How to use this

To run this Rmarkdown, open it in Rstudio and from the knit drop-down menu, choose Knit with parameters

What does this do

It creates the Illumina Sample sheet and the metadata.csv file that you need for running the pipeline. You need to double check the output - weird things happen all the time.

Required input

You need an input file with at least the following columns:

Load the Illumina adapters

Nextera_Adapters_i7 <- read_csv(here("data_sub","Nextera_adapters_i7.csv"))
## Parsed with column specification:
## cols(
##   i7_Index_Name = col_character(),
##   Bases_in_Adapter_i7 = col_character(),
##   Bases_for_Sample_Sheet_i7 = col_character()
## )
Nextera_Adapters_i5 <- read_csv(here("data_sub","Nextera_adapters_i5.csv")) 
## Parsed with column specification:
## cols(
##   i5_Index_Name = col_character(),
##   Bases_in_Adapter_i5 = col_character(),
##   Bases_for_Sample_Sheet_i5 = col_character()
## )

Loading the metadata you want to sequence

init.metadata <- read_csv(params$input.metadata)
## Parsed with column specification:
## cols(
##   Sample_name = col_character(),
##   Well = col_character(),
##   Row = col_character(),
##   Column = col_double(),
##   i7_Index_Name = col_character(),
##   i5_Index_Name = col_character(),
##   Qubit = col_double(),
##   PrimerF = col_character(),
##   PrimerR = col_character(),
##   Locus = col_character()
## )
init.metadata
## # A tibble: 88 x 10
##    Sample_name Well  Row   Column i7_Index_Name i5_Index_Name Qubit PrimerF
##    <chr>       <chr> <chr>  <dbl> <chr>         <chr>         <dbl> <chr>  
##  1 Sample_1_C… A1    A          1 N701          N502           4.78 GGWACW…
##  2 Sample_2_C… B1    B          1 N701          N503           5.43 GGWACW…
##  3 Sample_7_C… C1    C          1 N701          N504          13.4  GGWACW…
##  4 Tilapia_CO… D1    D          1 N701          N505          11    GGWACW…
##  5 Sample_24_… E1    E          1 N701          N506           0.8  GGWACW…
##  6 Sample_48_… F1    F          1 N701          N507           6.4  GGWACW…
##  7 Sample_33_… G1    G          1 N701          N508           6.6  GGWACW…
##  8 Sample_35_… H1    H          1 N701          N517           3.75 GGWACW…
##  9 Sample_39_… A2    A          2 N702          N502           1.07 GGWACW…
## 10 Sample_38_… B2    B          2 N702          N503           3.01 GGWACW…
## # … with 78 more rows, and 2 more variables: PrimerR <chr>, Locus <chr>

Check that the metadata has all needed fields

init.metadata %>% 
  rownames_to_column("Sample_number") %>% 
  mutate_all(as.character) %>% 
  pivot_longer(-Sample_number, names_to = "Variable", values_to = "Value") %>% 
  summarise(Sample_name = case_when(sum(str_detect(Variable, "Sample")) > 0 ~ "Present",
                                 TRUE                                    ~ "Absent"),
         Well        = case_when(sum(str_detect(Variable, "Well")) > 0 ~ "Present",
                                 TRUE                                    ~ "Absent"),
         PrimerF    = case_when(sum(str_detect(Variable, "PrimerF")) > 0 ~ "Present",
                                 TRUE                                    ~ "Absent"),
         PrimerR    = case_when(sum(str_detect(Variable, "PrimerR")) > 0 ~ "Present",
                                 TRUE                                    ~ "Absent"),
         
         i5_Adapter  = case_when(sum(str_detect(Variable, "i5_Index_Name")) > 0 ~ "Present",
                                 TRUE                                    ~ "Absent"),
         i7_Adapter  = case_when(sum(str_detect(Variable, "i7_Index_Name")) > 0 ~ "Present",
                                 TRUE                                    ~ "Absent")) -> Checks
  


if(sum(str_detect(Checks,"Absent")) > 0){ knitr::knit_exit(append = "## ERROR: Initial metadata is missing some of the key column names: 

                                                           - Sample_name
                                                           - Well
                                                           - PrimerF
                                                           - PrimerR
                                                           - Plate
                                                           - i5_Index_Name
                                                           - i7_Index_Name
                                                           
                                                           ### Change the column names / add the infromation to your csv file")}

The i5 and i7 indices can start by either N, S, or H. But the sequence is the same. Let’s make sure that they are compatible with the Nextera Indices file

init.metadata %>% 
  mutate(i5_Index_Name = str_replace(i5_Index_Name, "^[EHNS]", "N"),
         i7_Index_Name = str_replace(i7_Index_Name, "^[HN]", "N")) -> init.metadata

Make the check that all the indices are present

case_when(nrow(anti_join(init.metadata, Nextera_Adapters_i5)) + nrow(anti_join(init.metadata, Nextera_Adapters_i7)) == 0 ~ "All indices present in the  dataset",
           # == 0 ~ "Pass i7",
          TRUE                                                     ~ "Either some of the i5 or the i7 indices are not present in the Nextera Indices list - That will result in NAs in the final Sample Sheet")
## Joining, by = "i5_Index_Name"
## Joining, by = "i7_Index_Name"
## [1] "All indices present in the  dataset"

Load the Illumina SampleSheet template

template.sample.sheet <- read_lines(here("data_sub","SampleSheet.csv"))

Locate all the lines in which the new parameters are going to be written

date.row  <- str_which(template.sample.sheet, "^\\Date")
Assay.row <- str_which(template.sample.sheet, "^Assay")
Index.row <- str_which(template.sample.sheet, "^Index Adapters")
Reads.row <- str_which(template.sample.sheet, "^\\[Reads]")
data.start <- str_which(template.sample.sheet, "^\\[Data]")
data.header <- str_which(template.sample.sheet, "^Sample_ID")

Merge metadata with illumina adapters

init.metadata %>% 
  left_join(Nextera_Adapters_i7) %>% 
  left_join(Nextera_Adapters_i5) -> metadata
## Joining, by = "i7_Index_Name"
## Joining, by = "i5_Index_Name"

Fill Illumina SampleSheet

In the case where there are many loci represented on each sample, usually you have them in the same well. If this is the case, your Illumina samplesheet will have fewer entries (rows) than your metadata sheet. In the Illumina sampleSheet, there are two parts: one that refers to the whole plate, and one that specificies the samples run.

Parameters that refer to the whole sequencing run

These include date of analysis,

template.sample.sheet[date.row] <- paste0("Date,",params$date)

template.sample.sheet[Assay.row] <- paste0("Assay," ,params$Assay)
template.sample.sheet[Index.row] <- paste0("Index Adapters,",params$Index_Adapters)
template.sample.sheet[Reads.row +1 ] <- template.sample.sheet[Reads.row + 2] <- params$Cycles_per_pairend

Then with the rest of the dataset - collapsing first by primers

metadata %>% 
  group_by( i5_Index_Name,i7_Index_Name ) %>% 
  tally() -> occurrence.of.combos

if(max(occurrence.of.combos$n > 1 )){
  print("There are combinations of barcodes assigned to more than 1 sample - Please Check they have different PCR primers so you can separate them after")
  metadata %>% 
  group_by(i5_Adapter,i7_Adapter ) %>% 
    slice(1) -> metadata.for.sample.sheet
  print ("Keeping the first occurence of each combo for your samplesheet")}else{metadata.for.sample.sheet <- metadata}

Fill in metadata

We are going to assume that the Illumina always returns files with the format Sample_name Sample_number _L001_R [1-2] ’_001.fastq`. So let’s fill the metadata accordingly.

Step1 Get the filenames

sample.data %>% 
  mutate(Sample_name = str_replace_all(Sample_ID,pattern = "[\\.|_]",replacement = "-")) %>%
  rownames_to_column("Sample_number") %>% 
  mutate(file1 = paste0(Sample_name, "_S", Sample_number, "_L001_R1_001.fastq"),
         file2 = paste0(Sample_name, "_S", Sample_number, "_L001_R2_001.fastq")) %>% 
  select(i7_Index_Name = I7_Index_ID, i5_Index_Name = I5_Index_ID, file1, file2) -> filenames
## Joining, by = c("i7_Index_Name", "i5_Index_Name")

Check that primer sequences do not include non-IUPAC characters

IUAPAC.char <- read_csv(here("data_sub","IUAPAC.csv"))
## Parsed with column specification:
## cols(
##   Nucleotide.symbol = col_character(),
##   Full.Name = col_character()
## )
IUPAC.char.1 <- paste(IUAPAC.char$Nucleotide.symbol, collapse = "")
IUPAC.char.1 <- paste0("[^",IUPAC.char.1,"]")

allprimers = paste0(metadata$PrimerR, metadata$PrimerF, collapse = "")

case_when(str_count(allprimers, IUPAC.char.1) > 0 ~ print("There are non-IUAPAC characters in your primers, changing them to N"))
## [1] "There are non-IUAPAC characters in your primers, changing them to N"
## [1] "There are non-IUAPAC characters in your primers, changing them to N"
metadata %>% 
  mutate_at(.vars = vars(starts_with("Primer")), function(x)str_replace_all(x, IUPAC.char.1, "N")) -> metadata
write_csv(metadata, file.path(params$output_dir,paste0( "metadata_",Sys.Date(),".csv")))

kable(metadata, align= "c", format = "html") %>%
      kable_styling(bootstrap_options= "striped", fixed_thead = T,full_width = T, position = "center") %>%
      column_spec(2, bold=T) %>%
  scroll_box(width = "1200px", height = "600px")
Sample_name file1 file2 i7_Index_Name i5_Index_Name Well PrimerF PrimerR Locus
Sample_1_COI.1 Sample-1-COI-1_S1_L001_R1_001.fastq Sample-1-COI-1_S1_L001_R2_001.fastq N701 N502 A1 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_2_COI.1 Sample-2-COI-1_S2_L001_R1_001.fastq Sample-2-COI-1_S2_L001_R2_001.fastq N701 N503 B1 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_7_COI.1 Sample-7-COI-1_S3_L001_R1_001.fastq Sample-7-COI-1_S3_L001_R2_001.fastq N701 N504 C1 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Tilapia_COI.2 Tilapia-COI-2_S4_L001_R1_001.fastq Tilapia-COI-2_S4_L001_R2_001.fastq N701 N505 D1 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_24_COI.1 Sample-24-COI-1_S5_L001_R1_001.fastq Sample-24-COI-1_S5_L001_R2_001.fastq N701 N506 E1 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_48_COI.1 Sample-48-COI-1_S6_L001_R1_001.fastq Sample-48-COI-1_S6_L001_R2_001.fastq N701 N507 F1 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_33_COI.1 Sample-33-COI-1_S7_L001_R1_001.fastq Sample-33-COI-1_S7_L001_R2_001.fastq N701 N508 G1 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_35_COI.1 Sample-35-COI-1_S8_L001_R1_001.fastq Sample-35-COI-1_S8_L001_R2_001.fastq N701 N517 H1 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_39_COI.1 Sample-39-COI-1_S9_L001_R1_001.fastq Sample-39-COI-1_S9_L001_R2_001.fastq N702 N502 A2 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_38_COI.1 Sample-38-COI-1_S10_L001_R1_001.fastq Sample-38-COI-1_S10_L001_R2_001.fastq N702 N503 B2 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_41_COI.1 Sample-41-COI-1_S11_L001_R1_001.fastq Sample-41-COI-1_S11_L001_R2_001.fastq N702 N504 C2 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_44_COI.1 Sample-44-COI-1_S12_L001_R1_001.fastq Sample-44-COI-1_S12_L001_R2_001.fastq N702 N505 D2 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_45_COI.1 Sample-45-COI-1_S13_L001_R1_001.fastq Sample-45-COI-1_S13_L001_R2_001.fastq N702 N506 E2 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_46_COI.1 Sample-46-COI-1_S14_L001_R1_001.fastq Sample-46-COI-1_S14_L001_R2_001.fastq N702 N507 F2 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_52_COI.1 Sample-52-COI-1_S15_L001_R1_001.fastq Sample-52-COI-1_S15_L001_R2_001.fastq N702 N508 G2 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_161_COI.1 Sample-161-COI-1_S16_L001_R1_001.fastq Sample-161-COI-1_S16_L001_R2_001.fastq N702 N517 H2 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_53_COI.1 Sample-53-COI-1_S17_L001_R1_001.fastq Sample-53-COI-1_S17_L001_R2_001.fastq N712 N502 A3 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_55_COI.1 Sample-55-COI-1_S18_L001_R1_001.fastq Sample-55-COI-1_S18_L001_R2_001.fastq N712 N503 B3 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_57_COI.1 Sample-57-COI-1_S19_L001_R1_001.fastq Sample-57-COI-1_S19_L001_R2_001.fastq N712 N504 C3 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_59_COI.1 Sample-59-COI-1_S20_L001_R1_001.fastq Sample-59-COI-1_S20_L001_R2_001.fastq N712 N505 D3 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_62_COI.1 Sample-62-COI-1_S21_L001_R1_001.fastq Sample-62-COI-1_S21_L001_R2_001.fastq N712 N506 E3 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_60_COI.1 Sample-60-COI-1_S22_L001_R1_001.fastq Sample-60-COI-1_S22_L001_R2_001.fastq N712 N507 F3 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_63_COI.1 Sample-63-COI-1_S23_L001_R1_001.fastq Sample-63-COI-1_S23_L001_R2_001.fastq N712 N508 G3 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_65_COI.1 Sample-65-COI-1_S24_L001_R1_001.fastq Sample-65-COI-1_S24_L001_R2_001.fastq N712 N517 H3 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_67_COI.1 Sample-67-COI-1_S25_L001_R1_001.fastq Sample-67-COI-1_S25_L001_R2_001.fastq N704 N502 A4 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_68_COI.1 Sample-68-COI-1_S26_L001_R1_001.fastq Sample-68-COI-1_S26_L001_R2_001.fastq N704 N503 B4 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_70_COI.1 Sample-70-COI-1_S27_L001_R1_001.fastq Sample-70-COI-1_S27_L001_R2_001.fastq N704 N504 C4 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_72_COI.1 Sample-72-COI-1_S28_L001_R1_001.fastq Sample-72-COI-1_S28_L001_R2_001.fastq N704 N505 D4 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_74_COI.1 Sample-74-COI-1_S29_L001_R1_001.fastq Sample-74-COI-1_S29_L001_R2_001.fastq N704 N506 E4 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_77_COI.1 Sample-77-COI-1_S30_L001_R1_001.fastq Sample-77-COI-1_S30_L001_R2_001.fastq N704 N507 F4 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_79_COI.1 Sample-79-COI-1_S31_L001_R1_001.fastq Sample-79-COI-1_S31_L001_R2_001.fastq N704 N508 G4 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_76_COI.1 Sample-76-COI-1_S32_L001_R1_001.fastq Sample-76-COI-1_S32_L001_R2_001.fastq N704 N517 H4 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_1_COI.2 Sample-1-COI-2_S33_L001_R1_001.fastq Sample-1-COI-2_S33_L001_R2_001.fastq N705 N502 A5 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_2_COI.2 Sample-2-COI-2_S34_L001_R1_001.fastq Sample-2-COI-2_S34_L001_R2_001.fastq N705 N503 B5 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_7_COI.2 Sample-7-COI-2_S35_L001_R1_001.fastq Sample-7-COI-2_S35_L001_R2_001.fastq N705 N504 C5 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_19_COI.2 Sample-19-COI-2_S36_L001_R1_001.fastq Sample-19-COI-2_S36_L001_R2_001.fastq N705 N505 D5 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_24_COI.2 Sample-24-COI-2_S37_L001_R1_001.fastq Sample-24-COI-2_S37_L001_R2_001.fastq N705 N506 E5 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_48_COI.2 Sample-48-COI-2_S38_L001_R1_001.fastq Sample-48-COI-2_S38_L001_R2_001.fastq N705 N507 F5 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_33_COI.2 Sample-33-COI-2_S39_L001_R1_001.fastq Sample-33-COI-2_S39_L001_R2_001.fastq N705 N508 G5 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_35_COI.2 Sample-35-COI-2_S40_L001_R1_001.fastq Sample-35-COI-2_S40_L001_R2_001.fastq N705 N517 H5 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_39_COI.2 Sample-39-COI-2_S41_L001_R1_001.fastq Sample-39-COI-2_S41_L001_R2_001.fastq N706 N502 A6 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_38_COI.2 Sample-38-COI-2_S42_L001_R1_001.fastq Sample-38-COI-2_S42_L001_R2_001.fastq N706 N503 B6 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_41_COI.2 Sample-41-COI-2_S43_L001_R1_001.fastq Sample-41-COI-2_S43_L001_R2_001.fastq N706 N504 C6 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_44_COI.2 Sample-44-COI-2_S44_L001_R1_001.fastq Sample-44-COI-2_S44_L001_R2_001.fastq N706 N505 D6 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_45_COI.2 Sample-45-COI-2_S45_L001_R1_001.fastq Sample-45-COI-2_S45_L001_R2_001.fastq N706 N506 E6 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_46_COI.2 Sample-46-COI-2_S46_L001_R1_001.fastq Sample-46-COI-2_S46_L001_R2_001.fastq N706 N507 F6 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_52_COI.2 Sample-52-COI-2_S47_L001_R1_001.fastq Sample-52-COI-2_S47_L001_R2_001.fastq N706 N508 G6 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_161_COI.2 Sample-161-COI-2_S48_L001_R1_001.fastq Sample-161-COI-2_S48_L001_R2_001.fastq N706 N517 H6 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_53_COI.2 Sample-53-COI-2_S49_L001_R1_001.fastq Sample-53-COI-2_S49_L001_R2_001.fastq N707 N502 A7 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_55_COI.2 Sample-55-COI-2_S50_L001_R1_001.fastq Sample-55-COI-2_S50_L001_R2_001.fastq N707 N503 B7 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_57_COI.2 Sample-57-COI-2_S51_L001_R1_001.fastq Sample-57-COI-2_S51_L001_R2_001.fastq N707 N504 C7 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_59_COI.2 Sample-59-COI-2_S52_L001_R1_001.fastq Sample-59-COI-2_S52_L001_R2_001.fastq N707 N505 D7 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_62_COI.2 Sample-62-COI-2_S53_L001_R1_001.fastq Sample-62-COI-2_S53_L001_R2_001.fastq N707 N506 E7 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_60_COI.2 Sample-60-COI-2_S54_L001_R1_001.fastq Sample-60-COI-2_S54_L001_R2_001.fastq N707 N507 F7 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_63_COI.2 Sample-63-COI-2_S55_L001_R1_001.fastq Sample-63-COI-2_S55_L001_R2_001.fastq N707 N508 G7 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_65_COI.2 Sample-65-COI-2_S56_L001_R1_001.fastq Sample-65-COI-2_S56_L001_R2_001.fastq N707 N517 H7 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_67_COI.2 Sample-67-COI-2_S57_L001_R1_001.fastq Sample-67-COI-2_S57_L001_R2_001.fastq N708 N502 A8 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_68_COI.2 Sample-68-COI-2_S58_L001_R1_001.fastq Sample-68-COI-2_S58_L001_R2_001.fastq N708 N503 B8 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_70_COI.2 Sample-70-COI-2_S59_L001_R1_001.fastq Sample-70-COI-2_S59_L001_R2_001.fastq N708 N504 C8 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_72_COI.2 Sample-72-COI-2_S60_L001_R1_001.fastq Sample-72-COI-2_S60_L001_R2_001.fastq N708 N505 D8 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_74_COI.2 Sample-74-COI-2_S61_L001_R1_001.fastq Sample-74-COI-2_S61_L001_R2_001.fastq N708 N506 E8 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_77_COI.2 Sample-77-COI-2_S62_L001_R1_001.fastq Sample-77-COI-2_S62_L001_R2_001.fastq N708 N507 F8 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_79_COI.2 Sample-79-COI-2_S63_L001_R1_001.fastq Sample-79-COI-2_S63_L001_R2_001.fastq N708 N508 G8 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_76_COI.2 Sample-76-COI-2_S64_L001_R1_001.fastq Sample-76-COI-2_S64_L001_R2_001.fastq N715 N517 H8 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Tilapia_COI.1 Tilapia-COI-1_S65_L001_R1_001.fastq Tilapia-COI-1_S65_L001_R2_001.fastq N709 N502 A9 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_51_COI.1 Sample-51-COI-1_S66_L001_R1_001.fastq Sample-51-COI-1_S66_L001_R2_001.fastq N709 N503 B9 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_51_COI.2 Sample-51-COI-2_S67_L001_R1_001.fastq Sample-51-COI-2_S67_L001_R2_001.fastq N709 N504 C9 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_19_COI.1 Sample-19-COI-1_S68_L001_R1_001.fastq Sample-19-COI-1_S68_L001_R2_001.fastq N709 N505 D9 GGWACWGGWTGAACWGTWTAYCCYCC GTANACYTCNGGRTGNCCRAARAAYCA COI_Leray
Sample_33_16S.1 Sample-33-16S-1_S69_L001_R1_001.fastq Sample-33-16S-1_S69_L001_R2_001.fastq N709 N506 E9 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_33_16S.2 Sample-33-16S-2_S70_L001_R1_001.fastq Sample-33-16S-2_S70_L001_R2_001.fastq N709 N507 F9 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_20_16S.1 Sample-20-16S-1_S71_L001_R1_001.fastq Sample-20-16S-1_S71_L001_R2_001.fastq N709 N508 G9 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_38_16S.1 Sample-38-16S-1_S72_L001_R1_001.fastq Sample-38-16S-1_S72_L001_R2_001.fastq N709 N517 H9 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_38_16S.2 Sample-38-16S-2_S73_L001_R1_001.fastq Sample-38-16S-2_S73_L001_R2_001.fastq N710 N502 A10 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_38_16S.3 Sample-38-16S-3_S74_L001_R1_001.fastq Sample-38-16S-3_S74_L001_R2_001.fastq N710 N503 B10 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_25_16S.1 Sample-25-16S-1_S75_L001_R1_001.fastq Sample-25-16S-1_S75_L001_R2_001.fastq N710 N504 C10 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_39_16S.1 Sample-39-16S-1_S76_L001_R1_001.fastq Sample-39-16S-1_S76_L001_R2_001.fastq N710 N505 D10 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_39_16S.2 Sample-39-16S-2_S77_L001_R1_001.fastq Sample-39-16S-2_S77_L001_R2_001.fastq N710 N506 E10 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_39_16S.3 Sample-39-16S-3_S78_L001_R1_001.fastq Sample-39-16S-3_S78_L001_R2_001.fastq N710 N507 F10 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Tilapia_16S.1 Tilapia-16S-1_S79_L001_R1_001.fastq Tilapia-16S-1_S79_L001_R2_001.fastq N710 N508 G10 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_48_16S.1 Sample-48-16S-1_S80_L001_R1_001.fastq Sample-48-16S-1_S80_L001_R2_001.fastq N710 N517 H10 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_72_16S.1 Sample-72-16S-1_S81_L001_R1_001.fastq Sample-72-16S-1_S81_L001_R2_001.fastq N711 N502 A11 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_72_16S.2 Sample-72-16S-2_S82_L001_R1_001.fastq Sample-72-16S-2_S82_L001_R2_001.fastq N711 N503 B11 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_72_16S.3 Sample-72-16S-3_S83_L001_R1_001.fastq Sample-72-16S-3_S83_L001_R2_001.fastq N711 N504 C11 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_77_16S.1 Sample-77-16S-1_S84_L001_R1_001.fastq Sample-77-16S-1_S84_L001_R2_001.fastq N711 N505 D11 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_79_16S.1 Sample-79-16S-1_S85_L001_R1_001.fastq Sample-79-16S-1_S85_L001_R2_001.fastq N711 N506 E11 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_79_16S.2 Sample-79-16S-2_S86_L001_R1_001.fastq Sample-79-16S-2_S86_L001_R2_001.fastq N711 N507 F11 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Sample_32_16S.1 Sample-32-16S-1_S87_L001_R1_001.fastq Sample-32-16S-1_S87_L001_R2_001.fastq N711 N508 G11 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey
Tilapia_16S.2 Tilapia-16S-2_S88_L001_R1_001.fastq Tilapia-16S-2_S88_L001_R2_001.fastq N711 N517 H11 GYAATCACTTGTCTTTTAAATGAAGACC GGATTGCGCTGTTATCCCTA 16S_Prey