::infinity()) //{ // pdf + and - infinity is zero. // return 0; //} if(false == detail::check_x(function, x, &result, Policy())) { // Catches x = NaN return result; } RealType xs = (x - location) / scale; result = 1 / (constants::pi() * scale * (1 + xs * xs)); return result; } // pdf template inline RealType cdf(const cauchy_distribution& dist, const RealType& x) { return detail::cdf_imp(dist, x, false); } // cdf template inline RealType quantile(const cauchy_distribution& dist, const RealType& p) { return detail::quantile_imp(dist, p, false); } // quantile template inline RealType cdf(const complemented2_type, RealType>& c) { return detail::cdf_imp(c.dist, c.param, true); } // cdf complement template inline RealType quantile(const complemented2_type, RealType>& c) { return detail::quantile_imp(c.dist, c.param, true); } // quantile complement template inline RealType mean(const cauchy_distribution&) { // There is no mean: typedef typename Policy::assert_undefined_type assert_type; static_assert(assert_type::value == 0, "assert type is undefined"); return policies::raise_domain_error( "boost::math::mean(cauchy<%1%>&)", "The Cauchy distribution does not have a mean: " "the only possible return value is %1%.", std::numeric_limits::quiet_NaN(), Policy()); } template inline RealType variance(const cauchy_distribution& /*dist*/) { // There is no variance: typedef typename Policy::assert_undefined_type assert_type; static_assert(assert_type::value == 0, "assert type is undefined"); return policies::raise_domain_error( "boost::math::variance(cauchy<%1%>&)", "The Cauchy distribution does not have a variance: " "the only possible return value is %1%.", std::numeric_limits::quiet_NaN(), Policy()); } template inline RealType mode(const cauchy_distribution& dist) { return dist.location(); } template inline RealType median(const cauchy_distribution& dist) { return dist.location(); } template inline RealType skewness(const cauchy_distribution& /*dist*/) { // There is no skewness: typedef typename Policy::assert_undefined_type assert_type; static_assert(assert_type::value == 0, "assert type is undefined"); return policies::raise_domain_error( "boost::math::skewness(cauchy<%1%>&)", "The Cauchy distribution does not have a skewness: " "the only possible return value is %1%.", std::numeric_limits::quiet_NaN(), Policy()); // infinity? } template inline RealType kurtosis(const cauchy_distribution& /*dist*/) { // There is no kurtosis: typedef typename Policy::assert_undefined_type assert_type; static_assert(assert_type::value == 0, "assert type is undefined"); return policies::raise_domain_error( "boost::math::kurtosis(cauchy<%1%>&)", "The Cauchy distribution does not have a kurtosis: " "the only possible return value is %1%.", std::numeric_limits::quiet_NaN(), Policy()); } template inline RealType kurtosis_excess(const cauchy_distribution& /*dist*/) { // There is no kurtosis excess: typedef typename Policy::assert_undefined_type assert_type; static_assert(assert_type::value == 0, "assert type is undefined"); return policies::raise_domain_error( "boost::math::kurtosis_excess(cauchy<%1%>&)", "The Cauchy distribution does not have a kurtosis: " "the only possible return value is %1%.", std::numeric_limits::quiet_NaN(), Policy()); } template inline RealType entropy(const cauchy_distribution & dist) { using std::log; return log(2*constants::two_pi()*dist.scale()); } } // namespace math } // namespace boost #ifdef _MSC_VER #pragma warning(pop) #endif // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include #endif // BOOST_STATS_CAUCHY_HPP