To run this Rmarkdown, open it in Rstudio and from the knit drop-down menu, choose Knit with parameters
It creates the Illumina Sample sheet and the metadata.csv
file that you need for running the pipeline. You need to double check the output - weird things happen all the time.
You need an input file with at least the following columns:
Nextera_Adapters_i7 <- read_csv(here("data_sub","Nextera_adapters_i7.csv"))
## Parsed with column specification:
## cols(
## i7_Index_Name = col_character(),
## Bases_in_Adapter_i7 = col_character(),
## Bases_for_Sample_Sheet_i7 = col_character()
## )
Nextera_Adapters_i5 <- read_csv(here("data_sub","Nextera_adapters_i5.csv"))
## Parsed with column specification:
## cols(
## i5_Index_Name = col_character(),
## Bases_in_Adapter_i5 = col_character(),
## Bases_for_Sample_Sheet_i5 = col_character()
## )
init.metadata <- read_csv(params$input.metadata)
## Parsed with column specification:
## cols(
## Sample_name = col_character(),
## Well = col_character(),
## Row = col_character(),
## Column = col_double(),
## i7_Index_Name = col_character(),
## i5_Index_Name = col_character(),
## Qubit = col_double(),
## PrimerF = col_character(),
## PrimerR = col_character(),
## Locus = col_character()
## )
init.metadata
## # A tibble: 88 x 10
## Sample_name Well Row Column i7_Index_Name i5_Index_Name Qubit PrimerF
## <chr> <chr> <chr> <dbl> <chr> <chr> <dbl> <chr>
## 1 Sample_1_C… A1 A 1 N701 N502 4.78 GGWACW…
## 2 Sample_2_C… B1 B 1 N701 N503 5.43 GGWACW…
## 3 Sample_7_C… C1 C 1 N701 N504 13.4 GGWACW…
## 4 Tilapia_CO… D1 D 1 N701 N505 11 GGWACW…
## 5 Sample_24_… E1 E 1 N701 N506 0.8 GGWACW…
## 6 Sample_48_… F1 F 1 N701 N507 6.4 GGWACW…
## 7 Sample_33_… G1 G 1 N701 N508 6.6 GGWACW…
## 8 Sample_35_… H1 H 1 N701 N517 3.75 GGWACW…
## 9 Sample_39_… A2 A 2 N702 N502 1.07 GGWACW…
## 10 Sample_38_… B2 B 2 N702 N503 3.01 GGWACW…
## # … with 78 more rows, and 2 more variables: PrimerR <chr>, Locus <chr>
init.metadata %>%
rownames_to_column("Sample_number") %>%
mutate_all(as.character) %>%
pivot_longer(-Sample_number, names_to = "Variable", values_to = "Value") %>%
summarise(Sample_name = case_when(sum(str_detect(Variable, "Sample")) > 0 ~ "Present",
TRUE ~ "Absent"),
Well = case_when(sum(str_detect(Variable, "Well")) > 0 ~ "Present",
TRUE ~ "Absent"),
PrimerF = case_when(sum(str_detect(Variable, "PrimerF")) > 0 ~ "Present",
TRUE ~ "Absent"),
PrimerR = case_when(sum(str_detect(Variable, "PrimerR")) > 0 ~ "Present",
TRUE ~ "Absent"),
i5_Adapter = case_when(sum(str_detect(Variable, "i5_Index_Name")) > 0 ~ "Present",
TRUE ~ "Absent"),
i7_Adapter = case_when(sum(str_detect(Variable, "i7_Index_Name")) > 0 ~ "Present",
TRUE ~ "Absent")) -> Checks
if(sum(str_detect(Checks,"Absent")) > 0){ knitr::knit_exit(append = "## ERROR: Initial metadata is missing some of the key column names:
- Sample_name
- Well
- PrimerF
- PrimerR
- Plate
- i5_Index_Name
- i7_Index_Name
### Change the column names / add the infromation to your csv file")}
The i5 and i7 indices can start by either N, S, or H. But the sequence is the same. Let’s make sure that they are compatible with the Nextera Indices file
init.metadata %>%
mutate(i5_Index_Name = str_replace(i5_Index_Name, "^[EHNS]", "N"),
i7_Index_Name = str_replace(i7_Index_Name, "^[HN]", "N")) -> init.metadata
Make the check that all the indices are present
case_when(nrow(anti_join(init.metadata, Nextera_Adapters_i5)) + nrow(anti_join(init.metadata, Nextera_Adapters_i7)) == 0 ~ "All indices present in the dataset",
# == 0 ~ "Pass i7",
TRUE ~ "Either some of the i5 or the i7 indices are not present in the Nextera Indices list - That will result in NAs in the final Sample Sheet")
## Joining, by = "i5_Index_Name"
## Joining, by = "i7_Index_Name"
## [1] "All indices present in the dataset"
template.sample.sheet <- read_lines(here("data_sub","SampleSheet.csv"))
Locate all the lines in which the new parameters are going to be written
date.row <- str_which(template.sample.sheet, "^\\Date")
Assay.row <- str_which(template.sample.sheet, "^Assay")
Index.row <- str_which(template.sample.sheet, "^Index Adapters")
Reads.row <- str_which(template.sample.sheet, "^\\[Reads]")
data.start <- str_which(template.sample.sheet, "^\\[Data]")
data.header <- str_which(template.sample.sheet, "^Sample_ID")
init.metadata %>%
left_join(Nextera_Adapters_i7) %>%
left_join(Nextera_Adapters_i5) -> metadata
## Joining, by = "i7_Index_Name"
## Joining, by = "i5_Index_Name"
In the case where there are many loci represented on each sample, usually you have them in the same well. If this is the case, your Illumina samplesheet will have fewer entries (rows) than your metadata sheet. In the Illumina sampleSheet, there are two parts: one that refers to the whole plate, and one that specificies the samples run.
These include date of analysis,
template.sample.sheet[date.row] <- paste0("Date,",params$date)
template.sample.sheet[Assay.row] <- paste0("Assay," ,params$Assay)
template.sample.sheet[Index.row] <- paste0("Index Adapters,",params$Index_Adapters)
template.sample.sheet[Reads.row +1 ] <- template.sample.sheet[Reads.row + 2] <- params$Cycles_per_pairend
Then with the rest of the dataset - collapsing first by primers
metadata %>%
group_by( i5_Index_Name,i7_Index_Name ) %>%
tally() -> occurrence.of.combos
if(max(occurrence.of.combos$n > 1 )){
print("There are combinations of barcodes assigned to more than 1 sample - Please Check they have different PCR primers so you can separate them after")
metadata %>%
group_by(i5_Adapter,i7_Adapter ) %>%
slice(1) -> metadata.for.sample.sheet
print ("Keeping the first occurence of each combo for your samplesheet")}else{metadata.for.sample.sheet <- metadata}
We are going to assume that the Illumina always returns files with the format Sample_name
Sample_number
_L001_R
[1-2] ’_001.fastq`. So let’s fill the metadata accordingly.
sample.data %>%
mutate(Sample_name = str_replace_all(Sample_ID,pattern = "[\\.|_]",replacement = "-")) %>%
rownames_to_column("Sample_number") %>%
mutate(file1 = paste0(Sample_name, "_S", Sample_number, "_L001_R1_001.fastq"),
file2 = paste0(Sample_name, "_S", Sample_number, "_L001_R2_001.fastq")) %>%
select(i7_Index_Name = I7_Index_ID, i5_Index_Name = I5_Index_ID, file1, file2) -> filenames
## Joining, by = c("i7_Index_Name", "i5_Index_Name")
IUAPAC.char <- read_csv(here("data_sub","IUAPAC.csv"))
## Parsed with column specification:
## cols(
## Nucleotide.symbol = col_character(),
## Full.Name = col_character()
## )
IUPAC.char.1 <- paste(IUAPAC.char$Nucleotide.symbol, collapse = "")
IUPAC.char.1 <- paste0("[^",IUPAC.char.1,"]")
allprimers = paste0(metadata$PrimerR, metadata$PrimerF, collapse = "")
case_when(str_count(allprimers, IUPAC.char.1) > 0 ~ print("There are non-IUAPAC characters in your primers, changing them to N"))
## [1] "There are non-IUAPAC characters in your primers, changing them to N"
## [1] "There are non-IUAPAC characters in your primers, changing them to N"
metadata %>%
mutate_at(.vars = vars(starts_with("Primer")), function(x)str_replace_all(x, IUPAC.char.1, "N")) -> metadata
write_csv(metadata, file.path(params$output_dir,paste0( "metadata_",Sys.Date(),".csv")))
kable(metadata, align= "c", format = "html") %>%
kable_styling(bootstrap_options= "striped", fixed_thead = T,full_width = T, position = "center") %>%
column_spec(2, bold=T) %>%
scroll_box(width = "1200px", height = "600px")
Sample_name | file1 | file2 | i7_Index_Name | i5_Index_Name | Well | PrimerF | PrimerR | Locus |
---|---|---|---|---|---|---|---|---|
Sample_1_COI.1 | Sample-1-COI-1_S1_L001_R1_001.fastq | Sample-1-COI-1_S1_L001_R2_001.fastq | N701 | N502 | A1 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_2_COI.1 | Sample-2-COI-1_S2_L001_R1_001.fastq | Sample-2-COI-1_S2_L001_R2_001.fastq | N701 | N503 | B1 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_7_COI.1 | Sample-7-COI-1_S3_L001_R1_001.fastq | Sample-7-COI-1_S3_L001_R2_001.fastq | N701 | N504 | C1 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Tilapia_COI.2 | Tilapia-COI-2_S4_L001_R1_001.fastq | Tilapia-COI-2_S4_L001_R2_001.fastq | N701 | N505 | D1 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_24_COI.1 | Sample-24-COI-1_S5_L001_R1_001.fastq | Sample-24-COI-1_S5_L001_R2_001.fastq | N701 | N506 | E1 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_48_COI.1 | Sample-48-COI-1_S6_L001_R1_001.fastq | Sample-48-COI-1_S6_L001_R2_001.fastq | N701 | N507 | F1 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_33_COI.1 | Sample-33-COI-1_S7_L001_R1_001.fastq | Sample-33-COI-1_S7_L001_R2_001.fastq | N701 | N508 | G1 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_35_COI.1 | Sample-35-COI-1_S8_L001_R1_001.fastq | Sample-35-COI-1_S8_L001_R2_001.fastq | N701 | N517 | H1 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_39_COI.1 | Sample-39-COI-1_S9_L001_R1_001.fastq | Sample-39-COI-1_S9_L001_R2_001.fastq | N702 | N502 | A2 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_38_COI.1 | Sample-38-COI-1_S10_L001_R1_001.fastq | Sample-38-COI-1_S10_L001_R2_001.fastq | N702 | N503 | B2 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_41_COI.1 | Sample-41-COI-1_S11_L001_R1_001.fastq | Sample-41-COI-1_S11_L001_R2_001.fastq | N702 | N504 | C2 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_44_COI.1 | Sample-44-COI-1_S12_L001_R1_001.fastq | Sample-44-COI-1_S12_L001_R2_001.fastq | N702 | N505 | D2 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_45_COI.1 | Sample-45-COI-1_S13_L001_R1_001.fastq | Sample-45-COI-1_S13_L001_R2_001.fastq | N702 | N506 | E2 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_46_COI.1 | Sample-46-COI-1_S14_L001_R1_001.fastq | Sample-46-COI-1_S14_L001_R2_001.fastq | N702 | N507 | F2 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_52_COI.1 | Sample-52-COI-1_S15_L001_R1_001.fastq | Sample-52-COI-1_S15_L001_R2_001.fastq | N702 | N508 | G2 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_161_COI.1 | Sample-161-COI-1_S16_L001_R1_001.fastq | Sample-161-COI-1_S16_L001_R2_001.fastq | N702 | N517 | H2 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_53_COI.1 | Sample-53-COI-1_S17_L001_R1_001.fastq | Sample-53-COI-1_S17_L001_R2_001.fastq | N712 | N502 | A3 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_55_COI.1 | Sample-55-COI-1_S18_L001_R1_001.fastq | Sample-55-COI-1_S18_L001_R2_001.fastq | N712 | N503 | B3 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_57_COI.1 | Sample-57-COI-1_S19_L001_R1_001.fastq | Sample-57-COI-1_S19_L001_R2_001.fastq | N712 | N504 | C3 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_59_COI.1 | Sample-59-COI-1_S20_L001_R1_001.fastq | Sample-59-COI-1_S20_L001_R2_001.fastq | N712 | N505 | D3 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_62_COI.1 | Sample-62-COI-1_S21_L001_R1_001.fastq | Sample-62-COI-1_S21_L001_R2_001.fastq | N712 | N506 | E3 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_60_COI.1 | Sample-60-COI-1_S22_L001_R1_001.fastq | Sample-60-COI-1_S22_L001_R2_001.fastq | N712 | N507 | F3 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_63_COI.1 | Sample-63-COI-1_S23_L001_R1_001.fastq | Sample-63-COI-1_S23_L001_R2_001.fastq | N712 | N508 | G3 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_65_COI.1 | Sample-65-COI-1_S24_L001_R1_001.fastq | Sample-65-COI-1_S24_L001_R2_001.fastq | N712 | N517 | H3 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_67_COI.1 | Sample-67-COI-1_S25_L001_R1_001.fastq | Sample-67-COI-1_S25_L001_R2_001.fastq | N704 | N502 | A4 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_68_COI.1 | Sample-68-COI-1_S26_L001_R1_001.fastq | Sample-68-COI-1_S26_L001_R2_001.fastq | N704 | N503 | B4 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_70_COI.1 | Sample-70-COI-1_S27_L001_R1_001.fastq | Sample-70-COI-1_S27_L001_R2_001.fastq | N704 | N504 | C4 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_72_COI.1 | Sample-72-COI-1_S28_L001_R1_001.fastq | Sample-72-COI-1_S28_L001_R2_001.fastq | N704 | N505 | D4 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_74_COI.1 | Sample-74-COI-1_S29_L001_R1_001.fastq | Sample-74-COI-1_S29_L001_R2_001.fastq | N704 | N506 | E4 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_77_COI.1 | Sample-77-COI-1_S30_L001_R1_001.fastq | Sample-77-COI-1_S30_L001_R2_001.fastq | N704 | N507 | F4 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_79_COI.1 | Sample-79-COI-1_S31_L001_R1_001.fastq | Sample-79-COI-1_S31_L001_R2_001.fastq | N704 | N508 | G4 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_76_COI.1 | Sample-76-COI-1_S32_L001_R1_001.fastq | Sample-76-COI-1_S32_L001_R2_001.fastq | N704 | N517 | H4 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_1_COI.2 | Sample-1-COI-2_S33_L001_R1_001.fastq | Sample-1-COI-2_S33_L001_R2_001.fastq | N705 | N502 | A5 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_2_COI.2 | Sample-2-COI-2_S34_L001_R1_001.fastq | Sample-2-COI-2_S34_L001_R2_001.fastq | N705 | N503 | B5 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_7_COI.2 | Sample-7-COI-2_S35_L001_R1_001.fastq | Sample-7-COI-2_S35_L001_R2_001.fastq | N705 | N504 | C5 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_19_COI.2 | Sample-19-COI-2_S36_L001_R1_001.fastq | Sample-19-COI-2_S36_L001_R2_001.fastq | N705 | N505 | D5 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_24_COI.2 | Sample-24-COI-2_S37_L001_R1_001.fastq | Sample-24-COI-2_S37_L001_R2_001.fastq | N705 | N506 | E5 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_48_COI.2 | Sample-48-COI-2_S38_L001_R1_001.fastq | Sample-48-COI-2_S38_L001_R2_001.fastq | N705 | N507 | F5 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_33_COI.2 | Sample-33-COI-2_S39_L001_R1_001.fastq | Sample-33-COI-2_S39_L001_R2_001.fastq | N705 | N508 | G5 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_35_COI.2 | Sample-35-COI-2_S40_L001_R1_001.fastq | Sample-35-COI-2_S40_L001_R2_001.fastq | N705 | N517 | H5 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_39_COI.2 | Sample-39-COI-2_S41_L001_R1_001.fastq | Sample-39-COI-2_S41_L001_R2_001.fastq | N706 | N502 | A6 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_38_COI.2 | Sample-38-COI-2_S42_L001_R1_001.fastq | Sample-38-COI-2_S42_L001_R2_001.fastq | N706 | N503 | B6 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_41_COI.2 | Sample-41-COI-2_S43_L001_R1_001.fastq | Sample-41-COI-2_S43_L001_R2_001.fastq | N706 | N504 | C6 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_44_COI.2 | Sample-44-COI-2_S44_L001_R1_001.fastq | Sample-44-COI-2_S44_L001_R2_001.fastq | N706 | N505 | D6 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_45_COI.2 | Sample-45-COI-2_S45_L001_R1_001.fastq | Sample-45-COI-2_S45_L001_R2_001.fastq | N706 | N506 | E6 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_46_COI.2 | Sample-46-COI-2_S46_L001_R1_001.fastq | Sample-46-COI-2_S46_L001_R2_001.fastq | N706 | N507 | F6 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_52_COI.2 | Sample-52-COI-2_S47_L001_R1_001.fastq | Sample-52-COI-2_S47_L001_R2_001.fastq | N706 | N508 | G6 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_161_COI.2 | Sample-161-COI-2_S48_L001_R1_001.fastq | Sample-161-COI-2_S48_L001_R2_001.fastq | N706 | N517 | H6 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_53_COI.2 | Sample-53-COI-2_S49_L001_R1_001.fastq | Sample-53-COI-2_S49_L001_R2_001.fastq | N707 | N502 | A7 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_55_COI.2 | Sample-55-COI-2_S50_L001_R1_001.fastq | Sample-55-COI-2_S50_L001_R2_001.fastq | N707 | N503 | B7 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_57_COI.2 | Sample-57-COI-2_S51_L001_R1_001.fastq | Sample-57-COI-2_S51_L001_R2_001.fastq | N707 | N504 | C7 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_59_COI.2 | Sample-59-COI-2_S52_L001_R1_001.fastq | Sample-59-COI-2_S52_L001_R2_001.fastq | N707 | N505 | D7 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_62_COI.2 | Sample-62-COI-2_S53_L001_R1_001.fastq | Sample-62-COI-2_S53_L001_R2_001.fastq | N707 | N506 | E7 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_60_COI.2 | Sample-60-COI-2_S54_L001_R1_001.fastq | Sample-60-COI-2_S54_L001_R2_001.fastq | N707 | N507 | F7 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_63_COI.2 | Sample-63-COI-2_S55_L001_R1_001.fastq | Sample-63-COI-2_S55_L001_R2_001.fastq | N707 | N508 | G7 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_65_COI.2 | Sample-65-COI-2_S56_L001_R1_001.fastq | Sample-65-COI-2_S56_L001_R2_001.fastq | N707 | N517 | H7 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_67_COI.2 | Sample-67-COI-2_S57_L001_R1_001.fastq | Sample-67-COI-2_S57_L001_R2_001.fastq | N708 | N502 | A8 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_68_COI.2 | Sample-68-COI-2_S58_L001_R1_001.fastq | Sample-68-COI-2_S58_L001_R2_001.fastq | N708 | N503 | B8 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_70_COI.2 | Sample-70-COI-2_S59_L001_R1_001.fastq | Sample-70-COI-2_S59_L001_R2_001.fastq | N708 | N504 | C8 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_72_COI.2 | Sample-72-COI-2_S60_L001_R1_001.fastq | Sample-72-COI-2_S60_L001_R2_001.fastq | N708 | N505 | D8 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_74_COI.2 | Sample-74-COI-2_S61_L001_R1_001.fastq | Sample-74-COI-2_S61_L001_R2_001.fastq | N708 | N506 | E8 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_77_COI.2 | Sample-77-COI-2_S62_L001_R1_001.fastq | Sample-77-COI-2_S62_L001_R2_001.fastq | N708 | N507 | F8 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_79_COI.2 | Sample-79-COI-2_S63_L001_R1_001.fastq | Sample-79-COI-2_S63_L001_R2_001.fastq | N708 | N508 | G8 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_76_COI.2 | Sample-76-COI-2_S64_L001_R1_001.fastq | Sample-76-COI-2_S64_L001_R2_001.fastq | N715 | N517 | H8 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Tilapia_COI.1 | Tilapia-COI-1_S65_L001_R1_001.fastq | Tilapia-COI-1_S65_L001_R2_001.fastq | N709 | N502 | A9 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_51_COI.1 | Sample-51-COI-1_S66_L001_R1_001.fastq | Sample-51-COI-1_S66_L001_R2_001.fastq | N709 | N503 | B9 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_51_COI.2 | Sample-51-COI-2_S67_L001_R1_001.fastq | Sample-51-COI-2_S67_L001_R2_001.fastq | N709 | N504 | C9 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_19_COI.1 | Sample-19-COI-1_S68_L001_R1_001.fastq | Sample-19-COI-1_S68_L001_R2_001.fastq | N709 | N505 | D9 | GGWACWGGWTGAACWGTWTAYCCYCC | GTANACYTCNGGRTGNCCRAARAAYCA | COI_Leray |
Sample_33_16S.1 | Sample-33-16S-1_S69_L001_R1_001.fastq | Sample-33-16S-1_S69_L001_R2_001.fastq | N709 | N506 | E9 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_33_16S.2 | Sample-33-16S-2_S70_L001_R1_001.fastq | Sample-33-16S-2_S70_L001_R2_001.fastq | N709 | N507 | F9 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_20_16S.1 | Sample-20-16S-1_S71_L001_R1_001.fastq | Sample-20-16S-1_S71_L001_R2_001.fastq | N709 | N508 | G9 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_38_16S.1 | Sample-38-16S-1_S72_L001_R1_001.fastq | Sample-38-16S-1_S72_L001_R2_001.fastq | N709 | N517 | H9 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_38_16S.2 | Sample-38-16S-2_S73_L001_R1_001.fastq | Sample-38-16S-2_S73_L001_R2_001.fastq | N710 | N502 | A10 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_38_16S.3 | Sample-38-16S-3_S74_L001_R1_001.fastq | Sample-38-16S-3_S74_L001_R2_001.fastq | N710 | N503 | B10 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_25_16S.1 | Sample-25-16S-1_S75_L001_R1_001.fastq | Sample-25-16S-1_S75_L001_R2_001.fastq | N710 | N504 | C10 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_39_16S.1 | Sample-39-16S-1_S76_L001_R1_001.fastq | Sample-39-16S-1_S76_L001_R2_001.fastq | N710 | N505 | D10 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_39_16S.2 | Sample-39-16S-2_S77_L001_R1_001.fastq | Sample-39-16S-2_S77_L001_R2_001.fastq | N710 | N506 | E10 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_39_16S.3 | Sample-39-16S-3_S78_L001_R1_001.fastq | Sample-39-16S-3_S78_L001_R2_001.fastq | N710 | N507 | F10 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Tilapia_16S.1 | Tilapia-16S-1_S79_L001_R1_001.fastq | Tilapia-16S-1_S79_L001_R2_001.fastq | N710 | N508 | G10 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_48_16S.1 | Sample-48-16S-1_S80_L001_R1_001.fastq | Sample-48-16S-1_S80_L001_R2_001.fastq | N710 | N517 | H10 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_72_16S.1 | Sample-72-16S-1_S81_L001_R1_001.fastq | Sample-72-16S-1_S81_L001_R2_001.fastq | N711 | N502 | A11 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_72_16S.2 | Sample-72-16S-2_S82_L001_R1_001.fastq | Sample-72-16S-2_S82_L001_R2_001.fastq | N711 | N503 | B11 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_72_16S.3 | Sample-72-16S-3_S83_L001_R1_001.fastq | Sample-72-16S-3_S83_L001_R2_001.fastq | N711 | N504 | C11 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_77_16S.1 | Sample-77-16S-1_S84_L001_R1_001.fastq | Sample-77-16S-1_S84_L001_R2_001.fastq | N711 | N505 | D11 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_79_16S.1 | Sample-79-16S-1_S85_L001_R1_001.fastq | Sample-79-16S-1_S85_L001_R2_001.fastq | N711 | N506 | E11 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_79_16S.2 | Sample-79-16S-2_S86_L001_R1_001.fastq | Sample-79-16S-2_S86_L001_R2_001.fastq | N711 | N507 | F11 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Sample_32_16S.1 | Sample-32-16S-1_S87_L001_R1_001.fastq | Sample-32-16S-1_S87_L001_R2_001.fastq | N711 | N508 | G11 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |
Tilapia_16S.2 | Tilapia-16S-2_S88_L001_R1_001.fastq | Tilapia-16S-2_S88_L001_R2_001.fastq | N711 | N517 | H11 | GYAATCACTTGTCTTTTAAATGAAGACC | GGATTGCGCTGTTATCCCTA | 16S_Prey |