// SPDX-License-Identifier: Apache-2.0 // // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) // Copyright 2008-2016 National ICT Australia (NICTA) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ------------------------------------------------------------------------ //! \addtogroup op_stddev //! @{ //! \brief //! For each row or for each column, find the standard deviation. //! The result is stored in a dense matrix that has either one column or one row. //! The dimension for which the standard deviations are found is set via the stddev() function. template inline void op_stddev::apply(Mat& out, const mtOp& in) { arma_extra_debug_sigprint(); typedef typename T1::elem_type in_eT; typedef typename T1::pod_type out_eT; const unwrap_check_mixed tmp(in.m, out); const Mat& X = tmp.M; const uword norm_type = in.aux_uword_a; const uword dim = in.aux_uword_b; arma_debug_check( (norm_type > 1), "stddev(): parameter 'norm_type' must be 0 or 1" ); arma_debug_check( (dim > 1), "stddev(): parameter 'dim' must be 0 or 1" ); const uword X_n_rows = X.n_rows; const uword X_n_cols = X.n_cols; if(dim == 0) { arma_extra_debug_print("op_stddev::apply(): dim = 0"); out.set_size((X_n_rows > 0) ? 1 : 0, X_n_cols); if(X_n_rows > 0) { out_eT* out_mem = out.memptr(); for(uword col=0; col 0) ? 1 : 0); if(X_n_cols > 0) { podarray dat(X_n_cols); in_eT* dat_mem = dat.memptr(); out_eT* out_mem = out.memptr(); for(uword row=0; row