library(gridGraphics) abline1 <- function() { ## Setup up coordinate system (with x == y aspect ratio): plot(c(-2,3), c(-1,5), type = "n", xlab = "x", ylab = "y", asp = 1) ## the x- and y-axis, and an integer grid abline(h = 0, v = 0, col = "gray60") text(1,0, "abline( h = 0 )", col = "gray60", adj = c(0, -.1)) abline(h = -1:5, v = -2:3, col = "lightgray", lty = 3) abline(a = 1, b = 2, col = 2) text(1,3, "abline( 1, 2 )", col = 2, adj = c(-.1, -.1)) } abline2 <- function() { ## Simple Regression Lines: require(stats) sale5 <- c(6, 4, 9, 7, 6, 12, 8, 10, 9, 13) plot(sale5) abline(lsfit(1:10, sale5)) abline(lsfit(1:10, sale5, intercept = FALSE), col = 4) # less fitting } abline3 <- function() { z <- lm(dist ~ speed, data = cars) plot(cars) abline(z) # equivalent to abline(reg = z) or abline(coef = coef(z)) ## trivial intercept model abline(mC <- lm(dist ~ 1, data = cars)) ## the same as abline(a = coef(mC), b = 0, col = "blue") } # Test 'untf' and log scales abline4 <- function() { par(mfrow=c(2, 2), mar=c(5, 4, 2, 2)) plot(1:10) abline(1, 1) plot(1:10, log="x") abline(1, 1, untf=TRUE) plot(1:10, log="y") abline(1, 1, untf=TRUE) plot(1:10, log="xy") abline(1, 1, untf=TRUE) } plotdiff(expression(abline1()), "abline-1") plotdiff(expression(abline2()), "abline-2") plotdiff(expression(abline3()), "abline-3") plotdiff(expression(abline4()), "abline-4") plotdiffResult()