subroutine master(x,y,rw,npd,ntot,nadj,madj,eps,delsgs,ndel,delsum, dirsgs,ndir,dirsum,collinchk,nerror) # Master subroutine: # One subroutine to rule them all, # One subroutine to find them. # One subroutine to bring them all in, # And in the darkness bind them. implicit double precision(a-h,o-z) dimension x(-3:ntot), y(-3:ntot) dimension nadj(-3:ntot,0:madj) dimension rw(4) dimension delsgs(6,ndel), dirsgs(10,ndir) dimension delsum(npd,4), dirsum(npd,3) integer collinchk # Define one. one = 1.d0 # Initialize the adjacency list; counts to 0, other entries to -99. do i = -3,ntot { nadj(i,0) = 0 do j = 1,madj { nadj(i,j) = -99 } } # Put the four ideal points into x and y and the adjacency list. # The ideal points are given pseudo-coordinates # (-1,-1), (1,-1), (1,1), and (-1,1). They are numbered as # 0 -1 -2 -3 # i.e. the numbers decrease anticlockwise from the # `bottom left corner'. x(-3) = -one y(-3) = one x(-2) = one y(-2) = one x(-1) = one y(-1) = -one x(0) = -one y(0) = -one do i = 1,4 { j = i-4 k = j+1 if(k>0) k = -3 call insrt(j,k,nadj,madj,x,y,ntot,nerror,eps) if(nerror>0) return } # Put in the first of the point set into the adjacency list. do i = 1,4 { j = i-4 call insrt(1,j,nadj,madj,x,y,ntot,nerror,eps) if(nerror>0) return } ntri = 4 # Now add the rest of the point set do j = 2,npd { call addpt(j,nadj,madj,x,y,ntot,eps,ntri,nerror) if(collinchk==1) call collincheck(nadj,j,madj,x,y,ntot,eps) if(nerror>0) { return } ntri = ntri + 3 } # Obtain the description of the triangulation. call delseg(delsgs,ndel,nadj,madj,npd,x,y,ntot,nerror) if(nerror>0) return call delout(delsum,nadj,madj,x,y,ntot,npd,nerror) if(nerror>0) return call dirseg(dirsgs,ndir,nadj,madj,npd,x,y,ntot,rw,eps,ntri,nerror) if(nerror>0) return call dirout(dirsum,nadj,madj,x,y,ntot,npd,rw,eps,nerror) return end