// Copyright John Maddock 2007. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_EXPINT_HPP #define BOOST_MATH_EXPINT_HPP #ifdef _MSC_VER #pragma once #pragma warning(push) #pragma warning(disable:4702) // Unreachable code (release mode only warning) #endif #include #include #include #include #include #include #include #include #include #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) // // This is the only way we can avoid // warning: non-standard suffix on floating constant [-Wpedantic] // when building with -Wall -pedantic. Neither __extension__ // nor #pragma diagnostic ignored work :( // #pragma GCC system_header #endif namespace boost{ namespace math{ template inline typename tools::promote_args::type expint(unsigned n, T z, const Policy& /*pol*/); namespace detail{ template inline T expint_1_rational(const T& z, const std::integral_constant&) { // this function is never actually called BOOST_MATH_ASSERT(0); return z; } template T expint_1_rational(const T& z, const std::integral_constant&) { BOOST_MATH_STD_USING T result; if(z <= 1) { // Maximum Deviation Found: 2.006e-18 // Expected Error Term: 2.006e-18 // Max error found at double precision: 2.760e-17 static const T Y = 0.66373538970947265625F; static const T P[6] = { BOOST_MATH_BIG_CONSTANT(T, 53, 0.0865197248079397976498), BOOST_MATH_BIG_CONSTANT(T, 53, 0.0320913665303559189999), BOOST_MATH_BIG_CONSTANT(T, 53, -0.245088216639761496153), BOOST_MATH_BIG_CONSTANT(T, 53, -0.0368031736257943745142), BOOST_MATH_BIG_CONSTANT(T, 53, -0.00399167106081113256961), BOOST_MATH_BIG_CONSTANT(T, 53, -0.000111507792921197858394) }; static const T Q[6] = { BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), BOOST_MATH_BIG_CONSTANT(T, 53, 0.37091387659397013215), BOOST_MATH_BIG_CONSTANT(T, 53, 0.056770677104207528384), BOOST_MATH_BIG_CONSTANT(T, 53, 0.00427347600017103698101), BOOST_MATH_BIG_CONSTANT(T, 53, 0.000131049900798434683324), BOOST_MATH_BIG_CONSTANT(T, 53, -0.528611029520217142048e-6) }; result = tools::evaluate_polynomial(P, z) / tools::evaluate_polynomial(Q, z); result += z - log(z) - Y; } else if(z < -boost::math::tools::log_min_value()) { // Maximum Deviation Found (interpolated): 1.444e-17 // Max error found at double precision: 3.119e-17 static const T P[11] = { BOOST_MATH_BIG_CONSTANT(T, 53, -0.121013190657725568138e-18), BOOST_MATH_BIG_CONSTANT(T, 53, -0.999999999999998811143), BOOST_MATH_BIG_CONSTANT(T, 53, -43.3058660811817946037), BOOST_MATH_BIG_CONSTANT(T, 53, -724.581482791462469795), BOOST_MATH_BIG_CONSTANT(T, 53, -6046.8250112711035463), BOOST_MATH_BIG_CONSTANT(T, 53, -27182.6254466733970467), BOOST_MATH_BIG_CONSTANT(T, 53, -66598.2652345418633509), BOOST_MATH_BIG_CONSTANT(T, 53, -86273.1567711649528784), BOOST_MATH_BIG_CONSTANT(T, 53, -54844.4587226402067411), BOOST_MATH_BIG_CONSTANT(T, 53, -14751.4895786128450662), BOOST_MATH_BIG_CONSTANT(T, 53, -1185.45720315201027667) }; static const T Q[12] = { BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), BOOST_MATH_BIG_CONSTANT(T, 53, 45.3058660811801465927), BOOST_MATH_BIG_CONSTANT(T, 53, 809.193214954550328455), BOOST_MATH_BIG_CONSTANT(T, 53, 7417.37624454689546708), BOOST_MATH_BIG_CONSTANT(T, 53, 38129.5594484818471461), BOOST_MATH_BIG_CONSTANT(T, 53, 113057.05869159631492), BOOST_MATH_BIG_CONSTANT(T, 53, 192104.047790227984431), BOOST_MATH_BIG_CONSTANT(T, 53, 180329.498380501819718), BOOST_MATH_BIG_CONSTANT(T, 53, 86722.3403467334749201), BOOST_MATH_BIG_CONSTANT(T, 53, 18455.4124737722049515), BOOST_MATH_BIG_CONSTANT(T, 53, 1229.20784182403048905), BOOST_MATH_BIG_CONSTANT(T, 53, -0.776491285282330997549) }; T recip = 1 / z; result = 1 + tools::evaluate_polynomial(P, recip) / tools::evaluate_polynomial(Q, recip); result *= exp(-z) * recip; } else { result = 0; } return result; } template T expint_1_rational(const T& z, const std::integral_constant&) { BOOST_MATH_STD_USING T result; if(z <= 1) { // Maximum Deviation Found: 3.807e-20 // Expected Error Term: 3.807e-20 // Max error found at long double precision: 6.249e-20 static const T Y = 0.66373538970947265625F; static const T P[6] = { BOOST_MATH_BIG_CONSTANT(T, 64, 0.0865197248079397956816), BOOST_MATH_BIG_CONSTANT(T, 64, 0.0275114007037026844633), BOOST_MATH_BIG_CONSTANT(T, 64, -0.246594388074877139824), BOOST_MATH_BIG_CONSTANT(T, 64, -0.0237624819878732642231), BOOST_MATH_BIG_CONSTANT(T, 64, -0.00259113319641673986276), BOOST_MATH_BIG_CONSTANT(T, 64, 0.30853660894346057053e-4) }; static const T Q[7] = { BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), BOOST_MATH_BIG_CONSTANT(T, 64, 0.317978365797784100273), BOOST_MATH_BIG_CONSTANT(T, 64, 0.0393622602554758722511), BOOST_MATH_BIG_CONSTANT(T, 64, 0.00204062029115966323229), BOOST_MATH_BIG_CONSTANT(T, 64, 0.732512107100088047854e-5), BOOST_MATH_BIG_CONSTANT(T, 64, -0.202872781770207871975e-5), BOOST_MATH_BIG_CONSTANT(T, 64, 0.52779248094603709945e-7) }; result = tools::evaluate_polynomial(P, z) / tools::evaluate_polynomial(Q, z); result += z - log(z) - Y; } else if(z < -boost::math::tools::log_min_value()) { // Maximum Deviation Found (interpolated): 2.220e-20 // Max error found at long double precision: 1.346e-19 static const T P[14] = { BOOST_MATH_BIG_CONSTANT(T, 64, -0.534401189080684443046e-23), BOOST_MATH_BIG_CONSTANT(T, 64, -0.999999999999999999905), BOOST_MATH_BIG_CONSTANT(T, 64, -62.1517806091379402505), BOOST_MATH_BIG_CONSTANT(T, 64, -1568.45688271895145277), BOOST_MATH_BIG_CONSTANT(T, 64, -21015.3431990874009619), BOOST_MATH_BIG_CONSTANT(T, 64, -164333.011755931661949), BOOST_MATH_BIG_CONSTANT(T, 64, -777917.270775426696103), BOOST_MATH_BIG_CONSTANT(T, 64, -2244188.56195255112937), BOOST_MATH_BIG_CONSTANT(T, 64, -3888702.98145335643429), BOOST_MATH_BIG_CONSTANT(T, 64, -3909822.65621952648353), BOOST_MATH_BIG_CONSTANT(T, 64, -2149033.9538897398457), BOOST_MATH_BIG_CONSTANT(T, 64, -584705.537139793925189), BOOST_MATH_BIG_CONSTANT(T, 64, -65815.2605361889477244), BOOST_MATH_BIG_CONSTANT(T, 64, -2038.82870680427258038) }; static const T Q[14] = { BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), BOOST_MATH_BIG_CONSTANT(T, 64, 64.1517806091379399478), BOOST_MATH_BIG_CONSTANT(T, 64, 1690.76044393722763785), BOOST_MATH_BIG_CONSTANT(T, 64, 24035.9534033068949426), BOOST_MATH_BIG_CONSTANT(T, 64, 203679.998633572361706), BOOST_MATH_BIG_CONSTANT(T, 64, 1074661.58459976978285), BOOST_MATH_BIG_CONSTANT(T, 64, 3586552.65020899358773), BOOST_MATH_BIG_CONSTANT(T, 64, 7552186.84989547621411), BOOST_MATH_BIG_CONSTANT(T, 64, 9853333.79353054111434), BOOST_MATH_BIG_CONSTANT(T, 64, 7689642.74550683631258), BOOST_MATH_BIG_CONSTANT(T, 64, 3385553.35146759180739), BOOST_MATH_BIG_CONSTANT(T, 64, 763218.072732396428725), BOOST_MATH_BIG_CONSTANT(T, 64, 73930.2995984054930821), BOOST_MATH_BIG_CONSTANT(T, 64, 2063.86994219629165937) }; T recip = 1 / z; result = 1 + tools::evaluate_polynomial(P, recip) / tools::evaluate_polynomial(Q, recip); result *= exp(-z) * recip; } else { result = 0; } return result; } template T expint_1_rational(const T& z, const std::integral_constant&) { BOOST_MATH_STD_USING T result; if(z <= 1) { // Maximum Deviation Found: 2.477e-35 // Expected Error Term: 2.477e-35 // Max error found at long double precision: 6.810e-35 static const T Y = 0.66373538970947265625F; static const T P[10] = { BOOST_MATH_BIG_CONSTANT(T, 113, 0.0865197248079397956434879099175975937), BOOST_MATH_BIG_CONSTANT(T, 113, 0.0369066175910795772830865304506087759), BOOST_MATH_BIG_CONSTANT(T, 113, -0.24272036838415474665971599314725545), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0502166331248948515282379137550178307), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00768384138547489410285101483730424919), BOOST_MATH_BIG_CONSTANT(T, 113, -0.000612574337702109683505224915484717162), BOOST_MATH_BIG_CONSTANT(T, 113, -0.380207107950635046971492617061708534e-4), BOOST_MATH_BIG_CONSTANT(T, 113, -0.136528159460768830763009294683628406e-5), BOOST_MATH_BIG_CONSTANT(T, 113, -0.346839106212658259681029388908658618e-7), BOOST_MATH_BIG_CONSTANT(T, 113, -0.340500302777838063940402160594523429e-9) }; static const T Q[10] = { BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), BOOST_MATH_BIG_CONSTANT(T, 113, 0.426568827778942588160423015589537302), BOOST_MATH_BIG_CONSTANT(T, 113, 0.0841384046470893490592450881447510148), BOOST_MATH_BIG_CONSTANT(T, 113, 0.0100557215850668029618957359471132995), BOOST_MATH_BIG_CONSTANT(T, 113, 0.000799334870474627021737357294799839363), BOOST_MATH_BIG_CONSTANT(T, 113, 0.434452090903862735242423068552687688e-4), BOOST_MATH_BIG_CONSTANT(T, 113, 0.15829674748799079874182885081231252e-5), BOOST_MATH_BIG_CONSTANT(T, 113, 0.354406206738023762100882270033082198e-7), BOOST_MATH_BIG_CONSTANT(T, 113, 0.369373328141051577845488477377890236e-9), BOOST_MATH_BIG_CONSTANT(T, 113, -0.274149801370933606409282434677600112e-12) }; result = tools::evaluate_polynomial(P, z) / tools::evaluate_polynomial(Q, z); result += z - log(z) - Y; } else if(z <= 4) { // Max error in interpolated form: 5.614e-35 // Max error found at long double precision: 7.979e-35 static const T Y = 0.70190334320068359375F; static const T P[16] = { BOOST_MATH_BIG_CONSTANT(T, 113, 0.298096656795020369955077350585959794), BOOST_MATH_BIG_CONSTANT(T, 113, 12.9314045995266142913135497455971247), BOOST_MATH_BIG_CONSTANT(T, 113, 226.144334921582637462526628217345501), BOOST_MATH_BIG_CONSTANT(T, 113, 2070.83670924261732722117682067381405), BOOST_MATH_BIG_CONSTANT(T, 113, 10715.1115684330959908244769731347186), BOOST_MATH_BIG_CONSTANT(T, 113, 30728.7876355542048019664777316053311), BOOST_MATH_BIG_CONSTANT(T, 113, 38520.6078609349855436936232610875297), BOOST_MATH_BIG_CONSTANT(T, 113, -27606.0780981527583168728339620565165), BOOST_MATH_BIG_CONSTANT(T, 113, -169026.485055785605958655247592604835), BOOST_MATH_BIG_CONSTANT(T, 113, -254361.919204983608659069868035092282), BOOST_MATH_BIG_CONSTANT(T, 113, -195765.706874132267953259272028679935), BOOST_MATH_BIG_CONSTANT(T, 113, -83352.6826013533205474990119962408675), BOOST_MATH_BIG_CONSTANT(T, 113, -19251.6828496869586415162597993050194), BOOST_MATH_BIG_CONSTANT(T, 113, -2226.64251774578542836725386936102339), BOOST_MATH_BIG_CONSTANT(T, 113, -109.009437301400845902228611986479816), BOOST_MATH_BIG_CONSTANT(T, 113, -1.51492042209561411434644938098833499) }; static const T Q[16] = { BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), BOOST_MATH_BIG_CONSTANT(T, 113, 46.734521442032505570517810766704587), BOOST_MATH_BIG_CONSTANT(T, 113, 908.694714348462269000247450058595655), BOOST_MATH_BIG_CONSTANT(T, 113, 9701.76053033673927362784882748513195), BOOST_MATH_BIG_CONSTANT(T, 113, 63254.2815292641314236625196594947774), BOOST_MATH_BIG_CONSTANT(T, 113, 265115.641285880437335106541757711092), BOOST_MATH_BIG_CONSTANT(T, 113, 732707.841188071900498536533086567735), BOOST_MATH_BIG_CONSTANT(T, 113, 1348514.02492635723327306628712057794), BOOST_MATH_BIG_CONSTANT(T, 113, 1649986.81455283047769673308781585991), BOOST_MATH_BIG_CONSTANT(T, 113, 1326000.828522976970116271208812099), BOOST_MATH_BIG_CONSTANT(T, 113, 683643.09490612171772350481773951341), BOOST_MATH_BIG_CONSTANT(T, 113, 217640.505137263607952365685653352229), BOOST_MATH_BIG_CONSTANT(T, 113, 40288.3467237411710881822569476155485), BOOST_MATH_BIG_CONSTANT(T, 113, 3932.89353979531632559232883283175754), BOOST_MATH_BIG_CONSTANT(T, 113, 169.845369689596739824177412096477219), BOOST_MATH_BIG_CONSTANT(T, 113, 2.17607292280092201170768401876895354) }; T recip = 1 / z; result = Y + tools::evaluate_polynomial(P, recip) / tools::evaluate_polynomial(Q, recip); result *= exp(-z) * recip; } else if(z < -boost::math::tools::log_min_value()) { // Max error in interpolated form: 4.413e-35 // Max error found at long double precision: 8.928e-35 static const T P[19] = { BOOST_MATH_BIG_CONSTANT(T, 113, -0.559148411832951463689610809550083986e-40), BOOST_MATH_BIG_CONSTANT(T, 113, -0.999999999999999999999999999999999997), BOOST_MATH_BIG_CONSTANT(T, 113, -166.542326331163836642960118190147367), BOOST_MATH_BIG_CONSTANT(T, 113, -12204.639128796330005065904675153652), BOOST_MATH_BIG_CONSTANT(T, 113, -520807.069767086071806275022036146855), BOOST_MATH_BIG_CONSTANT(T, 113, -14435981.5242137970691490903863125326), BOOST_MATH_BIG_CONSTANT(T, 113, -274574945.737064301247496460758654196), BOOST_MATH_BIG_CONSTANT(T, 113, -3691611582.99810039356254671781473079), BOOST_MATH_BIG_CONSTANT(T, 113, -35622515944.8255047299363690814678763), BOOST_MATH_BIG_CONSTANT(T, 113, -248040014774.502043161750715548451142), BOOST_MATH_BIG_CONSTANT(T, 113, -1243190389769.53458416330946622607913), BOOST_MATH_BIG_CONSTANT(T, 113, -4441730126135.54739052731990368425339), BOOST_MATH_BIG_CONSTANT(T, 113, -11117043181899.7388524310281751971366), BOOST_MATH_BIG_CONSTANT(T, 113, -18976497615396.9717776601813519498961), BOOST_MATH_BIG_CONSTANT(T, 113, -21237496819711.1011661104761906067131), BOOST_MATH_BIG_CONSTANT(T, 113, -14695899122092.5161620333466757812848), BOOST_MATH_BIG_CONSTANT(T, 113, -5737221535080.30569711574295785864903), BOOST_MATH_BIG_CONSTANT(T, 113, -1077042281708.42654526404581272546244), BOOST_MATH_BIG_CONSTANT(T, 113, -68028222642.1941480871395695677675137) }; static const T Q[20] = { BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), BOOST_MATH_BIG_CONSTANT(T, 113, 168.542326331163836642960118190147311), BOOST_MATH_BIG_CONSTANT(T, 113, 12535.7237814586576783518249115343619), BOOST_MATH_BIG_CONSTANT(T, 113, 544891.263372016404143120911148640627), BOOST_MATH_BIG_CONSTANT(T, 113, 15454474.7241010258634446523045237762), BOOST_MATH_BIG_CONSTANT(T, 113, 302495899.896629522673410325891717381), BOOST_MATH_BIG_CONSTANT(T, 113, 4215565948.38886507646911672693270307), BOOST_MATH_BIG_CONSTANT(T, 113, 42552409471.7951815668506556705733344), BOOST_MATH_BIG_CONSTANT(T, 113, 313592377066.753173979584098301610186), BOOST_MATH_BIG_CONSTANT(T, 113, 1688763640223.4541980740597514904542), BOOST_MATH_BIG_CONSTANT(T, 113, 6610992294901.59589748057620192145704), BOOST_MATH_BIG_CONSTANT(T, 113, 18601637235659.6059890851321772682606), BOOST_MATH_BIG_CONSTANT(T, 113, 36944278231087.2571020964163402941583), BOOST_MATH_BIG_CONSTANT(T, 113, 50425858518481.7497071917028793820058), BOOST_MATH_BIG_CONSTANT(T, 113, 45508060902865.0899967797848815980644), BOOST_MATH_BIG_CONSTANT(T, 113, 25649955002765.3817331501988304758142), BOOST_MATH_BIG_CONSTANT(T, 113, 8259575619094.6518520988612711292331), BOOST_MATH_BIG_CONSTANT(T, 113, 1299981487496.12607474362723586264515), BOOST_MATH_BIG_CONSTANT(T, 113, 70242279152.8241187845178443118302693), BOOST_MATH_BIG_CONSTANT(T, 113, -37633302.9409263839042721539363416685) }; T recip = 1 / z; result = 1 + tools::evaluate_polynomial(P, recip) / tools::evaluate_polynomial(Q, recip); result *= exp(-z) * recip; } else { result = 0; } return result; } template struct expint_fraction { typedef std::pair result_type; expint_fraction(unsigned n_, T z_) : b(n_ + z_), i(-1), n(n_){} std::pair operator()() { std::pair result = std::make_pair(-static_cast((i+1) * (n+i)), b); b += 2; ++i; return result; } private: T b; int i; unsigned n; }; template inline T expint_as_fraction(unsigned n, T z, const Policy& pol) { BOOST_MATH_STD_USING BOOST_MATH_INSTRUMENT_VARIABLE(z) std::uintmax_t max_iter = policies::get_max_series_iterations(); expint_fraction f(n, z); T result = tools::continued_fraction_b( f, boost::math::policies::get_epsilon(), max_iter); policies::check_series_iterations("boost::math::expint_continued_fraction<%1%>(unsigned,%1%)", max_iter, pol); BOOST_MATH_INSTRUMENT_VARIABLE(result) BOOST_MATH_INSTRUMENT_VARIABLE(max_iter) result = exp(-z) / result; BOOST_MATH_INSTRUMENT_VARIABLE(result) return result; } template struct expint_series { typedef T result_type; expint_series(unsigned k_, T z_, T x_k_, T denom_, T fact_) : k(k_), z(z_), x_k(x_k_), denom(denom_), fact(fact_){} T operator()() { x_k *= -z; denom += 1; fact *= ++k; return x_k / (denom * fact); } private: unsigned k; T z; T x_k; T denom; T fact; }; template inline T expint_as_series(unsigned n, T z, const Policy& pol) { BOOST_MATH_STD_USING std::uintmax_t max_iter = policies::get_max_series_iterations(); BOOST_MATH_INSTRUMENT_VARIABLE(z) T result = 0; T x_k = -1; T denom = T(1) - n; T fact = 1; unsigned k = 0; for(; k < n - 1;) { result += x_k / (denom * fact); denom += 1; x_k *= -z; fact *= ++k; } BOOST_MATH_INSTRUMENT_VARIABLE(result) result += pow(-z, static_cast(n - 1)) * (boost::math::digamma(static_cast(n), pol) - log(z)) / fact; BOOST_MATH_INSTRUMENT_VARIABLE(result) expint_series s(k, z, x_k, denom, fact); result = tools::sum_series(s, policies::get_epsilon(), max_iter, result); policies::check_series_iterations("boost::math::expint_series<%1%>(unsigned,%1%)", max_iter, pol); BOOST_MATH_INSTRUMENT_VARIABLE(result) BOOST_MATH_INSTRUMENT_VARIABLE(max_iter) return result; } template T expint_imp(unsigned n, T z, const Policy& pol, const Tag& tag) { BOOST_MATH_STD_USING static const char* function = "boost::math::expint<%1%>(unsigned, %1%)"; if(z < 0) return policies::raise_domain_error(function, "Function requires z >= 0 but got %1%.", z, pol); if(z == 0) return n == 1 ? policies::raise_overflow_error(function, nullptr, pol) : T(1 / (static_cast(n - 1))); T result; bool f; if(n < 3) { f = z < 0.5; } else { f = z < (static_cast(n - 2) / static_cast(n - 1)); } #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4127) // conditional expression is constant #endif if(n == 0) result = exp(-z) / z; else if((n == 1) && (Tag::value)) { result = expint_1_rational(z, tag); } else if(f) result = expint_as_series(n, z, pol); else result = expint_as_fraction(n, z, pol); #ifdef _MSC_VER # pragma warning(pop) #endif return result; } template struct expint_i_series { typedef T result_type; expint_i_series(T z_) : k(0), z_k(1), z(z_){} T operator()() { z_k *= z / ++k; return z_k / k; } private: unsigned k; T z_k; T z; }; template T expint_i_as_series(T z, const Policy& pol) { BOOST_MATH_STD_USING T result = log(z); // (log(z) - log(1 / z)) / 2; result += constants::euler(); expint_i_series s(z); std::uintmax_t max_iter = policies::get_max_series_iterations(); result = tools::sum_series(s, policies::get_epsilon(), max_iter, result); policies::check_series_iterations("boost::math::expint_i_series<%1%>(%1%)", max_iter, pol); return result; } template T expint_i_imp(T z, const Policy& pol, const Tag& tag) { static const char* function = "boost::math::expint<%1%>(%1%)"; if(z < 0) return -expint_imp(1, T(-z), pol, tag); if(z == 0) return -policies::raise_overflow_error(function, nullptr, pol); return expint_i_as_series(z, pol); } template T expint_i_imp(T z, const Policy& pol, const std::integral_constant& tag) { BOOST_MATH_STD_USING static const char* function = "boost::math::expint<%1%>(%1%)"; if(z < 0) return -expint_imp(1, T(-z), pol, tag); if(z == 0) return -policies::raise_overflow_error(function, nullptr, pol); T result; if(z <= 6) { // Maximum Deviation Found: 2.852e-18 // Expected Error Term: 2.852e-18 // Max Error found at double precision = Poly: 2.636335e-16 Cheb: 4.187027e-16 static const T P[10] = { BOOST_MATH_BIG_CONSTANT(T, 53, 2.98677224343598593013), BOOST_MATH_BIG_CONSTANT(T, 53, 0.356343618769377415068), BOOST_MATH_BIG_CONSTANT(T, 53, 0.780836076283730801839), BOOST_MATH_BIG_CONSTANT(T, 53, 0.114670926327032002811), BOOST_MATH_BIG_CONSTANT(T, 53, 0.0499434773576515260534), BOOST_MATH_BIG_CONSTANT(T, 53, 0.00726224593341228159561), BOOST_MATH_BIG_CONSTANT(T, 53, 0.00115478237227804306827), BOOST_MATH_BIG_CONSTANT(T, 53, 0.000116419523609765200999), BOOST_MATH_BIG_CONSTANT(T, 53, 0.798296365679269702435e-5), BOOST_MATH_BIG_CONSTANT(T, 53, 0.2777056254402008721e-6) }; static const T Q[8] = { BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), BOOST_MATH_BIG_CONSTANT(T, 53, -1.17090412365413911947), BOOST_MATH_BIG_CONSTANT(T, 53, 0.62215109846016746276), BOOST_MATH_BIG_CONSTANT(T, 53, -0.195114782069495403315), BOOST_MATH_BIG_CONSTANT(T, 53, 0.0391523431392967238166), BOOST_MATH_BIG_CONSTANT(T, 53, -0.00504800158663705747345), BOOST_MATH_BIG_CONSTANT(T, 53, 0.000389034007436065401822), BOOST_MATH_BIG_CONSTANT(T, 53, -0.138972589601781706598e-4) }; static const T c1 = BOOST_MATH_BIG_CONSTANT(T, 53, 1677624236387711.0); static const T c2 = BOOST_MATH_BIG_CONSTANT(T, 53, 4503599627370496.0); static const T r1 = static_cast(c1 / c2); static const T r2 = BOOST_MATH_BIG_CONSTANT(T, 53, 0.131401834143860282009280387409357165515556574352422001206362e-16); static const T r = static_cast(BOOST_MATH_BIG_CONSTANT(T, 53, 0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392)); T t = (z / 3) - 1; result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); t = (z - r1) - r2; result *= t; if(fabs(t) < 0.1) { result += boost::math::log1p(t / r, pol); } else { result += log(z / r); } } else if (z <= 10) { // Maximum Deviation Found: 6.546e-17 // Expected Error Term: 6.546e-17 // Max Error found at double precision = Poly: 6.890169e-17 Cheb: 6.772128e-17 static const T Y = 1.158985137939453125F; static const T P[8] = { BOOST_MATH_BIG_CONSTANT(T, 53, 0.00139324086199402804173), BOOST_MATH_BIG_CONSTANT(T, 53, -0.0349921221823888744966), BOOST_MATH_BIG_CONSTANT(T, 53, -0.0264095520754134848538), BOOST_MATH_BIG_CONSTANT(T, 53, -0.00761224003005476438412), BOOST_MATH_BIG_CONSTANT(T, 53, -0.00247496209592143627977), BOOST_MATH_BIG_CONSTANT(T, 53, -0.000374885917942100256775), BOOST_MATH_BIG_CONSTANT(T, 53, -0.554086272024881826253e-4), BOOST_MATH_BIG_CONSTANT(T, 53, -0.396487648924804510056e-5) }; static const T Q[8] = { BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), BOOST_MATH_BIG_CONSTANT(T, 53, 0.744625566823272107711), BOOST_MATH_BIG_CONSTANT(T, 53, 0.329061095011767059236), BOOST_MATH_BIG_CONSTANT(T, 53, 0.100128624977313872323), BOOST_MATH_BIG_CONSTANT(T, 53, 0.0223851099128506347278), BOOST_MATH_BIG_CONSTANT(T, 53, 0.00365334190742316650106), BOOST_MATH_BIG_CONSTANT(T, 53, 0.000402453408512476836472), BOOST_MATH_BIG_CONSTANT(T, 53, 0.263649630720255691787e-4) }; T t = z / 2 - 4; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); result *= exp(z) / z; result += z; } else if(z <= 20) { // Maximum Deviation Found: 1.843e-17 // Expected Error Term: -1.842e-17 // Max Error found at double precision = Poly: 4.375868e-17 Cheb: 5.860967e-17 static const T Y = 1.0869731903076171875F; static const T P[9] = { BOOST_MATH_BIG_CONSTANT(T, 53, -0.00893891094356945667451), BOOST_MATH_BIG_CONSTANT(T, 53, -0.0484607730127134045806), BOOST_MATH_BIG_CONSTANT(T, 53, -0.0652810444222236895772), BOOST_MATH_BIG_CONSTANT(T, 53, -0.0478447572647309671455), BOOST_MATH_BIG_CONSTANT(T, 53, -0.0226059218923777094596), BOOST_MATH_BIG_CONSTANT(T, 53, -0.00720603636917482065907), BOOST_MATH_BIG_CONSTANT(T, 53, -0.00155941947035972031334), BOOST_MATH_BIG_CONSTANT(T, 53, -0.000209750022660200888349), BOOST_MATH_BIG_CONSTANT(T, 53, -0.138652200349182596186e-4) }; static const T Q[9] = { BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), BOOST_MATH_BIG_CONSTANT(T, 53, 1.97017214039061194971), BOOST_MATH_BIG_CONSTANT(T, 53, 1.86232465043073157508), BOOST_MATH_BIG_CONSTANT(T, 53, 1.09601437090337519977), BOOST_MATH_BIG_CONSTANT(T, 53, 0.438873285773088870812), BOOST_MATH_BIG_CONSTANT(T, 53, 0.122537731979686102756), BOOST_MATH_BIG_CONSTANT(T, 53, 0.0233458478275769288159), BOOST_MATH_BIG_CONSTANT(T, 53, 0.00278170769163303669021), BOOST_MATH_BIG_CONSTANT(T, 53, 0.000159150281166108755531) }; T t = z / 5 - 3; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); result *= exp(z) / z; result += z; } else if(z <= 40) { // Maximum Deviation Found: 5.102e-18 // Expected Error Term: 5.101e-18 // Max Error found at double precision = Poly: 1.441088e-16 Cheb: 1.864792e-16 static const T Y = 1.03937530517578125F; static const T P[9] = { BOOST_MATH_BIG_CONSTANT(T, 53, -0.00356165148914447597995), BOOST_MATH_BIG_CONSTANT(T, 53, -0.0229930320357982333406), BOOST_MATH_BIG_CONSTANT(T, 53, -0.0449814350482277917716), BOOST_MATH_BIG_CONSTANT(T, 53, -0.0453759383048193402336), BOOST_MATH_BIG_CONSTANT(T, 53, -0.0272050837209380717069), BOOST_MATH_BIG_CONSTANT(T, 53, -0.00994403059883350813295), BOOST_MATH_BIG_CONSTANT(T, 53, -0.00207592267812291726961), BOOST_MATH_BIG_CONSTANT(T, 53, -0.000192178045857733706044), BOOST_MATH_BIG_CONSTANT(T, 53, -0.113161784705911400295e-9) }; static const T Q[9] = { BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), BOOST_MATH_BIG_CONSTANT(T, 53, 2.84354408840148561131), BOOST_MATH_BIG_CONSTANT(T, 53, 3.6599610090072393012), BOOST_MATH_BIG_CONSTANT(T, 53, 2.75088464344293083595), BOOST_MATH_BIG_CONSTANT(T, 53, 1.2985244073998398643), BOOST_MATH_BIG_CONSTANT(T, 53, 0.383213198510794507409), BOOST_MATH_BIG_CONSTANT(T, 53, 0.0651165455496281337831), BOOST_MATH_BIG_CONSTANT(T, 53, 0.00488071077519227853585) }; T t = z / 10 - 3; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); result *= exp(z) / z; result += z; } else { // Max Error found at double precision = 3.381886e-17 static const T exp40 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 53, 2.35385266837019985407899910749034804508871617254555467236651e17)); static const T Y= 1.013065338134765625F; static const T P[6] = { BOOST_MATH_BIG_CONSTANT(T, 53, -0.0130653381347656243849), BOOST_MATH_BIG_CONSTANT(T, 53, 0.19029710559486576682), BOOST_MATH_BIG_CONSTANT(T, 53, 94.7365094537197236011), BOOST_MATH_BIG_CONSTANT(T, 53, -2516.35323679844256203), BOOST_MATH_BIG_CONSTANT(T, 53, 18932.0850014925993025), BOOST_MATH_BIG_CONSTANT(T, 53, -38703.1431362056714134) }; static const T Q[7] = { BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), BOOST_MATH_BIG_CONSTANT(T, 53, 61.9733592849439884145), BOOST_MATH_BIG_CONSTANT(T, 53, -2354.56211323420194283), BOOST_MATH_BIG_CONSTANT(T, 53, 22329.1459489893079041), BOOST_MATH_BIG_CONSTANT(T, 53, -70126.245140396567133), BOOST_MATH_BIG_CONSTANT(T, 53, 54738.2833147775537106), BOOST_MATH_BIG_CONSTANT(T, 53, 8297.16296356518409347) }; T t = 1 / z; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); if(z < 41) result *= exp(z) / z; else { // Avoid premature overflow if we can: t = z - 40; if(t > tools::log_max_value()) { result = policies::raise_overflow_error(function, nullptr, pol); } else { result *= exp(z - 40) / z; if(result > tools::max_value() / exp40) { result = policies::raise_overflow_error(function, nullptr, pol); } else { result *= exp40; } } } result += z; } return result; } template T expint_i_imp(T z, const Policy& pol, const std::integral_constant& tag) { BOOST_MATH_STD_USING static const char* function = "boost::math::expint<%1%>(%1%)"; if(z < 0) return -expint_imp(1, T(-z), pol, tag); if(z == 0) return -policies::raise_overflow_error(function, nullptr, pol); T result; if(z <= 6) { // Maximum Deviation Found: 3.883e-21 // Expected Error Term: 3.883e-21 // Max Error found at long double precision = Poly: 3.344801e-19 Cheb: 4.989937e-19 static const T P[11] = { BOOST_MATH_BIG_CONSTANT(T, 64, 2.98677224343598593764), BOOST_MATH_BIG_CONSTANT(T, 64, 0.25891613550886736592), BOOST_MATH_BIG_CONSTANT(T, 64, 0.789323584998672832285), BOOST_MATH_BIG_CONSTANT(T, 64, 0.092432587824602399339), BOOST_MATH_BIG_CONSTANT(T, 64, 0.0514236978728625906656), BOOST_MATH_BIG_CONSTANT(T, 64, 0.00658477469745132977921), BOOST_MATH_BIG_CONSTANT(T, 64, 0.00124914538197086254233), BOOST_MATH_BIG_CONSTANT(T, 64, 0.000131429679565472408551), BOOST_MATH_BIG_CONSTANT(T, 64, 0.11293331317982763165e-4), BOOST_MATH_BIG_CONSTANT(T, 64, 0.629499283139417444244e-6), BOOST_MATH_BIG_CONSTANT(T, 64, 0.177833045143692498221e-7) }; static const T Q[9] = { BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), BOOST_MATH_BIG_CONSTANT(T, 64, -1.20352377969742325748), BOOST_MATH_BIG_CONSTANT(T, 64, 0.66707904942606479811), BOOST_MATH_BIG_CONSTANT(T, 64, -0.223014531629140771914), BOOST_MATH_BIG_CONSTANT(T, 64, 0.0493340022262908008636), BOOST_MATH_BIG_CONSTANT(T, 64, -0.00741934273050807310677), BOOST_MATH_BIG_CONSTANT(T, 64, 0.00074353567782087939294), BOOST_MATH_BIG_CONSTANT(T, 64, -0.455861727069603367656e-4), BOOST_MATH_BIG_CONSTANT(T, 64, 0.131515429329812837701e-5) }; static const T c1 = BOOST_MATH_BIG_CONSTANT(T, 64, 1677624236387711.0); static const T c2 = BOOST_MATH_BIG_CONSTANT(T, 64, 4503599627370496.0); static const T r1 = c1 / c2; static const T r2 = BOOST_MATH_BIG_CONSTANT(T, 64, 0.131401834143860282009280387409357165515556574352422001206362e-16); static const T r = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392)); T t = (z / 3) - 1; result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); t = (z - r1) - r2; result *= t; if(fabs(t) < 0.1) { result += boost::math::log1p(t / r, pol); } else { result += log(z / r); } } else if (z <= 10) { // Maximum Deviation Found: 2.622e-21 // Expected Error Term: -2.622e-21 // Max Error found at long double precision = Poly: 1.208328e-20 Cheb: 1.073723e-20 static const T Y = 1.158985137939453125F; static const T P[9] = { BOOST_MATH_BIG_CONSTANT(T, 64, 0.00139324086199409049399), BOOST_MATH_BIG_CONSTANT(T, 64, -0.0345238388952337563247), BOOST_MATH_BIG_CONSTANT(T, 64, -0.0382065278072592940767), BOOST_MATH_BIG_CONSTANT(T, 64, -0.0156117003070560727392), BOOST_MATH_BIG_CONSTANT(T, 64, -0.00383276012430495387102), BOOST_MATH_BIG_CONSTANT(T, 64, -0.000697070540945496497992), BOOST_MATH_BIG_CONSTANT(T, 64, -0.877310384591205930343e-4), BOOST_MATH_BIG_CONSTANT(T, 64, -0.623067256376494930067e-5), BOOST_MATH_BIG_CONSTANT(T, 64, -0.377246883283337141444e-6) }; static const T Q[10] = { BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), BOOST_MATH_BIG_CONSTANT(T, 64, 1.08073635708902053767), BOOST_MATH_BIG_CONSTANT(T, 64, 0.553681133533942532909), BOOST_MATH_BIG_CONSTANT(T, 64, 0.176763647137553797451), BOOST_MATH_BIG_CONSTANT(T, 64, 0.0387891748253869928121), BOOST_MATH_BIG_CONSTANT(T, 64, 0.0060603004848394727017), BOOST_MATH_BIG_CONSTANT(T, 64, 0.000670519492939992806051), BOOST_MATH_BIG_CONSTANT(T, 64, 0.4947357050100855646e-4), BOOST_MATH_BIG_CONSTANT(T, 64, 0.204339282037446434827e-5), BOOST_MATH_BIG_CONSTANT(T, 64, 0.146951181174930425744e-7) }; T t = z / 2 - 4; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); result *= exp(z) / z; result += z; } else if(z <= 20) { // Maximum Deviation Found: 3.220e-20 // Expected Error Term: 3.220e-20 // Max Error found at long double precision = Poly: 7.696841e-20 Cheb: 6.205163e-20 static const T Y = 1.0869731903076171875F; static const T P[10] = { BOOST_MATH_BIG_CONSTANT(T, 64, -0.00893891094356946995368), BOOST_MATH_BIG_CONSTANT(T, 64, -0.0487562980088748775943), BOOST_MATH_BIG_CONSTANT(T, 64, -0.0670568657950041926085), BOOST_MATH_BIG_CONSTANT(T, 64, -0.0509577352851442932713), BOOST_MATH_BIG_CONSTANT(T, 64, -0.02551800927409034206), BOOST_MATH_BIG_CONSTANT(T, 64, -0.00892913759760086687083), BOOST_MATH_BIG_CONSTANT(T, 64, -0.00224469630207344379888), BOOST_MATH_BIG_CONSTANT(T, 64, -0.000392477245911296982776), BOOST_MATH_BIG_CONSTANT(T, 64, -0.44424044184395578775e-4), BOOST_MATH_BIG_CONSTANT(T, 64, -0.252788029251437017959e-5) }; static const T Q[10] = { BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), BOOST_MATH_BIG_CONSTANT(T, 64, 2.00323265503572414261), BOOST_MATH_BIG_CONSTANT(T, 64, 1.94688958187256383178), BOOST_MATH_BIG_CONSTANT(T, 64, 1.19733638134417472296), BOOST_MATH_BIG_CONSTANT(T, 64, 0.513137726038353385661), BOOST_MATH_BIG_CONSTANT(T, 64, 0.159135395578007264547), BOOST_MATH_BIG_CONSTANT(T, 64, 0.0358233587351620919881), BOOST_MATH_BIG_CONSTANT(T, 64, 0.0056716655597009417875), BOOST_MATH_BIG_CONSTANT(T, 64, 0.000577048986213535829925), BOOST_MATH_BIG_CONSTANT(T, 64, 0.290976943033493216793e-4) }; T t = z / 5 - 3; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); result *= exp(z) / z; result += z; } else if(z <= 40) { // Maximum Deviation Found: 2.940e-21 // Expected Error Term: -2.938e-21 // Max Error found at long double precision = Poly: 3.419893e-19 Cheb: 3.359874e-19 static const T Y = 1.03937530517578125F; static const T P[12] = { BOOST_MATH_BIG_CONSTANT(T, 64, -0.00356165148914447278177), BOOST_MATH_BIG_CONSTANT(T, 64, -0.0240235006148610849678), BOOST_MATH_BIG_CONSTANT(T, 64, -0.0516699967278057976119), BOOST_MATH_BIG_CONSTANT(T, 64, -0.0586603078706856245674), BOOST_MATH_BIG_CONSTANT(T, 64, -0.0409960120868776180825), BOOST_MATH_BIG_CONSTANT(T, 64, -0.0185485073689590665153), BOOST_MATH_BIG_CONSTANT(T, 64, -0.00537842101034123222417), BOOST_MATH_BIG_CONSTANT(T, 64, -0.000920988084778273760609), BOOST_MATH_BIG_CONSTANT(T, 64, -0.716742618812210980263e-4), BOOST_MATH_BIG_CONSTANT(T, 64, -0.504623302166487346677e-9), BOOST_MATH_BIG_CONSTANT(T, 64, 0.712662196671896837736e-10), BOOST_MATH_BIG_CONSTANT(T, 64, -0.533769629702262072175e-11) }; static const T Q[9] = { BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), BOOST_MATH_BIG_CONSTANT(T, 64, 3.13286733695729715455), BOOST_MATH_BIG_CONSTANT(T, 64, 4.49281223045653491929), BOOST_MATH_BIG_CONSTANT(T, 64, 3.84900294427622911374), BOOST_MATH_BIG_CONSTANT(T, 64, 2.15205199043580378211), BOOST_MATH_BIG_CONSTANT(T, 64, 0.802912186540269232424), BOOST_MATH_BIG_CONSTANT(T, 64, 0.194793170017818925388), BOOST_MATH_BIG_CONSTANT(T, 64, 0.0280128013584653182994), BOOST_MATH_BIG_CONSTANT(T, 64, 0.00182034930799902922549) }; T t = z / 10 - 3; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); BOOST_MATH_INSTRUMENT_VARIABLE(result) result *= exp(z) / z; BOOST_MATH_INSTRUMENT_VARIABLE(result) result += z; BOOST_MATH_INSTRUMENT_VARIABLE(result) } else { // Maximum Deviation Found: 3.536e-20 // Max Error found at long double precision = Poly: 1.310671e-19 Cheb: 8.630943e-11 static const T exp40 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.35385266837019985407899910749034804508871617254555467236651e17)); static const T Y= 1.013065338134765625F; static const T P[9] = { BOOST_MATH_BIG_CONSTANT(T, 64, -0.0130653381347656250004), BOOST_MATH_BIG_CONSTANT(T, 64, 0.644487780349757303739), BOOST_MATH_BIG_CONSTANT(T, 64, 143.995670348227433964), BOOST_MATH_BIG_CONSTANT(T, 64, -13918.9322758014173709), BOOST_MATH_BIG_CONSTANT(T, 64, 476260.975133624194484), BOOST_MATH_BIG_CONSTANT(T, 64, -7437102.15135982802122), BOOST_MATH_BIG_CONSTANT(T, 64, 53732298.8764767916542), BOOST_MATH_BIG_CONSTANT(T, 64, -160695051.957997452509), BOOST_MATH_BIG_CONSTANT(T, 64, 137839271.592778020028) }; static const T Q[9] = { BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), BOOST_MATH_BIG_CONSTANT(T, 64, 27.2103343964943718802), BOOST_MATH_BIG_CONSTANT(T, 64, -8785.48528692879413676), BOOST_MATH_BIG_CONSTANT(T, 64, 397530.290000322626766), BOOST_MATH_BIG_CONSTANT(T, 64, -7356441.34957799368252), BOOST_MATH_BIG_CONSTANT(T, 64, 63050914.5343400957524), BOOST_MATH_BIG_CONSTANT(T, 64, -246143779.638307701369), BOOST_MATH_BIG_CONSTANT(T, 64, 384647824.678554961174), BOOST_MATH_BIG_CONSTANT(T, 64, -166288297.874583961493) }; T t = 1 / z; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); if(z < 41) result *= exp(z) / z; else { // Avoid premature overflow if we can: t = z - 40; if(t > tools::log_max_value()) { result = policies::raise_overflow_error(function, nullptr, pol); } else { result *= exp(z - 40) / z; if(result > tools::max_value() / exp40) { result = policies::raise_overflow_error(function, nullptr, pol); } else { result *= exp40; } } } result += z; } return result; } template void expint_i_imp_113a(T& result, const T& z, const Policy& pol) { BOOST_MATH_STD_USING // Maximum Deviation Found: 1.230e-36 // Expected Error Term: -1.230e-36 // Max Error found at long double precision = Poly: 4.355299e-34 Cheb: 7.512581e-34 static const T P[15] = { BOOST_MATH_BIG_CONSTANT(T, 113, 2.98677224343598593765287235997328555), BOOST_MATH_BIG_CONSTANT(T, 113, -0.333256034674702967028780537349334037), BOOST_MATH_BIG_CONSTANT(T, 113, 0.851831522798101228384971644036708463), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0657854833494646206186773614110374948), BOOST_MATH_BIG_CONSTANT(T, 113, 0.0630065662557284456000060708977935073), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00311759191425309373327784154659649232), BOOST_MATH_BIG_CONSTANT(T, 113, 0.00176213568201493949664478471656026771), BOOST_MATH_BIG_CONSTANT(T, 113, -0.491548660404172089488535218163952295e-4), BOOST_MATH_BIG_CONSTANT(T, 113, 0.207764227621061706075562107748176592e-4), BOOST_MATH_BIG_CONSTANT(T, 113, -0.225445398156913584846374273379402765e-6), BOOST_MATH_BIG_CONSTANT(T, 113, 0.996939977231410319761273881672601592e-7), BOOST_MATH_BIG_CONSTANT(T, 113, 0.212546902052178643330520878928100847e-9), BOOST_MATH_BIG_CONSTANT(T, 113, 0.154646053060262871360159325115980023e-9), BOOST_MATH_BIG_CONSTANT(T, 113, 0.143971277122049197323415503594302307e-11), BOOST_MATH_BIG_CONSTANT(T, 113, 0.306243138978114692252817805327426657e-13) }; static const T Q[15] = { BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), BOOST_MATH_BIG_CONSTANT(T, 113, -1.40178870313943798705491944989231793), BOOST_MATH_BIG_CONSTANT(T, 113, 0.943810968269701047641218856758605284), BOOST_MATH_BIG_CONSTANT(T, 113, -0.405026631534345064600850391026113165), BOOST_MATH_BIG_CONSTANT(T, 113, 0.123924153524614086482627660399122762), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0286364505373369439591132549624317707), BOOST_MATH_BIG_CONSTANT(T, 113, 0.00516148845910606985396596845494015963), BOOST_MATH_BIG_CONSTANT(T, 113, -0.000738330799456364820380739850924783649), BOOST_MATH_BIG_CONSTANT(T, 113, 0.843737760991856114061953265870882637e-4), BOOST_MATH_BIG_CONSTANT(T, 113, -0.767957673431982543213661388914587589e-5), BOOST_MATH_BIG_CONSTANT(T, 113, 0.549136847313854595809952100614840031e-6), BOOST_MATH_BIG_CONSTANT(T, 113, -0.299801381513743676764008325949325404e-7), BOOST_MATH_BIG_CONSTANT(T, 113, 0.118419479055346106118129130945423483e-8), BOOST_MATH_BIG_CONSTANT(T, 113, -0.30372295663095470359211949045344607e-10), BOOST_MATH_BIG_CONSTANT(T, 113, 0.382742953753485333207877784720070523e-12) }; static const T c1 = BOOST_MATH_BIG_CONSTANT(T, 113, 1677624236387711.0); static const T c2 = BOOST_MATH_BIG_CONSTANT(T, 113, 4503599627370496.0); static const T c3 = BOOST_MATH_BIG_CONSTANT(T, 113, 266514582277687.0); static const T c4 = BOOST_MATH_BIG_CONSTANT(T, 113, 4503599627370496.0); static const T c5 = BOOST_MATH_BIG_CONSTANT(T, 113, 4503599627370496.0); static const T r1 = c1 / c2; static const T r2 = c3 / c4 / c5; static const T r3 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 113, 0.283806480836357377069325311780969887585024578164571984232357e-31)); static const T r = static_cast(BOOST_MATH_BIG_CONSTANT(T, 113, 0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392)); T t = (z / 3) - 1; result = tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); t = ((z - r1) - r2) - r3; result *= t; if(fabs(t) < 0.1) { result += boost::math::log1p(t / r, pol); } else { result += log(z / r); } } template void expint_i_113b(T& result, const T& z) { BOOST_MATH_STD_USING // Maximum Deviation Found: 7.779e-36 // Expected Error Term: -7.779e-36 // Max Error found at long double precision = Poly: 2.576723e-35 Cheb: 1.236001e-34 static const T Y = 1.158985137939453125F; static const T P[15] = { BOOST_MATH_BIG_CONSTANT(T, 113, 0.00139324086199409049282472239613554817), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0338173111691991289178779840307998955), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0555972290794371306259684845277620556), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0378677976003456171563136909186202177), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0152221583517528358782902783914356667), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00428283334203873035104248217403126905), BOOST_MATH_BIG_CONSTANT(T, 113, -0.000922782631491644846511553601323435286), BOOST_MATH_BIG_CONSTANT(T, 113, -0.000155513428088853161562660696055496696), BOOST_MATH_BIG_CONSTANT(T, 113, -0.205756580255359882813545261519317096e-4), BOOST_MATH_BIG_CONSTANT(T, 113, -0.220327406578552089820753181821115181e-5), BOOST_MATH_BIG_CONSTANT(T, 113, -0.189483157545587592043421445645377439e-6), BOOST_MATH_BIG_CONSTANT(T, 113, -0.122426571518570587750898968123803867e-7), BOOST_MATH_BIG_CONSTANT(T, 113, -0.635187358949437991465353268374523944e-9), BOOST_MATH_BIG_CONSTANT(T, 113, -0.203015132965870311935118337194860863e-10), BOOST_MATH_BIG_CONSTANT(T, 113, -0.384276705503357655108096065452950822e-12) }; static const T Q[15] = { BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), BOOST_MATH_BIG_CONSTANT(T, 113, 1.58784732785354597996617046880946257), BOOST_MATH_BIG_CONSTANT(T, 113, 1.18550755302279446339364262338114098), BOOST_MATH_BIG_CONSTANT(T, 113, 0.55598993549661368604527040349702836), BOOST_MATH_BIG_CONSTANT(T, 113, 0.184290888380564236919107835030984453), BOOST_MATH_BIG_CONSTANT(T, 113, 0.0459658051803613282360464632326866113), BOOST_MATH_BIG_CONSTANT(T, 113, 0.0089505064268613225167835599456014705), BOOST_MATH_BIG_CONSTANT(T, 113, 0.00139042673882987693424772855926289077), BOOST_MATH_BIG_CONSTANT(T, 113, 0.000174210708041584097450805790176479012), BOOST_MATH_BIG_CONSTANT(T, 113, 0.176324034009707558089086875136647376e-4), BOOST_MATH_BIG_CONSTANT(T, 113, 0.142935845999505649273084545313710581e-5), BOOST_MATH_BIG_CONSTANT(T, 113, 0.907502324487057260675816233312747784e-7), BOOST_MATH_BIG_CONSTANT(T, 113, 0.431044337808893270797934621235918418e-8), BOOST_MATH_BIG_CONSTANT(T, 113, 0.139007266881450521776529705677086902e-9), BOOST_MATH_BIG_CONSTANT(T, 113, 0.234715286125516430792452741830364672e-11) }; T t = z / 2 - 4; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); result *= exp(z) / z; result += z; } template void expint_i_113c(T& result, const T& z) { BOOST_MATH_STD_USING // Maximum Deviation Found: 1.082e-34 // Expected Error Term: 1.080e-34 // Max Error found at long double precision = Poly: 1.958294e-34 Cheb: 2.472261e-34 static const T Y = 1.091579437255859375F; static const T P[17] = { BOOST_MATH_BIG_CONSTANT(T, 113, -0.00685089599550151282724924894258520532), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0443313550253580053324487059748497467), BOOST_MATH_BIG_CONSTANT(T, 113, -0.071538561252424027443296958795814874), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0622923153354102682285444067843300583), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0361631270264607478205393775461208794), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0153192826839624850298106509601033261), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00496967904961260031539602977748408242), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00126989079663425780800919171538920589), BOOST_MATH_BIG_CONSTANT(T, 113, -0.000258933143097125199914724875206326698), BOOST_MATH_BIG_CONSTANT(T, 113, -0.422110326689204794443002330541441956e-4), BOOST_MATH_BIG_CONSTANT(T, 113, -0.546004547590412661451073996127115221e-5), BOOST_MATH_BIG_CONSTANT(T, 113, -0.546775260262202177131068692199272241e-6), BOOST_MATH_BIG_CONSTANT(T, 113, -0.404157632825805803833379568956559215e-7), BOOST_MATH_BIG_CONSTANT(T, 113, -0.200612596196561323832327013027419284e-8), BOOST_MATH_BIG_CONSTANT(T, 113, -0.502538501472133913417609379765434153e-10), BOOST_MATH_BIG_CONSTANT(T, 113, -0.326283053716799774936661568391296584e-13), BOOST_MATH_BIG_CONSTANT(T, 113, 0.869226483473172853557775877908693647e-15) }; static const T Q[15] = { BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), BOOST_MATH_BIG_CONSTANT(T, 113, 2.23227220874479061894038229141871087), BOOST_MATH_BIG_CONSTANT(T, 113, 2.40221000361027971895657505660959863), BOOST_MATH_BIG_CONSTANT(T, 113, 1.65476320985936174728238416007084214), BOOST_MATH_BIG_CONSTANT(T, 113, 0.816828602963895720369875535001248227), BOOST_MATH_BIG_CONSTANT(T, 113, 0.306337922909446903672123418670921066), BOOST_MATH_BIG_CONSTANT(T, 113, 0.0902400121654409267774593230720600752), BOOST_MATH_BIG_CONSTANT(T, 113, 0.0212708882169429206498765100993228086), BOOST_MATH_BIG_CONSTANT(T, 113, 0.00404442626252467471957713495828165491), BOOST_MATH_BIG_CONSTANT(T, 113, 0.0006195601618842253612635241404054589), BOOST_MATH_BIG_CONSTANT(T, 113, 0.755930932686543009521454653994321843e-4), BOOST_MATH_BIG_CONSTANT(T, 113, 0.716004532773778954193609582677482803e-5), BOOST_MATH_BIG_CONSTANT(T, 113, 0.500881663076471627699290821742924233e-6), BOOST_MATH_BIG_CONSTANT(T, 113, 0.233593219218823384508105943657387644e-7), BOOST_MATH_BIG_CONSTANT(T, 113, 0.554900353169148897444104962034267682e-9) }; T t = z / 4 - 3.5; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); result *= exp(z) / z; result += z; } template void expint_i_113d(T& result, const T& z) { BOOST_MATH_STD_USING // Maximum Deviation Found: 3.163e-35 // Expected Error Term: 3.163e-35 // Max Error found at long double precision = Poly: 4.158110e-35 Cheb: 5.385532e-35 static const T Y = 1.051731109619140625F; static const T P[14] = { BOOST_MATH_BIG_CONSTANT(T, 113, -0.00144552494420652573815404828020593565), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0126747451594545338365684731262912741), BOOST_MATH_BIG_CONSTANT(T, 113, -0.01757394877502366717526779263438073), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0126838952395506921945756139424722588), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0060045057928894974954756789352443522), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00205349237147226126653803455793107903), BOOST_MATH_BIG_CONSTANT(T, 113, -0.000532606040579654887676082220195624207), BOOST_MATH_BIG_CONSTANT(T, 113, -0.000107344687098019891474772069139014662), BOOST_MATH_BIG_CONSTANT(T, 113, -0.169536802705805811859089949943435152e-4), BOOST_MATH_BIG_CONSTANT(T, 113, -0.20863311729206543881826553010120078e-5), BOOST_MATH_BIG_CONSTANT(T, 113, -0.195670358542116256713560296776654385e-6), BOOST_MATH_BIG_CONSTANT(T, 113, -0.133291168587253145439184028259772437e-7), BOOST_MATH_BIG_CONSTANT(T, 113, -0.595500337089495614285777067722823397e-9), BOOST_MATH_BIG_CONSTANT(T, 113, -0.133141358866324100955927979606981328e-10) }; static const T Q[14] = { BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), BOOST_MATH_BIG_CONSTANT(T, 113, 1.72490783907582654629537013560044682), BOOST_MATH_BIG_CONSTANT(T, 113, 1.44524329516800613088375685659759765), BOOST_MATH_BIG_CONSTANT(T, 113, 0.778241785539308257585068744978050181), BOOST_MATH_BIG_CONSTANT(T, 113, 0.300520486589206605184097270225725584), BOOST_MATH_BIG_CONSTANT(T, 113, 0.0879346899691339661394537806057953957), BOOST_MATH_BIG_CONSTANT(T, 113, 0.0200802415843802892793583043470125006), BOOST_MATH_BIG_CONSTANT(T, 113, 0.00362842049172586254520256100538273214), BOOST_MATH_BIG_CONSTANT(T, 113, 0.000519731362862955132062751246769469957), BOOST_MATH_BIG_CONSTANT(T, 113, 0.584092147914050999895178697392282665e-4), BOOST_MATH_BIG_CONSTANT(T, 113, 0.501851497707855358002773398333542337e-5), BOOST_MATH_BIG_CONSTANT(T, 113, 0.313085677467921096644895738538865537e-6), BOOST_MATH_BIG_CONSTANT(T, 113, 0.127552010539733113371132321521204458e-7), BOOST_MATH_BIG_CONSTANT(T, 113, 0.25737310826983451144405899970774587e-9) }; T t = z / 4 - 5.5; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); BOOST_MATH_INSTRUMENT_VARIABLE(result) result *= exp(z) / z; BOOST_MATH_INSTRUMENT_VARIABLE(result) result += z; BOOST_MATH_INSTRUMENT_VARIABLE(result) } template void expint_i_113e(T& result, const T& z) { BOOST_MATH_STD_USING // Maximum Deviation Found: 7.972e-36 // Expected Error Term: 7.962e-36 // Max Error found at long double precision = Poly: 1.711721e-34 Cheb: 3.100018e-34 static const T Y = 1.032726287841796875F; static const T P[15] = { BOOST_MATH_BIG_CONSTANT(T, 113, -0.00141056919297307534690895009969373233), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0123384175302540291339020257071411437), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0298127270706864057791526083667396115), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0390686759471630584626293670260768098), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0338226792912607409822059922949035589), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0211659736179834946452561197559654582), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0100428887460879377373158821400070313), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00370717396015165148484022792801682932), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0010768667551001624764329000496561659), BOOST_MATH_BIG_CONSTANT(T, 113, -0.000246127328761027039347584096573123531), BOOST_MATH_BIG_CONSTANT(T, 113, -0.437318110527818613580613051861991198e-4), BOOST_MATH_BIG_CONSTANT(T, 113, -0.587532682329299591501065482317771497e-5), BOOST_MATH_BIG_CONSTANT(T, 113, -0.565697065670893984610852937110819467e-6), BOOST_MATH_BIG_CONSTANT(T, 113, -0.350233957364028523971768887437839573e-7), BOOST_MATH_BIG_CONSTANT(T, 113, -0.105428907085424234504608142258423505e-8) }; static const T Q[16] = { BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), BOOST_MATH_BIG_CONSTANT(T, 113, 3.17261315255467581204685605414005525), BOOST_MATH_BIG_CONSTANT(T, 113, 4.85267952971640525245338392887217426), BOOST_MATH_BIG_CONSTANT(T, 113, 4.74341914912439861451492872946725151), BOOST_MATH_BIG_CONSTANT(T, 113, 3.31108463283559911602405970817931801), BOOST_MATH_BIG_CONSTANT(T, 113, 1.74657006336994649386607925179848899), BOOST_MATH_BIG_CONSTANT(T, 113, 0.718255607416072737965933040353653244), BOOST_MATH_BIG_CONSTANT(T, 113, 0.234037553177354542791975767960643864), BOOST_MATH_BIG_CONSTANT(T, 113, 0.0607470145906491602476833515412605389), BOOST_MATH_BIG_CONSTANT(T, 113, 0.0125048143774226921434854172947548724), BOOST_MATH_BIG_CONSTANT(T, 113, 0.00201034366420433762935768458656609163), BOOST_MATH_BIG_CONSTANT(T, 113, 0.000244823338417452367656368849303165721), BOOST_MATH_BIG_CONSTANT(T, 113, 0.213511655166983177960471085462540807e-4), BOOST_MATH_BIG_CONSTANT(T, 113, 0.119323998465870686327170541547982932e-5), BOOST_MATH_BIG_CONSTANT(T, 113, 0.322153582559488797803027773591727565e-7), BOOST_MATH_BIG_CONSTANT(T, 113, -0.161635525318683508633792845159942312e-16) }; T t = z / 8 - 4.25; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); BOOST_MATH_INSTRUMENT_VARIABLE(result) result *= exp(z) / z; BOOST_MATH_INSTRUMENT_VARIABLE(result) result += z; BOOST_MATH_INSTRUMENT_VARIABLE(result) } template void expint_i_113f(T& result, const T& z) { BOOST_MATH_STD_USING // Maximum Deviation Found: 4.469e-36 // Expected Error Term: 4.468e-36 // Max Error found at long double precision = Poly: 1.288958e-35 Cheb: 2.304586e-35 static const T Y = 1.0216197967529296875F; static const T P[12] = { BOOST_MATH_BIG_CONSTANT(T, 113, -0.000322999116096627043476023926572650045), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00385606067447365187909164609294113346), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00686514524727568176735949971985244415), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00606260649593050194602676772589601799), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00334382362017147544335054575436194357), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00126108534260253075708625583630318043), BOOST_MATH_BIG_CONSTANT(T, 113, -0.000337881489347846058951220431209276776), BOOST_MATH_BIG_CONSTANT(T, 113, -0.648480902304640018785370650254018022e-4), BOOST_MATH_BIG_CONSTANT(T, 113, -0.87652644082970492211455290209092766e-5), BOOST_MATH_BIG_CONSTANT(T, 113, -0.794712243338068631557849449519994144e-6), BOOST_MATH_BIG_CONSTANT(T, 113, -0.434084023639508143975983454830954835e-7), BOOST_MATH_BIG_CONSTANT(T, 113, -0.107839681938752337160494412638656696e-8) }; static const T Q[12] = { BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), BOOST_MATH_BIG_CONSTANT(T, 113, 2.09913805456661084097134805151524958), BOOST_MATH_BIG_CONSTANT(T, 113, 2.07041755535439919593503171320431849), BOOST_MATH_BIG_CONSTANT(T, 113, 1.26406517226052371320416108604874734), BOOST_MATH_BIG_CONSTANT(T, 113, 0.529689923703770353961553223973435569), BOOST_MATH_BIG_CONSTANT(T, 113, 0.159578150879536711042269658656115746), BOOST_MATH_BIG_CONSTANT(T, 113, 0.0351720877642000691155202082629857131), BOOST_MATH_BIG_CONSTANT(T, 113, 0.00565313621289648752407123620997063122), BOOST_MATH_BIG_CONSTANT(T, 113, 0.000646920278540515480093843570291218295), BOOST_MATH_BIG_CONSTANT(T, 113, 0.499904084850091676776993523323213591e-4), BOOST_MATH_BIG_CONSTANT(T, 113, 0.233740058688179614344680531486267142e-5), BOOST_MATH_BIG_CONSTANT(T, 113, 0.498800627828842754845418576305379469e-7) }; T t = z / 7 - 7; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); BOOST_MATH_INSTRUMENT_VARIABLE(result) result *= exp(z) / z; BOOST_MATH_INSTRUMENT_VARIABLE(result) result += z; BOOST_MATH_INSTRUMENT_VARIABLE(result) } template void expint_i_113g(T& result, const T& z) { BOOST_MATH_STD_USING // Maximum Deviation Found: 5.588e-35 // Expected Error Term: -5.566e-35 // Max Error found at long double precision = Poly: 9.976345e-35 Cheb: 8.358865e-35 static const T Y = 1.015148162841796875F; static const T P[11] = { BOOST_MATH_BIG_CONSTANT(T, 113, -0.000435714784725086961464589957142615216), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00432114324353830636009453048419094314), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0100740363285526177522819204820582424), BOOST_MATH_BIG_CONSTANT(T, 113, -0.0116744115827059174392383504427640362), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00816145387784261141360062395898644652), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00371380272673500791322744465394211508), BOOST_MATH_BIG_CONSTANT(T, 113, -0.00112958263488611536502153195005736563), BOOST_MATH_BIG_CONSTANT(T, 113, -0.000228316462389404645183269923754256664), BOOST_MATH_BIG_CONSTANT(T, 113, -0.29462181955852860250359064291292577e-4), BOOST_MATH_BIG_CONSTANT(T, 113, -0.21972450610957417963227028788460299e-5), BOOST_MATH_BIG_CONSTANT(T, 113, -0.720558173805289167524715527536874694e-7) }; static const T Q[11] = { BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), BOOST_MATH_BIG_CONSTANT(T, 113, 2.95918362458402597039366979529287095), BOOST_MATH_BIG_CONSTANT(T, 113, 3.96472247520659077944638411856748924), BOOST_MATH_BIG_CONSTANT(T, 113, 3.15563251550528513747923714884142131), BOOST_MATH_BIG_CONSTANT(T, 113, 1.64674612007093983894215359287448334), BOOST_MATH_BIG_CONSTANT(T, 113, 0.58695020129846594405856226787156424), BOOST_MATH_BIG_CONSTANT(T, 113, 0.144358385319329396231755457772362793), BOOST_MATH_BIG_CONSTANT(T, 113, 0.024146911506411684815134916238348063), BOOST_MATH_BIG_CONSTANT(T, 113, 0.0026257132337460784266874572001650153), BOOST_MATH_BIG_CONSTANT(T, 113, 0.000167479843750859222348869769094711093), BOOST_MATH_BIG_CONSTANT(T, 113, 0.475673638665358075556452220192497036e-5) }; T t = z / 14 - 5; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); BOOST_MATH_INSTRUMENT_VARIABLE(result) result *= exp(z) / z; BOOST_MATH_INSTRUMENT_VARIABLE(result) result += z; BOOST_MATH_INSTRUMENT_VARIABLE(result) } template void expint_i_113h(T& result, const T& z) { BOOST_MATH_STD_USING // Maximum Deviation Found: 4.448e-36 // Expected Error Term: 4.445e-36 // Max Error found at long double precision = Poly: 2.058532e-35 Cheb: 2.165465e-27 static const T Y= 1.00849151611328125F; static const T P[9] = { BOOST_MATH_BIG_CONSTANT(T, 113, -0.0084915161132812500000001440233607358), BOOST_MATH_BIG_CONSTANT(T, 113, 1.84479378737716028341394223076147872), BOOST_MATH_BIG_CONSTANT(T, 113, -130.431146923726715674081563022115568), BOOST_MATH_BIG_CONSTANT(T, 113, 4336.26945491571504885214176203512015), BOOST_MATH_BIG_CONSTANT(T, 113, -76279.0031974974730095170437591004177), BOOST_MATH_BIG_CONSTANT(T, 113, 729577.956271997673695191455111727774), BOOST_MATH_BIG_CONSTANT(T, 113, -3661928.69330208734947103004900349266), BOOST_MATH_BIG_CONSTANT(T, 113, 8570600.041606912735872059184527855), BOOST_MATH_BIG_CONSTANT(T, 113, -6758379.93672362080947905580906028645) }; static const T Q[10] = { BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), BOOST_MATH_BIG_CONSTANT(T, 113, -99.4868026047611434569541483506091713), BOOST_MATH_BIG_CONSTANT(T, 113, 3879.67753690517114249705089803055473), BOOST_MATH_BIG_CONSTANT(T, 113, -76495.82413252517165830203774900806), BOOST_MATH_BIG_CONSTANT(T, 113, 820773.726408311894342553758526282667), BOOST_MATH_BIG_CONSTANT(T, 113, -4803087.64956923577571031564909646579), BOOST_MATH_BIG_CONSTANT(T, 113, 14521246.227703545012713173740895477), BOOST_MATH_BIG_CONSTANT(T, 113, -19762752.0196769712258527849159393044), BOOST_MATH_BIG_CONSTANT(T, 113, 8354144.67882768405803322344185185517), BOOST_MATH_BIG_CONSTANT(T, 113, 355076.853106511136734454134915432571) }; T t = 1 / z; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); result *= exp(z) / z; result += z; } template T expint_i_imp(T z, const Policy& pol, const std::integral_constant& tag) { BOOST_MATH_STD_USING static const char* function = "boost::math::expint<%1%>(%1%)"; if(z < 0) return -expint_imp(1, T(-z), pol, tag); if(z == 0) return -policies::raise_overflow_error(function, nullptr, pol); T result; if(z <= 6) { expint_i_imp_113a(result, z, pol); } else if (z <= 10) { expint_i_113b(result, z); } else if(z <= 18) { expint_i_113c(result, z); } else if(z <= 26) { expint_i_113d(result, z); } else if(z <= 42) { expint_i_113e(result, z); } else if(z <= 56) { expint_i_113f(result, z); } else if(z <= 84) { expint_i_113g(result, z); } else if(z <= 210) { expint_i_113h(result, z); } else // z > 210 { // Maximum Deviation Found: 3.963e-37 // Expected Error Term: 3.963e-37 // Max Error found at long double precision = Poly: 1.248049e-36 Cheb: 2.843486e-29 static const T exp40 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 113, 2.35385266837019985407899910749034804508871617254555467236651e17)); static const T Y= 1.00252532958984375F; static const T P[8] = { BOOST_MATH_BIG_CONSTANT(T, 113, -0.00252532958984375000000000000000000085), BOOST_MATH_BIG_CONSTANT(T, 113, 1.16591386866059087390621952073890359), BOOST_MATH_BIG_CONSTANT(T, 113, -67.8483431314018462417456828499277579), BOOST_MATH_BIG_CONSTANT(T, 113, 1567.68688154683822956359536287575892), BOOST_MATH_BIG_CONSTANT(T, 113, -17335.4683325819116482498725687644986), BOOST_MATH_BIG_CONSTANT(T, 113, 93632.6567462673524739954389166550069), BOOST_MATH_BIG_CONSTANT(T, 113, -225025.189335919133214440347510936787), BOOST_MATH_BIG_CONSTANT(T, 113, 175864.614717440010942804684741336853) }; static const T Q[9] = { BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), BOOST_MATH_BIG_CONSTANT(T, 113, -65.6998869881600212224652719706425129), BOOST_MATH_BIG_CONSTANT(T, 113, 1642.73850032324014781607859416890077), BOOST_MATH_BIG_CONSTANT(T, 113, -19937.2610222467322481947237312818575), BOOST_MATH_BIG_CONSTANT(T, 113, 124136.267326632742667972126625064538), BOOST_MATH_BIG_CONSTANT(T, 113, -384614.251466704550678760562965502293), BOOST_MATH_BIG_CONSTANT(T, 113, 523355.035910385688578278384032026998), BOOST_MATH_BIG_CONSTANT(T, 113, -217809.552260834025885677791936351294), BOOST_MATH_BIG_CONSTANT(T, 113, -8555.81719551123640677261226549550872) }; T t = 1 / z; result = Y + tools::evaluate_polynomial(P, t) / tools::evaluate_polynomial(Q, t); if(z < 41) result *= exp(z) / z; else { // Avoid premature overflow if we can: t = z - 40; if(t > tools::log_max_value()) { result = policies::raise_overflow_error(function, nullptr, pol); } else { result *= exp(z - 40) / z; if(result > tools::max_value() / exp40) { result = policies::raise_overflow_error(function, nullptr, pol); } else { result *= exp40; } } } result += z; } return result; } template struct expint_i_initializer { struct init { init() { do_init(tag()); } static void do_init(const std::integral_constant&){} static void do_init(const std::integral_constant&) { boost::math::expint(T(5), Policy()); boost::math::expint(T(7), Policy()); boost::math::expint(T(18), Policy()); boost::math::expint(T(38), Policy()); boost::math::expint(T(45), Policy()); } static void do_init(const std::integral_constant&) { boost::math::expint(T(5), Policy()); boost::math::expint(T(7), Policy()); boost::math::expint(T(18), Policy()); boost::math::expint(T(38), Policy()); boost::math::expint(T(45), Policy()); } static void do_init(const std::integral_constant&) { boost::math::expint(T(5), Policy()); boost::math::expint(T(7), Policy()); boost::math::expint(T(17), Policy()); boost::math::expint(T(25), Policy()); boost::math::expint(T(40), Policy()); boost::math::expint(T(50), Policy()); boost::math::expint(T(80), Policy()); boost::math::expint(T(200), Policy()); boost::math::expint(T(220), Policy()); } void force_instantiate()const{} }; static const init initializer; static void force_instantiate() { initializer.force_instantiate(); } }; template const typename expint_i_initializer::init expint_i_initializer::initializer; template struct expint_1_initializer { struct init { init() { do_init(tag()); } static void do_init(const std::integral_constant&){} static void do_init(const std::integral_constant&) { boost::math::expint(1, T(0.5), Policy()); boost::math::expint(1, T(2), Policy()); } static void do_init(const std::integral_constant&) { boost::math::expint(1, T(0.5), Policy()); boost::math::expint(1, T(2), Policy()); } static void do_init(const std::integral_constant&) { boost::math::expint(1, T(0.5), Policy()); boost::math::expint(1, T(2), Policy()); boost::math::expint(1, T(6), Policy()); } void force_instantiate()const{} }; static const init initializer; static void force_instantiate() { initializer.force_instantiate(); } }; template const typename expint_1_initializer::init expint_1_initializer::initializer; template inline typename tools::promote_args::type expint_forwarder(T z, const Policy& /*pol*/, std::true_type const&) { typedef typename tools::promote_args::type result_type; typedef typename policies::evaluation::type value_type; typedef typename policies::precision::type precision_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; typedef std::integral_constant tag_type; expint_i_initializer::force_instantiate(); return policies::checked_narrowing_cast(detail::expint_i_imp( static_cast(z), forwarding_policy(), tag_type()), "boost::math::expint<%1%>(%1%)"); } template inline typename tools::promote_args::type expint_forwarder(unsigned n, T z, const std::false_type&) { return boost::math::expint(n, z, policies::policy<>()); } } // namespace detail template inline typename tools::promote_args::type expint(unsigned n, T z, const Policy& /*pol*/) { typedef typename tools::promote_args::type result_type; typedef typename policies::evaluation::type value_type; typedef typename policies::precision::type precision_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; typedef std::integral_constant tag_type; detail::expint_1_initializer::force_instantiate(); return policies::checked_narrowing_cast(detail::expint_imp( n, static_cast(z), forwarding_policy(), tag_type()), "boost::math::expint<%1%>(unsigned, %1%)"); } template inline typename detail::expint_result::type expint(T const z, U const u) { typedef typename policies::is_policy::type tag_type; return detail::expint_forwarder(z, u, tag_type()); } template inline typename tools::promote_args::type expint(T z) { return expint(z, policies::policy<>()); } }} // namespaces #ifdef _MSC_VER #pragma warning(pop) #endif #endif // BOOST_MATH_EXPINT_HPP