// (C) Copyright Nick Thompson 2018. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_TOOLS_SIGNAL_STATISTICS_HPP #define BOOST_MATH_TOOLS_SIGNAL_STATISTICS_HPP #include #include #include #include #include #include #include BOOST_MATH_HEADER_DEPRECATED(""); namespace boost::math::tools { template auto absolute_gini_coefficient(ForwardIterator first, ForwardIterator last) { using std::abs; using RealOrComplex = typename std::iterator_traits::value_type; BOOST_MATH_ASSERT_MSG(first != last && std::next(first) != last, "Computation of the Gini coefficient requires at least two samples."); std::sort(first, last, [](RealOrComplex a, RealOrComplex b) { return abs(b) > abs(a); }); decltype(abs(*first)) i = 1; decltype(abs(*first)) num = 0; decltype(abs(*first)) denom = 0; for (auto it = first; it != last; ++it) { decltype(abs(*first)) tmp = abs(*it); num += tmp*i; denom += tmp; ++i; } // If the l1 norm is zero, all elements are zero, so every element is the same. if (denom == 0) { decltype(abs(*first)) zero = 0; return zero; } return ((2*num)/denom - i)/(i-1); } template inline auto absolute_gini_coefficient(RandomAccessContainer & v) { return boost::math::tools::absolute_gini_coefficient(v.begin(), v.end()); } template auto sample_absolute_gini_coefficient(ForwardIterator first, ForwardIterator last) { size_t n = std::distance(first, last); return n*boost::math::tools::absolute_gini_coefficient(first, last)/(n-1); } template inline auto sample_absolute_gini_coefficient(RandomAccessContainer & v) { return boost::math::tools::sample_absolute_gini_coefficient(v.begin(), v.end()); } // The Hoyer sparsity measure is defined in: // https://arxiv.org/pdf/0811.4706.pdf template auto hoyer_sparsity(const ForwardIterator first, const ForwardIterator last) { using T = typename std::iterator_traits::value_type; using std::abs; using std::sqrt; BOOST_MATH_ASSERT_MSG(first != last && std::next(first) != last, "Computation of the Hoyer sparsity requires at least two samples."); if constexpr (std::is_unsigned::value) { T l1 = 0; T l2 = 0; size_t n = 0; for (auto it = first; it != last; ++it) { l1 += *it; l2 += (*it)*(*it); n += 1; } double rootn = sqrt(n); return (rootn - l1/sqrt(l2) )/ (rootn - 1); } else { decltype(abs(*first)) l1 = 0; decltype(abs(*first)) l2 = 0; // We wouldn't need to count the elements if it was a random access iterator, // but our only constraint is that it's a forward iterator. size_t n = 0; for (auto it = first; it != last; ++it) { decltype(abs(*first)) tmp = abs(*it); l1 += tmp; l2 += tmp*tmp; n += 1; } if constexpr (std::is_integral::value) { double rootn = sqrt(n); return (rootn - l1/sqrt(l2) )/ (rootn - 1); } else { decltype(abs(*first)) rootn = sqrt(static_cast(n)); return (rootn - l1/sqrt(l2) )/ (rootn - 1); } } } template inline auto hoyer_sparsity(Container const & v) { return boost::math::tools::hoyer_sparsity(v.cbegin(), v.cend()); } template auto oracle_snr(Container const & signal, Container const & noisy_signal) { using Real = typename Container::value_type; BOOST_MATH_ASSERT_MSG(signal.size() == noisy_signal.size(), "Signal and noisy_signal must be have the same number of elements."); if constexpr (std::is_integral::value) { double numerator = 0; double denominator = 0; for (size_t i = 0; i < signal.size(); ++i) { numerator += signal[i]*signal[i]; denominator += (noisy_signal[i] - signal[i])*(noisy_signal[i] - signal[i]); } if (numerator == 0 && denominator == 0) { return std::numeric_limits::quiet_NaN(); } if (denominator == 0) { return std::numeric_limits::infinity(); } return numerator/denominator; } else if constexpr (boost::math::tools::is_complex_type::value) { using std::norm; typename Real::value_type numerator = 0; typename Real::value_type denominator = 0; for (size_t i = 0; i < signal.size(); ++i) { numerator += norm(signal[i]); denominator += norm(noisy_signal[i] - signal[i]); } if (numerator == 0 && denominator == 0) { return std::numeric_limits::quiet_NaN(); } if (denominator == 0) { return std::numeric_limits::infinity(); } return numerator/denominator; } else { Real numerator = 0; Real denominator = 0; for (size_t i = 0; i < signal.size(); ++i) { numerator += signal[i]*signal[i]; denominator += (signal[i] - noisy_signal[i])*(signal[i] - noisy_signal[i]); } if (numerator == 0 && denominator == 0) { return std::numeric_limits::quiet_NaN(); } if (denominator == 0) { return std::numeric_limits::infinity(); } return numerator/denominator; } } template auto mean_invariant_oracle_snr(Container const & signal, Container const & noisy_signal) { using Real = typename Container::value_type; BOOST_MATH_ASSERT_MSG(signal.size() == noisy_signal.size(), "Signal and noisy signal must be have the same number of elements."); Real mu = boost::math::tools::mean(signal); Real numerator = 0; Real denominator = 0; for (size_t i = 0; i < signal.size(); ++i) { Real tmp = signal[i] - mu; numerator += tmp*tmp; denominator += (signal[i] - noisy_signal[i])*(signal[i] - noisy_signal[i]); } if (numerator == 0 && denominator == 0) { return std::numeric_limits::quiet_NaN(); } if (denominator == 0) { return std::numeric_limits::infinity(); } return numerator/denominator; } template auto mean_invariant_oracle_snr_db(Container const & signal, Container const & noisy_signal) { using std::log10; return 10*log10(boost::math::tools::mean_invariant_oracle_snr(signal, noisy_signal)); } // Follows the definition of SNR given in Mallat, A Wavelet Tour of Signal Processing, equation 11.16. template auto oracle_snr_db(Container const & signal, Container const & noisy_signal) { using std::log10; return 10*log10(boost::math::tools::oracle_snr(signal, noisy_signal)); } // A good reference on the M2M4 estimator: // D. R. Pauluzzi and N. C. Beaulieu, "A comparison of SNR estimation techniques for the AWGN channel," IEEE Trans. Communications, Vol. 48, No. 10, pp. 1681-1691, 2000. // A nice python implementation: // https://github.com/gnuradio/gnuradio/blob/master/gr-digital/examples/snr_estimators.py template auto m2m4_snr_estimator(ForwardIterator first, ForwardIterator last, decltype(*first) estimated_signal_kurtosis=1, decltype(*first) estimated_noise_kurtosis=3) { BOOST_MATH_ASSERT_MSG(estimated_signal_kurtosis > 0, "The estimated signal kurtosis must be positive"); BOOST_MATH_ASSERT_MSG(estimated_noise_kurtosis > 0, "The estimated noise kurtosis must be positive."); using Real = typename std::iterator_traits::value_type; using std::sqrt; if constexpr (std::is_floating_point::value || std::numeric_limits::max_exponent) { // If we first eliminate N, we obtain the quadratic equation: // (ka+kw-6)S^2 + 2M2(3-kw)S + kw*M2^2 - M4 = 0 =: a*S^2 + bs*N + cs = 0 // If we first eliminate S, we obtain the quadratic equation: // (ka+kw-6)N^2 + 2M2(3-ka)N + ka*M2^2 - M4 = 0 =: a*N^2 + bn*N + cn = 0 // I believe these equations are totally independent quadratics; // if one has a complex solution it is not necessarily the case that the other must also. // However, I can't prove that, so there is a chance that this does unnecessary work. // Future improvements: There are algorithms which can solve quadratics much more effectively than the naive implementation found here. // See: https://stackoverflow.com/questions/48979861/numerically-stable-method-for-solving-quadratic-equations/50065711#50065711 auto [M1, M2, M3, M4] = boost::math::tools::first_four_moments(first, last); if (M4 == 0) { // The signal is constant. There is no noise: return std::numeric_limits::infinity(); } // Change to notation in Pauluzzi, equation 41: auto kw = estimated_noise_kurtosis; auto ka = estimated_signal_kurtosis; // A common case, since it's the default: Real a = (ka+kw-6); Real bs = 2*M2*(3-kw); Real cs = kw*M2*M2 - M4; Real bn = 2*M2*(3-ka); Real cn = ka*M2*M2 - M4; auto [S0, S1] = boost::math::tools::quadratic_roots(a, bs, cs); if (S1 > 0) { auto N = M2 - S1; if (N > 0) { return S1/N; } if (S0 > 0) { N = M2 - S0; if (N > 0) { return S0/N; } } } auto [N0, N1] = boost::math::tools::quadratic_roots(a, bn, cn); if (N1 > 0) { auto S = M2 - N1; if (S > 0) { return S/N1; } if (N0 > 0) { S = M2 - N0; if (S > 0) { return S/N0; } } } // This happens distressingly often. It's a limitation of the method. return std::numeric_limits::quiet_NaN(); } else { BOOST_MATH_ASSERT_MSG(false, "The M2M4 estimator has not been implemented for this type."); return std::numeric_limits::quiet_NaN(); } } template inline auto m2m4_snr_estimator(Container const & noisy_signal, typename Container::value_type estimated_signal_kurtosis=1, typename Container::value_type estimated_noise_kurtosis=3) { return m2m4_snr_estimator(noisy_signal.cbegin(), noisy_signal.cend(), estimated_signal_kurtosis, estimated_noise_kurtosis); } template inline auto m2m4_snr_estimator_db(ForwardIterator first, ForwardIterator last, decltype(*first) estimated_signal_kurtosis=1, decltype(*first) estimated_noise_kurtosis=3) { using std::log10; return 10*log10(m2m4_snr_estimator(first, last, estimated_signal_kurtosis, estimated_noise_kurtosis)); } template inline auto m2m4_snr_estimator_db(Container const & noisy_signal, typename Container::value_type estimated_signal_kurtosis=1, typename Container::value_type estimated_noise_kurtosis=3) { using std::log10; return 10*log10(m2m4_snr_estimator(noisy_signal, estimated_signal_kurtosis, estimated_noise_kurtosis)); } } #endif